1
|
Umetani M, Fujisawa M, Okura R, Nozoe T, Suenaga S, Nakaoka H, Kussell E, Wakamoto Y. Observation of persister cell histories reveals diverse modes of survival in antibiotic persistence. eLife 2025; 14:e79517. [PMID: 40356339 PMCID: PMC12074638 DOI: 10.7554/elife.79517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Bacterial persistence is a phenomenon in which a small fraction of isogenic bacterial cells survives a lethal dose of antibiotics. Although the refractoriness of persistent cell populations has classically been attributed to growth-inactive cells generated before drug exposure, evidence is accumulating that actively growing cell fractions can also generate persister cells. However, single-cell characterization of persister cell history remains limited due to the extremely low frequencies of persisters. Here, we visualize the responses of over one million individual cells of wildtype Escherichia coli to lethal doses of antibiotics, sampling cells from different growth phases and culture media into a microfluidic device. We show that when cells sampled from exponentially growing populations were treated with ampicillin or ciprofloxacin, most persisters were growing before antibiotic treatment. Growing persisters exhibited heterogeneous survival dynamics, including continuous growth and fission with L-form-like morphologies, responsive growth arrest, or post-exposure filamentation. Incubating cells under stationary phase conditions increased both the frequency and the probability of survival of non-growing cells to ampicillin. Under ciprofloxacin, however, all persisters identified were growing before the antibiotic treatment, including samples from post-stationary phase culture. These results reveal diverse persister cell dynamics that depend on antibiotic types and pre-exposure history.
Collapse
Affiliation(s)
- Miki Umetani
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Miho Fujisawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Takashi Nozoe
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Shoichi Suenaga
- Department of Neuropathology, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Hidenori Nakaoka
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima UniversityTokushimaJapan
| | - Edo Kussell
- Department of Biology, New York UniversityNew YorkUnited States
- Department of Physics, New York UniversityNew YorkUnited States
| | - Yuichi Wakamoto
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| |
Collapse
|
2
|
Lobie TA, Krog CS, Skarstad K, Bjørås M, Booth JA. Escherichia coli type I toxin TisB exclusively controls proton depolarization following antibiotic induced DNA damage. Sci Rep 2025; 15:12774. [PMID: 40229382 PMCID: PMC11997105 DOI: 10.1038/s41598-025-96136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are genetic loci where the antitoxin gene product helps to control the expression or activity of the toxin gene product. Type I TA systems typically produce hydrophobic peptides that often localize to the inner membrane of bacteria. These amphipathic peptides can then potentially affect ion flows across the inner membrane. Here, we show that several type I toxins from Escherichia coli can affect depolarization, whereas tisB exclusively controls the depolarization of the proton gradient. tisB has been linked to persister cell formation following treatment with the antibiotic ciprofloxacin and tisB-istR has been implicated in the control of proton depolarization following treatment with ofloxacin. These results suggest that tisB could initiate the formation of persister cells by fully dissipating the proton gradient and that most of the electrical gradient greatly limiting ATP production following antibiotic-induced DNA damage.
Collapse
Affiliation(s)
- Tekle Airgecho Lobie
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Charlotte Solum Krog
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten Skarstad
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway.
| | - James Alexander Booth
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
3
|
Kaldalu N, Bērziņš N, Berglund Fick S, Sharma A, Andersson NC, Aedla J, Hinnu M, Puhar A, Hauryliuk V, Tenson T. Antibacterial compounds against non-growing and intracellular bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:25. [PMID: 40216902 PMCID: PMC11992225 DOI: 10.1038/s44259-025-00097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Slow- and non-growing bacterial populations, along with intracellular pathogens, often evade standard antibacterial treatments and are linked to persistent and recurrent infections. This necessitates the development of therapies specifically targeting nonproliferating bacteria. To identify compounds active against non-growing uropathogenic Escherichia coli (UPEC) we performed a drug-repurposing screen of 6454 approved drugs and drug candidates. Using dilution-regrowth assays, we identified 39 compounds that either kill non-growing UPEC or delay its regrowth post-treatment. The hits include fluoroquinolones, macrolides, rifamycins, biguanide disinfectants, a pleuromutilin, and anti-cancer agents. Twenty-nine of the hits have not previously been recognized as active against non-growing bacteria. The hits were further tested against non-growing Pseudomonas aeruginosa and Staphylococcus aureus. Ten compounds - solithromycin, rifabutin, mitomycin C, and seven fluoroquinolones-have strong bactericidal activity against non-growing P. aeruginosa, killing >4 log10 of bacteria at 2.5 µM. Solithromycin, valnemulin, evofosfamide, and satraplatin are unique in their ability to selectively target non-growing bacteria, exhibiting poor efficacy against growing bacteria. Finally, 31 hit compounds inhibit the growth of intracellular Shigella flexneri in a human enterocyte infection model, indicating their ability to permeate the cytoplasm of host cells. The identified compounds hold potential for treating persistent infections, warranting further comparative studies with current standard-of-care antibiotics.
Collapse
Affiliation(s)
- Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | | | | | - Atin Sharma
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | | | - Jüri Aedla
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mariliis Hinnu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrea Puhar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Science for Life Laboratory, Lund, Sweden.
- Virus Centre, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Fasnacht M, Comic H, Moll I. Ampicillin treatment in persister cell studies may cause non-physiological artifacts. MICROBIAL CELL (GRAZ, AUSTRIA) 2025; 12:53-64. [PMID: 40302931 PMCID: PMC12039935 DOI: 10.15698/mic2025.03.845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 05/02/2025]
Abstract
Persister cells are a clinically relevant sub-population of an isogenic bacterial culture that is tolerant to bactericidal antibiotics. With the aim to investigate the ribosomal protein content of persister cells, we employed the bacteriolytic properties of ampicillin to separate persister from sensitive cells. Thereby, we observed processing of several ribosomal proteins. Promisingly, we detected a variant of the large subunit protein uL2 that lacks the last 59 amino acids from its C-terminus (tL2) and which previously has been described as an inhibitor of DNA replication in vitro. Considering the increasing number of moonlighting functions described for ribosomal proteins, we investigated a potential regulatory role of tL2 in persister cells after ampicillin treatment. In contrast to our assumption, our findings show that the generation of tL2 after ampicillin treatment must be attributed to proteolysis upon cell lysis. Ultimately, no tL2 was detected intracellularly of purified persister cells isolated by an improved protocol employing proteinase K treatment. We therefore exclude the possibility of tL2 regulating DNA replication in ampicillin tolerant E. coli cells. Nevertheless, this study clearly highlights the necessity of further purification steps in addition to ampicillin treatment for the study of persister cells and invites for the careful re-examination of previously published results.
Collapse
Affiliation(s)
- Michel Fasnacht
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
| | - Hena Comic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
| | - Isabella Moll
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
5
|
Serrano S, Grujović MŽ, Marković KG, Barreto-Crespo MT, Semedo-Lemsaddek T. From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings. Foods 2025; 14:1075. [PMID: 40232118 PMCID: PMC11942268 DOI: 10.3390/foods14061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin-antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
6
|
Farrar A, Turner P, El Sayyed H, Feehily C, Chatzimichail S, Ta S, Crook D, Andersson M, Oakley S, Barrett L, Nellåker C, Stoesser N, Kapanidis A. Ribosome phenotypes for rapid classification of antibiotic-susceptible and resistant strains of Escherichia coli. Commun Biol 2025; 8:319. [PMID: 40011610 PMCID: PMC11865533 DOI: 10.1038/s42003-025-07740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Rapid antibiotic susceptibility tests (ASTs) are an increasingly important part of clinical care as antimicrobial resistance (AMR) becomes more common in bacterial infections. Here, we use the spatial distribution of fluorescently labelled ribosomes to detect intracellular changes associated with antibiotic susceptibility in E. coli cells using a convolutional neural network (CNN). By using ribosome-targeting probes, one fluorescence image provides data for cell segmentation and susceptibility phenotyping. Using 60,382 cells from an antibiotic-susceptible laboratory strain of E. coli, we showed that antibiotics with different mechanisms of action result in distinct ribosome phenotypes, which can be identified by a CNN with high accuracy (99%, 98%, 95%, and 99% for ciprofloxacin, gentamicin, chloramphenicol, and carbenicillin). With 6 E. coli strains isolated from bloodstream infections, we used 34,205 images of ribosome phenotypes to train a CNN that could classify susceptible cells with 91% accuracy and resistant cells with 99% accuracy. Such accuracies correspond to the ability to differentiate susceptible and resistant samples with 99% confidence with just 2 cells, meaning that this method could eliminate lengthy culturing steps and could determine susceptibility with 30 min of antibiotic treatment. The ribosome phenotype method should also be able to identify phenotypes in other strains and species.
Collapse
Affiliation(s)
- Alison Farrar
- Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Piers Turner
- Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Conor Feehily
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stelios Chatzimichail
- Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Sammi Ta
- Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monique Andersson
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Oakley
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lucinda Barrett
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christoffer Nellåker
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Big Data Institute, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Achillefs Kapanidis
- Department of Physics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Bollen C, Louwagie S, Deroover F, Duverger W, Khodaparast L, Khodaparast L, Hofkens D, Schymkowitz J, Rousseau F, Dewachter L, Michiels J. Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery. Nat Commun 2025; 16:1046. [PMID: 39865082 PMCID: PMC11770139 DOI: 10.1038/s41467-025-56387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli. Here, we present further support for a direct relationship between both. Our experiments demonstrate that aggregates progressively sequester proteins involved in energy production, thereby likely causing ATP depletion and dormancy. Furthermore, we demonstrate that structural features of protein aggregates determine the cell's ability to exit dormancy and resume growth. Proteins were shown to first assemble in liquid-like condensates that solidify over time. This liquid-to-solid phase transition impedes aggregate dissolution, thereby preventing growth resumption. Our data support a model in which aggregate structure, rather than cellular activity, marks the transition from the persister to the VBNC state.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Sofie Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Femke Deroover
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Wouter Duverger
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dieter Hofkens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Center for Brain and Disease Research, VIB-KU Leuven, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- de Duve institute, Université catholique de Louvain, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Decodts M, Cantallops-Vilà C, Hornez JC, Lacroix JM, Bouchart F. Phage-Loaded Biomimetic Apatite Powder With Antibiofilm Activity to Treat Bone-Associated Infections. J Biomed Mater Res A 2025; 113:e37808. [PMID: 39376206 DOI: 10.1002/jbm.a.37808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
For decades, calcium phosphate (CaP)-based ceramics have been used for coating of bone and joint substitutes after arthroplasty due to their biocompatible properties. Infections following orthopedic replacement occur in 1%-5% of cases, causing serious complications. Biofilm formation either on the biomaterial's surface or on patient's tissues greatly enhances the resistance against antibiotic treatments and can induce a chronic infection, emphasizing the need for novel antimicrobial delivery systems. In this study, we established a protocol enabling bacteriophage loading during the synthesis of a CaP-based powder. The resulting biomaterial proved to be noncytotoxic against human osteoblastic cells and able to significantly inhibit 24-h matured S. aureus biofilm cultures or even completely eradicate it after 5 days of contact. Additional S. aureus biofilm assays with a freeze-dried material using two different excipients showed that sucrose had a protective role against Remus bacteriophage treatment of S. aureus biofilms, whereas lactose-freeze-dried powder maintained the antibiofilm activity.
Collapse
Affiliation(s)
- Maxime Decodts
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Cristina Cantallops-Vilà
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Christophe Hornez
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Marie Lacroix
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| | - Franck Bouchart
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| |
Collapse
|
9
|
Rahman KMT, Amaratunga R, Butzin XY, Singh A, Hossain T, Butzin NC. Rethinking dormancy: Antibiotic persisters are metabolically active, non-growing cells. Int J Antimicrob Agents 2025; 65:107386. [PMID: 39551274 DOI: 10.1016/j.ijantimicag.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVES Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing infections and the development of antibiotic resistance. In this study, we challenge the conventional view that persisters are metabolically dormant by providing compelling evidence that an isogenic population of Escherichia coli remains metabolically active in persistence. METHODS Using transcriptomic analysis, we examined E. coli persisters at multiple time points following exposure to bactericidal concentrations of ampicillin (Amp). Some genes were consistently upregulated in Amp treated persisters compared to the untreated controls, a change that can only occur in metabolically active cells capable of increasing RNA levels. RESULTS Some of the identified genes have been previously linked to persister cells, while others have not been associated with them before. If persister cells were metabolically dormant, gene expression changes over time would be minimal during Amp treatment. However, network analysis revealed major shifts in gene network activity at various time points of antibiotic exposure. CONCLUSIONS These findings reveal that persisters are metabolically active, non-dividing cells, thereby challenging the traditional view that they are dormant.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Ruqayyah Amaratunga
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Xuan Yi Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA; Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, South Dakota, USA.
| |
Collapse
|
10
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
11
|
Campey A, Łapińska U, Chait R, Tsaneva-Atanasova K, Pagliara S. Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024; 15:e0237524. [PMID: 39565111 PMCID: PMC11633386 DOI: 10.1128/mbio.02375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses. IMPORTANCE The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
Collapse
Affiliation(s)
- Adrian Campey
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Remy Chait
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
12
|
Leinberger FH, Cassidy L, Edelmann D, Schmid NE, Oberpaul M, Blumenkamp P, Schmidt S, Natriashvili A, Ulbrich MH, Tholey A, Koch HG, Berghoff BA. Protein aggregation is a consequence of the dormancy-inducing membrane toxin TisB in Escherichia coli. mSystems 2024; 9:e0106024. [PMID: 39377584 PMCID: PMC11575346 DOI: 10.1128/msystems.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial dormancy is a valuable strategy to survive stressful conditions. Toxins from chromosomal toxin-antitoxin systems have the potential to halt cell growth, induce dormancy, and eventually promote a stress-tolerant persister state. Due to their potential toxicity when overexpressed, sophisticated expression systems are needed when studying toxin genes. Here, we present a moderate expression system for toxin genes based on an artificial 5' untranslated region. We applied the system to induce expression of the toxin gene tisB from the chromosomal type I toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB is a small hydrophobic protein that targets the inner membrane, resulting in depolarization and ATP depletion. We analyzed TisB-producing cells by RNA-sequencing and revealed several genes with a role in recovery from TisB-induced dormancy, including the chaperone genes ibpAB and spy. The importance of chaperone genes suggested that TisB-producing cells are prone to protein aggregation, which was validated by an in vivo fluorescent reporter system. We moved on to show that TisB is an essential factor for protein aggregation upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin in E. coli wild-type cells. The occurrence of protein aggregates correlates with an extended dormancy duration, which underscores their importance for the life cycle of TisB-dependent persister cells. IMPORTANCE Protein aggregates occur in all living cells due to misfolding of proteins. In bacteria, protein aggregation is associated with cellular inactivity, which is related to dormancy and tolerance to stressful conditions, including exposure to antibiotics. In Escherichia coli, the membrane toxin TisB is an important factor for dormancy and antibiotic tolerance upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin. Here, we show that TisB provokes protein aggregation, which, in turn, promotes an extended state of cellular dormancy. Our study suggests that protein aggregation is a consequence of membrane toxins with the potential to affect the duration of dormancy and the outcome of antibiotic therapy.
Collapse
Affiliation(s)
- Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Nicole E Schmid
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Markus Oberpaul
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Department of Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Sebastian Schmidt
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Maximilian H Ulbrich
- Internal Medicine IV, Department of Medicine, University Medical Center, and Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
13
|
Wan Y, Zheng J, Chan EW, Chen S. Proton motive force and antibiotic tolerance in bacteria. Microb Biotechnol 2024; 17:e70042. [PMID: 39487809 PMCID: PMC11531170 DOI: 10.1111/1751-7915.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Bacterial antibiotic tolerance is a decades-old phenomenon in which a bacterial sub-population, commonly known as persisters, does not respond to antibiotics and remains viable upon prolonged antimicrobial treatment. Persisters are detectable in populations of bacterial strains that are not antibiotic-resistant and are known to be responsible for treatment failure and the occurrence of chronic and recurrent infection. The clinical significance of antibiotic tolerance is increasingly being recognized and comparable to antibiotic resistance. To eradicate persisters, it is necessary to understand the cellular mechanisms underlying tolerance development. Previous works showed that bacterial antibiotic tolerance was attributed to the reduction in metabolic activities and activation of the stringent response, SOS response and the toxin-antitoxin system which down-regulates transcription functions. The latest research findings, however, showed that decreased metabolic activities alone do not confer a long-lasting tolerance phenotype in persisters, and that active defence mechanisms such as efflux and DNA repair are required for the long-term maintenance of phenotypic tolerance. As such active tolerance-maintenance mechanisms are energy-demanding, persisters need to generate and maintain the transmembrane proton motive force (PMF) for oxidative phosphorylation. This minireview summarizes the current understanding of cellular mechanisms essential for prolonged expression of phenotypic antibiotic tolerance in bacteria, with an emphasis on the importance of generation and maintenance of PMF in enabling proper functioning of the active tolerance mechanisms in persisters. How such mechanisms can be utilized as targets for the development of anti-persister strategies will be discussed.
Collapse
Affiliation(s)
- Yingkun Wan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityKowloonHong Kong
- Shenzhen Key Lab of Food Microbial Safety ControlThe Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Jiaqi Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Edward Wai‐Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityKowloonHong Kong
- Shenzhen Key Lab of Food Microbial Safety ControlThe Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
14
|
El Meouche I, Jain P, Jolly MK, Capp JP. Drug tolerance and persistence in bacteria, fungi and cancer cells: Role of non-genetic heterogeneity. Transl Oncol 2024; 49:102069. [PMID: 39121829 PMCID: PMC11364053 DOI: 10.1016/j.tranon.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A common feature of bacterial, fungal and cancer cell populations upon treatment is the presence of tolerant and persistent cells able to survive, and sometimes grow, even in the presence of usually inhibitory or lethal drug concentrations, driven by non-genetic differences among individual cells in a population. Here we review and compare data obtained on drug survival in bacteria, fungi and cancer cells to unravel common characteristics and cellular pathways, and to point their singularities. This comparative work also allows to cross-fertilize ideas across fields. We particularly focus on the role of gene expression variability in the emergence of cell-cell non-genetic heterogeneity because it represents a possible common basic molecular process at the origin of most persistence phenomena and could be monitored and tuned to help improve therapeutic interventions.
Collapse
Affiliation(s)
- Imane El Meouche
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM, IAME, F-75018 Paris, France.
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France.
| |
Collapse
|
15
|
Santi I, Dias Teixeira R, Manfredi P, Hernandez Gonzalez H, Spiess DC, Mas G, Klotz A, Kaczmarczyk A, Vliet SV, Zamboni N, Hiller S, Jenal U. Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen. EMBO J 2024; 43:5211-5236. [PMID: 39322758 PMCID: PMC11535050 DOI: 10.1038/s44318-024-00248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and implicated in genome stability, virulence, phage defense, and persistence. TA systems have diverse activities and cellular targets, but their physiological roles and regulatory mechanisms are often unclear. Here, we show that the NatR-NatT TA system, which is part of the core genome of the human pathogen Pseudomonas aeruginosa, generates drug-tolerant persisters by specifically depleting nicotinamide dinucleotides. While actively growing P. aeruginosa cells compensate for NatT-mediated NAD+ deficiency by inducing the NAD+ salvage pathway, NAD depletion generates drug-tolerant persisters under nutrient-limited conditions. Our structural and biochemical analyses propose a model for NatT toxin activation and autoregulation and indicate that NatT activity is subject to powerful metabolic feedback control by the NAD+ precursor nicotinamide. Based on the identification of natT gain-of-function alleles in patient isolates and on the observation that NatT increases P. aeruginosa virulence, we postulate that NatT modulates pathogen fitness during infections. These findings pave the way for detailed investigations into how a toxin-antitoxin system can promote pathogen persistence by disrupting essential metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander Klotz
- Biozentrum, University of Basel, Basel, Switzerland
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Kollerová S, Jouvet L, Smelková J, Zunk-Parras S, Rodríguez-Rojas A, Steiner UK. Phenotypic resistant single-cell characteristics under recurring ampicillin antibiotic exposure in Escherichia coli. mSystems 2024; 9:e0025624. [PMID: 38920373 PMCID: PMC11264686 DOI: 10.1128/msystems.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Non-heritable, phenotypic drug resistance toward antibiotics challenges antibiotic therapies. Characteristics of such phenotypic resistance have implications for the evolution of heritable resistance. Diverse forms of phenotypic resistance have been described, but phenotypic resistance characteristics remain less explored than genetic resistance. Here, we add novel combinations of single-cell characteristics of phenotypic resistant E. coli cells and compare those to characteristics of susceptible cells of the parental population by exposure to different levels of recurrent ampicillin antibiotic. Contrasting expectations, we did not find commonly described characteristics of phenotypic resistant cells that arrest growth or near growth. We find that under ampicillin exposure, phenotypic resistant cells reduced their growth rate by about 50% compared to growth rates prior to antibiotic exposure. The growth reduction is a delayed alteration to antibiotic exposure, suggesting an induced response and not a stochastic switch or caused by a predetermined state as frequently described. Phenotypic resistant cells exhibiting constant slowed growth survived best under ampicillin exposure and, contrary to expectations, not only fast-growing cells suffered high mortality triggered by ampicillin but also growth-arrested cells. Our findings support diverse modes of phenotypic resistance, and we revealed resistant cell characteristics that have been associated with enhanced genetically fixed resistance evolution, which supports claims of an underappreciated role of phenotypic resistant cells toward genetic resistance evolution. A better understanding of phenotypic resistance will benefit combatting genetic resistance by developing and engulfing effective anti-phenotypic resistance strategies. IMPORTANCE Antibiotic resistance is a major challenge for modern medicine. Aside from genetic resistance to antibiotics, phenotypic resistance that is not heritable might play a crucial role for the evolution of antibiotic resistance. Using a highly controlled microfluidic system, we characterize single cells under recurrent exposure to antibiotics. Fluctuating antibiotic exposure is likely experienced under common antibiotic therapies. These phenotypic resistant cell characteristics differ from previously described phenotypic resistance, highlighting the diversity of modes of resistance. The phenotypic characteristics of resistant cells we identify also imply that such cells might provide a stepping stone toward genetic resistance, thereby causing treatment failure.
Collapse
Affiliation(s)
- Silvia Kollerová
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lionel Jouvet
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Julia Smelková
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Ulrich K. Steiner
- Department of Biology, University of Southern Denmark, Odense, Denmark
- Biological Institute, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Li HZ, Li WJ, Wang ZJ, Chen QL, Staal Jensen MK, Qiao M, Cui L. Integrating Multiple Bacterial Phenotypes and Bayesian Network for Analyzing Health Risks of Pathogens in Plastisphere. Anal Chem 2024; 96:11374-11382. [PMID: 38949233 DOI: 10.1021/acs.analchem.4c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Jian Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mia Kristine Staal Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Min Qiao
- Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
18
|
Mohiuddin SG, Ngo H, Orman MA. Unveiling the critical roles of cellular metabolism suppression in antibiotic tolerance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:17. [PMID: 39843626 PMCID: PMC11721439 DOI: 10.1038/s44259-024-00034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 01/24/2025]
Abstract
Metabolic inhibitors are known to exhibit complex interactions with antibiotics in bacteria, potentially acting as antagonists by inducing cell dormancy and promoting cell survival. However, the specific synergistic or antagonistic effects of these inhibitors depend on factors like their mechanisms of action, concentrations, and treatment timings, which require further investigation. In our study, we systematically explored the synergistic interactions of various metabolic inhibitors-such as chloramphenicol (a translation inhibitor), rifampicin (a transcription inhibitor), arsenate (an ATP production inhibitor), and thioridazine (a PMF inhibitor)-in combination with ofloxacin. We conducted this investigation under pre-, co-, and post-treatment conditions, employing a wide concentration range and utilizing four distinct synergy models. Chloramphenicol, rifampicin, and arsenate consistently showed minimal synergy scores, indicating a notable antagonistic relationship with ofloxacin across all models and conditions. In contrast, thioridazine consistently demonstrated elevated synergy scores, especially in pre- and co-treatment scenarios, albeit its synergy decreased during post-treatment conditions. When multivariable linear regression analyses were used for all drugs and conditions examined, a correlation between the synergy of thioridazine and its ability to suppress cellular energy metabolism became evident, underscoring the potential utility of certain metabolic inhibitors as effective anti-persistence adjuvants.
Collapse
Affiliation(s)
- Sayed Golam Mohiuddin
- William Brookshire Chemical and Biomolecular Engineering Department, University of Houston, Houston, TX, USA
| | - Han Ngo
- William Brookshire Chemical and Biomolecular Engineering Department, University of Houston, Houston, TX, USA
| | - Mehmet A Orman
- William Brookshire Chemical and Biomolecular Engineering Department, University of Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Ngo HG, Mohiuddin SG, Ananda A, Orman MA. UNRAVELING CRP/cAMP-MEDIATED METABOLIC REGULATION IN ESCHERICHIA COLI PERSISTER CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598332. [PMID: 38915711 PMCID: PMC11195080 DOI: 10.1101/2024.06.10.598332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A substantial gap persists in our comprehension of how bacterial metabolism undergoes rewiring during the transition to a persistent state. Also, it remains unclear which metabolic mechanisms become indispensable for persister cell survival. To address these questions, we directed our efforts towards persister cells in Escherichia coli that emerge during the late stationary phase. These cells have been recognized for their exceptional resilience and are commonly believed to be in a dormant state. Our results demonstrate that the global metabolic regulator Crp/cAMP redirects the metabolism of these antibiotic-tolerant cells from anabolism to oxidative phosphorylation. Although our data indicates that persisters exhibit a reduced metabolic rate compared to rapidly growing exponential-phase cells, their survival still relies on energy metabolism. Extensive genomic-level analyses of metabolomics, proteomics, and single-gene deletions consistently emphasize the critical role of energy metabolism, specifically the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase, in sustaining the viability of persisters. Altogether, this study provides much-needed clarification regarding the role of energy metabolism in antibiotic tolerance and highlights the importance of using a multipronged approach at the genomic level to obtain a broader picture of the metabolic state of persister cells.
Collapse
Affiliation(s)
- Han G. Ngo
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| | - Aina Ananda
- Department of Biology, Monmouth University, NJ, 07764
| | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, 77204
| |
Collapse
|
20
|
Tang J, Herzfeld AM, Leon G, Brynildsen MP. Differential impacts of DNA repair machinery on fluoroquinolone persisters with different chromosome abundances. mBio 2024; 15:e0037424. [PMID: 38564687 PMCID: PMC11077951 DOI: 10.1128/mbio.00374-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Allison M. Herzfeld
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
21
|
Ghosh S, Orman MA. Exploring the links between SOS response, mutagenesis, and resistance during the recovery period. Antimicrob Agents Chemother 2024; 68:e0146223. [PMID: 38534113 PMCID: PMC11064565 DOI: 10.1128/aac.01462-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Although the mechanistic connections between SOS-induced mutagenesis and antibiotic resistance are well established, our current understanding of the impact of SOS response levels, recovery durations, and transcription/translation activities on mutagenesis remains relatively limited. In this study, when bacterial cells were exposed to mutagens like ultraviolet light for defined time intervals, a compelling connection between the rate of mutagenesis and the RecA-mediated SOS response levels became evident. Our observations also indicate that mutagenesis primarily occurs during the subsequent recovery phase following the removal of the mutagenic agent. When transcription/translation was inhibited or energy molecules were depleted at the onset of treatment or during the early recovery phase, there was a noticeable decrease in SOS response activation and mutagenesis. However, targeting these processes later in the recovery phase does not have the same effect in reducing mutagenesis, suggesting that the timing of inhibiting transcription/translation or depleting energy molecules is crucial for their efficacy in reducing mutagenesis. Active transcription, translation, and energy availability within the framework of SOS response and DNA repair mechanisms appear to be conserved attributes, supported by their consistent manifestation across diverse conditions, including the use of distinct mutagens such as fluoroquinolones and various bacterial strains.
Collapse
Affiliation(s)
- Sreyashi Ghosh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Mishra AK, Thakare RP, Santani BG, Yabaji SM, Dixit SK, Srivastava KK. Unlocking the enigma of phenotypic drug tolerance: Mechanisms and emerging therapeutic strategies. Biochimie 2024; 220:67-83. [PMID: 38168626 DOI: 10.1016/j.biochi.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.
Collapse
Affiliation(s)
- Alok K Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Ritesh P Thakare
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bela G Santani
- Department of Microbiology, Sant Gadge Baba Amravati University (SGBAU), Amravati, Maharashtra, India
| | - Shivraj M Yabaji
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivendra K Dixit
- Division of Medicine ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar Bareilly, Uttar Pradesh, 243122, India.
| | - Kishore K Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
23
|
Mukhopadhyay S, Bishayi R, Shaji A, Lee AH, Gupta R, Mohajeri M, Katiyar A, McKee B, Schmitz IR, Shin R, Lele TP, Lele PP. Dynamic Adaptation in Extant Porins Facilitates Antibiotic Tolerance in Energetic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583920. [PMID: 38496420 PMCID: PMC10942424 DOI: 10.1101/2024.03.07.583920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.
Collapse
|
24
|
Schulte M, Grotheer L, Hensel M. Bright individuals: Applications of fluorescent protein-based reporter systems in single-cell cellular microbiology. Mol Microbiol 2024; 121:605-617. [PMID: 38234267 DOI: 10.1111/mmi.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Activation and function of virulence functions of bacterial pathogens are highly dynamic in time and space, and can show considerable heterogeneity between individual cells in pathogen populations. To investigate the complex events in host-pathogen interactions, single cell analyses are required. Fluorescent proteins (FPs) are excellent tools to follow the fate of individual bacterial cells during infection, and can also be deployed to use the pathogen as a sensor for its specific environment in host cells or host organisms. This Resources describes design and applications of dual fluorescence reporters (DFR) in cellular microbiology. DFR feature constitutively expressed FPs for detection of bacterial cells, and FPs expressed by an environmentally regulated promoter for interrogation of niche-specific cues or nutritional parameters. Variations of the basic design allow the generation of DFR that can be used to analyze, on single cell level, bacterial proliferation during infection, subcellular localization of intracellular bacteria, stress response, or persister state. We describe basic considerations for DFR design and review recent applications of DFR in cellular microbiology.
Collapse
Affiliation(s)
- Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Luisa Grotheer
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
25
|
Orrell-Trigg R, Awad M, Gangadoo S, Cheeseman S, Shaw ZL, Truong VK, Cozzolino D, Chapman J. Rapid screening of bacteriostatic and bactericidal antimicrobial agents against Escherichia coli by combining machine learning (artificial intelligence) and UV-VIS spectroscopy. Analyst 2024; 149:1597-1608. [PMID: 38291984 DOI: 10.1039/d3an01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibiotics are compounds that have a particular mode of action upon the microorganism they are targeting. However, discovering and developing new antibiotics is a challenging and timely process. Antibiotic development process can take up to 10-15 years and over $1billion to develop a single new therapeutic product. Rapid screening tools to understand the mode of action of the new antimicrobial agent are considered one of the main bottle necks in the antimicrobial agent development process. Classical approaches require multifarious microbiological methods and they do not capture important biochemical and organism therapeutic-interaction mechanisms. This work aims to provide a rapid antibiotic-antimicrobial biochemical diagnostic tool to reduce the timeframes of therapeutic development, while also generating new biochemical insight into an antimicrobial-therapeutic screening assay in a complex matrix. The work evaluates the effect of antimicrobial action through "traditional" microbiological analysis techniques with a high-throughput rapid analysis method using UV-VIS spectroscopy and chemometrics. Bacteriostatic activity from tetracycline and bactericidal activity from amoxicillin were evaluated on a system using non-resistant Escherichia coli O157:H7 by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and UV-VIS spectroscopy (high-throughput analysis). The data were analysed using principal component analysis (PCA) and support vector machine (SVM) classification. The rapid diagnostic technique could easily identify differences between bacteriostatic and bactericidal mechanisms and was considerably quicker than the "traditional" methods tested.
Collapse
Affiliation(s)
- R Orrell-Trigg
- School of Science, RMIT University, Melbourne, Australia
| | - M Awad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - S Gangadoo
- School of Science, RMIT University, Melbourne, Australia
| | - S Cheeseman
- The Graeme Clark Institute, Faculty of Engineering and Information Technology and Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne 3010, Australia
| | - Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - V K Truong
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - D Cozzolino
- QAAFI, University of Queensland, Brisbane, Australia
| | - J Chapman
- The University of Queensland, Brisbane, Australia.
| |
Collapse
|
26
|
Hare PJ, Gonzalez JR, Quelle RM, Wu YI, Mok WWK. Metabolic and transcriptional activities underlie stationary-phase Pseudomonas aeruginosa sensitivity to Levofloxacin. Microbiol Spectr 2024; 12:e0356723. [PMID: 38078717 PMCID: PMC10896071 DOI: 10.1128/spectrum.03567-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa is responsible for a variety of chronic human infections. Even in the absence of identifiable resistance mutations, this pathogen can tolerate lethal antibiotic doses through phenotypic strategies like biofilm formation and metabolic quiescence. In this study, we determined that P. aeruginosa maintains greater metabolic activity in the stationary phase compared to the model organism, Escherichia coli, which has traditionally been used to study fluoroquinolone antibiotic tolerance. We demonstrate that hallmarks of E. coli fluoroquinolone tolerance are not conserved in P. aeruginosa, including the timing of cell death and necessity of the SOS DNA damage response for survival. The heightened sensitivity of stationary-phase P. aeruginosa to fluoroquinolones is attributed to maintained transcriptional and reductase activity. Our data suggest that perturbations that suppress transcription and respiration in P. aeruginosa may actually protect the pathogen against this important class of antibiotics.
Collapse
Affiliation(s)
- Patricia J Hare
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
- School of Dental Medicine, UConn Health , Farmington, Connecticut, USA
| | - Juliet R Gonzalez
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Ryan M Quelle
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Yi I Wu
- Richard D. Berlin Center for Cell Analysis and Modeling, UConn Health , Farmington, Connecticut, USA
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| |
Collapse
|
27
|
Fernández-García L, Song S, Kirigo J, Battisti ME, Petersen ME, Tomás M, Wood TK. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage. Microbiol Spectr 2024; 12:e0338823. [PMID: 38054715 PMCID: PMC10783111 DOI: 10.1128/spectrum.03388-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE To date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maiken E. Petersen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - María Tomás
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
28
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
29
|
Boggon C, Mairpady Shambat S, Zinkernagel AS, Secchi E, Isa L. Single-cell patterning and characterisation of antibiotic persistent bacteria using bio-sCAPA. LAB ON A CHIP 2023; 23:5018-5028. [PMID: 37909096 PMCID: PMC10661667 DOI: 10.1039/d3lc00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
In microbiology, accessing single-cell information within large populations is pivotal. Here we introduce bio-sCAPA, a technique for patterning bacterial cells in defined geometric arrangements and monitoring their growth in various nutrient environments. We demonstrate bio-sCAPA with a study of subpopulations of antibiotic-tolerant bacteria, known as persister cells, which can survive exposure to high doses of antibiotics despite lacking any genetic resistance to the drug. Persister cells are associated with chronic and relapsing infections, yet are difficult to study due in part to a lack of scalable, single-cell characterisation methods. As >105 cells can be patterned on each template, and multiple templates can be patterned in parallel, bio-sCAPA allows for very rare population phenotypes to be monitored with single-cell precision across various environmental conditions. Using bio-sCAPA, we analysed the phenotypic characteristics of single Staphylococcus aureus cells tolerant to flucloxacillin and rifampicin killing. We find that antibiotic-tolerant S. aureus cells do not display significant heterogeneity in growth rate and are instead characterised by prolonged lag-time phenotypes alone.
Collapse
Affiliation(s)
- Cameron Boggon
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, Switzerland.
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| |
Collapse
|
30
|
Mattiello SP, Barth VC, Scaria J, Ferreira CAS, Oliveira SD. Fluoroquinolone and beta-lactam antimicrobials induce different transcriptome profiles in Salmonella enterica persister cells. Sci Rep 2023; 13:18696. [PMID: 37907566 PMCID: PMC10618250 DOI: 10.1038/s41598-023-46142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Here, we investigate the transcriptome profiles of two S. Enteritidis and one S. Schwarzengrund isolates that present different persister levels when exposed to ciprofloxacin or ceftazidime. It was possible to note a distinct transcript profile among isolates, time of exposure, and treatment. We could not find a commonly expressed transcript profile that plays a role in persister formation after S. enterica exposure to beta-lactam or fluoroquinolone, as only three DEGs presented the same behavior under the conditions and isolates tested. It appears that the formation of persisters in S. enterica after exposure to ciprofloxacin is linked to the overexpression of genes involved in the SOS response (recA), cell division inhibitor (sulA), iron-sulfur metabolism (hscA and iscS), and type I TA system (tisB). On the other hand, most genes differentially expressed in S. enterica after exposure to ceftazidime appeared to be downregulated and were part of the flagellar assembly apparatus, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, carbon metabolism, bacterial secretion system, quorum sensing, pyruvate metabolism pathway, and biosynthesis of secondary metabolites. The different transcriptome profiles found in S. enterica persisters induced by ciprofloxacin and ceftazidime suggest that these cells modulate their response differently according to each stress.
Collapse
Affiliation(s)
- S P Mattiello
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- College of Mathematics and Science, The University of Tennessee Southern, UTS, Pulaski, TN, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
| | - V C Barth
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - J Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - C A S Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - S D Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
31
|
Rousseau CJ, Fraikin N, Zedek S, Van Melderen L. Are envelope stress responses essential for persistence to β-lactams in Escherichia coli? Antimicrob Agents Chemother 2023; 67:e0032923. [PMID: 37787525 PMCID: PMC10583663 DOI: 10.1128/aac.00329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/05/2023] [Indexed: 10/04/2023] Open
Abstract
Bacterial persistence to antibiotics defines the ability of small sub-populations of sensitive cells within an isogenic population to survive high doses of bactericidal antibiotics. Here, we investigated the importance of the five main envelope stress responses (ESRs) of Escherichia coli in persistence to five bactericidal β-lactam antibiotics by combining classical time-kill curve experiments and single-cell analysis using time-lapse microscopy. We showed that the survival frequency of mutants for the Bae, Cpx, Psp, and Rcs systems treated with different β-lactams is comparable to that of the wild-type strain, indicating that these ESRs do not play a direct role in persistence to β-lactams. Since the σE-encoding gene is essential, we could not directly test its role. Using fluorescent reporters to monitor the activation of ESRs, we observed that σE is induced by high doses of meropenem. However, the dynamics of σE activation during meropenem treatment did not reveal any difference in persister cells compared to the bulk of the population, indicating that σE activation is not a hallmark of persistence. The Bae, Cpx, Psp, and Rcs responses were neither induced by ampicillin nor by meropenem. However, pre-induction of the Rcs system by polymyxin B increased survival to meropenem in an Rcs-dependent manner, suggesting that this ESR might confer some yet uncharacterized advantages during meropenem treatment or at the post-antibiotic recovery step. Altogether, our data suggest that ESRs are not key actors in E. coli persistence to β-lactams in the conditions we tested.
Collapse
Affiliation(s)
- Clothilde J. Rousseau
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nathan Fraikin
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Safia Zedek
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Laurence Van Melderen
- Bacterial Genetics and Physiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
32
|
Coluzzi C, Guillemet M, Mazzamurro F, Touchon M, Godfroid M, Achaz G, Glaser P, Rocha EPC. Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Mol Biol Evol 2023; 40:msad217. [PMID: 37788575 PMCID: PMC10575684 DOI: 10.1093/molbev/msad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Martin Guillemet
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Maxime Godfroid
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Achaz
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université de Paris Cité, CNRS, UMR6047, Unité EERA, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
33
|
Pan X, Liu W, Du Q, Zhang H, Han D. Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci 2023; 24:14311. [PMID: 37762613 PMCID: PMC10531727 DOI: 10.3390/ijms241814311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The recurrence of bacterial infectious diseases is closely associated with bacterial persisters. This subpopulation of bacteria can escape antibiotic treatment by entering a metabolic status of low activity through various mechanisms, for example, biofilm, toxin-antitoxin modules, the stringent response, and the SOS response. Correspondingly, multiple new treatments are being developed. However, due to their spontaneous low abundance in populations and the lack of research on in vivo interactions between persisters and the host's immune system, microfluidics, high-throughput sequencing, and microscopy techniques are combined innovatively to explore the mechanisms of persister formation and maintenance at the single-cell level. Here, we outline the main mechanisms of persister formation, and describe the cutting-edge technology for further research. Despite the significant progress regarding study techniques, some challenges remain to be tackled.
Collapse
Affiliation(s)
- Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
34
|
Kim J, Ahn SB, Hong S, Kim KS, Ko EHE, Jo IJ, Chang J, Kim M, Lee W, Lee H. Intracellular Dynamics-Resolved Label-Free Scattering Reveals Real-Time Metabolism of Single Bacteria. NANO LETTERS 2023; 23:8225-8232. [PMID: 37650605 DOI: 10.1021/acs.nanolett.3c02370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanoscopic investigation of bacterial cells is essential to reveal their physiological status, impacting all cellular functions. Currently, this requires labeled probes or targeted staining procedures. Herein, we report a new bacterial feature, intracellular dynamics-resolved Rayleigh scattering (IDRS), that visualizes spatiotemporal cytoplasmic transitions in unlabeled bacteria and characterizes their real-time physiological status in 10 s. From single-bacterium IDRS signals, we discovered unique spatial patterns and their multiple transitions in Gram-negative and Gram-positive bacteria. The magnitude of IDRS signal variation highly correlated with the metabolic status of bacteria, differentiating persistent subpopulations. This is also the first report demonstrating distinct real-time metabolic conditions of unlabeled drug-resistant bacteria that are exposed to different doses of antibiotics. Our strategy opens up a way to simultaneously trace in situ metabolic and antibiotic resistance statuses, which can be applied in single-cell level control of bacterial metabolism and efficacy with a heterogeneous nature.
Collapse
Affiliation(s)
- Jungwoo Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subin Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Esther Ha-Eun Ko
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - I Jeong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - JuOae Chang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Haemi Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
35
|
Hossain T, Singh A, Butzin NC. Escherichia coli cells are primed for survival before lethal antibiotic stress. Microbiol Spectr 2023; 11:e0121923. [PMID: 37698413 PMCID: PMC10581089 DOI: 10.1128/spectrum.01219-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
Non-genetic factors can cause significant fluctuations in gene expression levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny subset of bacterial cells in a population called persister cells to tolerate long-term lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. We occasionally noticed a high variation in persister levels, and to explore this, we tested clonal populations starting from a single cell using a modified Luria-Delbrück fluctuation test. Although we kept the conditions same, the diversity in persistence level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each clone to observe whether the same clone had comparable persister levels for more than one generation. Replicates had similar persister levels even when clones were divided, diluted by 1:20, and allowed to grow for approximately five generations. This result explicitly shows a cellular memory passed on for generations and eventually lost when cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) the existence of a small population prepared for stress ("primed cells") resulting in higher persister numbers; (2) the primed memory state is reproducible and transient, passed down for generations but eventually lost; and (3) a heterogeneous persister population is a result of a transiently primed reversible cell state and not due to a pre-existing genetic mutation. IMPORTANCE Antibiotics have been highly effective in treating lethal infectious diseases for almost a century. However, the increasing threat of antibiotic resistance is again causing these diseases to become life-threatening. The longer a bacteria can survive antibiotics, the more likely it is to develop resistance. Complicating matters is that non-genetic factors can allow bacterial cells with identical DNA to gain transient resistance (also known as persistence). Here, we show that a small fraction of the bacterial population called primed cells can pass down non-genetic information ("memory") to their offspring, enabling them to survive lethal antibiotics for a long time. However, this memory is eventually lost. These results demonstrate how bacteria can leverage differences among genetically identical cells formed through non-genetic factors to form primed cells with a selective advantage to survive antibiotics.
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
36
|
Fernández-García L, Tomás M, Wood TK. Ribosome inactivation by Escherichia coli GTPase RsgA inhibits T4 phage. Front Microbiol 2023; 14:1242163. [PMID: 37670987 PMCID: PMC10475562 DOI: 10.3389/fmicb.2023.1242163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Bacteria must combat phages, and myriad bacterial anti-phage systems have been discovered that reduce host metabolism, for example, by depleting energetic compounds like ATP and NAD+. Hence, these systems indirectly inhibit protein production. Surprisingly, direct reduction of ribosome activity has not been demonstrated to thwart phage. Methods Here, by producing each of the 4,287 Escherichia coli proteins and selecting for anti-phage activity that leads to enhanced growth, we investigated the role of host proteins in phage inhibition. Results and discussion We identified that E. coli GTPase RsgA inhibits lytic phage T4 by inactivating ribosomes.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
37
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
38
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
39
|
Riffaud CM, Rucks EA, Ouellette SP. Persistence of obligate intracellular pathogens: alternative strategies to overcome host-specific stresses. Front Cell Infect Microbiol 2023; 13:1185571. [PMID: 37284502 PMCID: PMC10239878 DOI: 10.3389/fcimb.2023.1185571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.
Collapse
|
40
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonika Sonika
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Mishra
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashikala Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
41
|
Yang K, Xu F, Zhu L, Li H, Sun Q, Yan A, Ren B, Zhu YG, Cui L. An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance. Angew Chem Int Ed Engl 2023; 62:e202217412. [PMID: 36732297 DOI: 10.1002/anie.202217412] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Understanding evolution of antibiotic resistance is vital for containing its global spread. Yet our ability to in situ track highly heterogeneous and dynamic evolution is very limited. Here, we present a new single-cell approach integrating D2 O-labeled Raman spectroscopy, advanced multivariate analysis, and genotypic profiling to in situ track physiological evolution trajectory toward resistance. Physiological diversification of individual cells from isogenic population with cyclic ampicillin treatment is captured. Advanced multivariate analysis of spectral changes classifies all individual cells into four subsets of sensitive, intrinsic tolerant, evolved tolerant and resistant. Remarkably, their dynamic shifts with evolution are depicted and spectral markers of each state are identified. Genotypic analysis validates the phenotypic shift and provides insights into the underlying genetic basis. The new platform advances rapid phenotyping resistance evolution and guides evolution control.
Collapse
Affiliation(s)
- Kai Yang
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Fei Xu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Hongzhe Li
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
42
|
Hastings CJ, Himmler GE, Patel A, Marques CNH. Immune Response Modulation by Pseudomonas aeruginosa Persister Cells. mBio 2023; 14:e0005623. [PMID: 36920189 PMCID: PMC10128020 DOI: 10.1128/mbio.00056-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Bacterial persister cells-a metabolically dormant subpopulation tolerant to antimicrobials-contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b, and are engulfed at a lower rate (10- to 100-fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed toward M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 h of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections. IMPORTANCE Bacterial cells have a subpopulation-persister cells-that have a low metabolism. Persister cells survive antimicrobial treatment and can regrow to cause chronic and recurrent infections. Currently little is known as to whether the human immune system recognizes and responds to the presence of persister cells. In this work, we studied the ability of persister cells from Pseudomonas aeruginosa to resist the host defense system (innate immunity). We found that this subpopulation is recognized by the defense system, but it is not killed. The lack of killing likely stems from hindering the immune response regulation, resulting in a failure to distinguish whether a pathogen is present. Findings from this work increase the overall knowledge as to how chronic infections are resilient.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Grace Elizabeth Himmler
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Arpeet Patel
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
43
|
Lee AH, Gupta R, Nguyen HN, Schmitz IR, Siegele DA, Lele PP. Heterogeneous Distribution of Proton Motive Force in Nonheritable Antibiotic Resistance. mBio 2023; 14:e0238422. [PMID: 36598258 PMCID: PMC9973297 DOI: 10.1128/mbio.02384-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Bacterial infections that are difficult to eradicate are often treated by sequentially exposing the bacteria to different antibiotics. Although effective, this approach can give rise to epigenetic or other phenomena that may help some cells adapt to and tolerate the antibiotics. Characteristics of such adapted cells are dormancy and low energy levels, which promote survival without lending long-term genetic resistance against antibiotics. In this work, we quantified motility in cells of Escherichia coli that adapted and survived sequential exposure to lethal doses of antibiotics. In populations that adapted to transcriptional inhibition by rifampicin, we observed that ~1 of 3 cells continued swimming for several hours in the presence of lethal concentrations of ampicillin. As motility is powered by proton motive force (PMF), our results suggested that many adapted cells retained a high PMF. Single-cell growth assays revealed that the high-PMF cells resuscitated and divided upon the removal of ampicillin, just as the low-PMF cells did, a behavior reminiscent of persister cells. Our results are consistent with the notion that cells in a clonal population may employ multiple different mechanisms to adapt to antibiotic stresses. Variable PMF is likely a feature of a bet-hedging strategy: a fraction of the adapted cell population lies dormant while the other fraction retains high PMF to be able to swim out of the deleterious environment. IMPORTANCE Bacterial cells with low PMF may survive antibiotic stress due to dormancy, which favors nonheritable resistance without genetic mutations or acquisitions. On the other hand, cells with high PMF are less tolerant, as PMF helps in the uptake of certain antibiotics. Here, we quantified flagellar motility as an indirect measure of the PMF in cells of Escherichia coli that had adapted to ampicillin. Despite the disadvantage of maintaining a high PMF in the presence of antibiotics, we observed high PMF in ~30% of the cells, as evidenced by their ability to swim rapidly for several hours. These and other results were consistent with the idea that antibiotic tolerance can arise via different mechanisms in a clonal population.
Collapse
Affiliation(s)
- Annie H. Lee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Hong Nhi Nguyen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabella R. Schmitz
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pushkar P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
44
|
Tang J, Brynildsen MP. Genome-wide mapping of fluoroquinolone-stabilized DNA gyrase cleavage sites displays drug specific effects that correlate with bacterial persistence. Nucleic Acids Res 2023; 51:1208-1228. [PMID: 36631985 PMCID: PMC9943676 DOI: 10.1093/nar/gkac1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Bacterial persisters are rare phenotypic variants that are suspected to be culprits of recurrent infections. Fluoroquinolones (FQs) are a class of antibiotics that facilitate bacterial killing by stabilizing bacterial type II topoisomerases when they are in a complex with cleaved DNA. In Escherichia coli, DNA gyrase is the primary FQ target, and previous work has demonstrated that persisters are not spared from FQ-induced DNA damage. Since DNA gyrase cleavage sites (GCSs) largely govern the sites of DNA damage from FQ treatment, we hypothesized that GCS characteristics (e.g. number, strength, location) may influence persistence. To test this hypothesis, we measured genome-wide GCS distributions after treatment with a panel of FQs in stationary-phase cultures. We found drug-specific effects on the GCS distribution and discovered a strong negative correlation between the genomic cleavage strength and FQ persister levels. Further experiments and analyses suggested that persistence was unlikely to be governed by cleavage to individual sites, but rather survival was a function of the genomic GCS distribution. Together, these findings demonstrate FQ-specific differences in GCS distribution that correlate with persister levels and suggest that FQs that better stabilize DNA gyrase in cleaved complexes with DNA will lead to lower levels of persistence.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
Zhang Y, Kepiro I, Ryadnov MG, Pagliara S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol Spectr 2023; 11:e0366722. [PMID: 36651776 PMCID: PMC9927147 DOI: 10.1128/spectrum.03667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yuewen Zhang
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Ibolya Kepiro
- National Physical Laboratory, Teddington, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
46
|
de Timary G, Rousseau CJ, Van Melderen L, Scheid B. Shear-enhanced sorting of ovoid and filamentous bacterial cells using pinch flow fractionation. LAB ON A CHIP 2023; 23:659-670. [PMID: 36562423 DOI: 10.1039/d2lc00969b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we experimentally investigate the influence of the flow rate on the trajectory of ovoid and filamentous bacterial cells of E. coli in a low aspect ratio pinch flow fractionation device. To that aim, we vary the Reynolds number over two orders of magnitude, while monitoring the dynamics of the cells across our device. At low flow rates, filamentous cells adopt several rotational motions in the pinched segment, which are induced both by the shear rate and by their close interactions with the nearest wall. As a result, the geometrical centre of the filamentous cells deviates towards the centre of the channel, which increases their effective sorting diameter depending on the length of their major axis as well as on the rotational mode they adopt in the pinch. As the flow rate increases, particles are forced to align vertically in the pinch, in the direction of the main shear gradient, which reduces the amplitude of the lateral deviation generated by their rotation. The trajectory of the particles in the expansion is directly determined by their position at the pinch outlet. As a consequence, the position of the filamentous cells at the outlet of the device strongly depends on the flow rate as well as on the length of their major axis. Based on these observations we optimized the flow conditions to successfully extract an ultra high purity sample of filamentous cells from a solution containing mainly ovoid cells.
Collapse
Affiliation(s)
- Guillaume de Timary
- Transfers, Interfaces and Processes (TIPs) - ULB, C.P. 165/67, Brussels, Belgium.
| | | | | | - Benoit Scheid
- Transfers, Interfaces and Processes (TIPs) - ULB, C.P. 165/67, Brussels, Belgium.
| |
Collapse
|
47
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
48
|
Hastings CJ, Himmler GE, Patel A, Marques CNH. Immune response modulation by Pseudomonas aeruginosa persister cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523056. [PMID: 36711557 PMCID: PMC9881899 DOI: 10.1101/2023.01.07.523056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bacterial persister cells - a metabolically dormant subpopulation tolerant to antimicrobials - contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b - and are engulfed at a lower rate (10-100 fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed towards M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 hours of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Grace Elizabeth Himmler
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Arpeet Patel
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
- Corresponding author:
| |
Collapse
|
49
|
Yu Z, Goodall ECA, Henderson IR, Guo J. Plasmids Can Shift Bacterial Morphological Response against Antibiotic Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203260. [PMID: 36424175 PMCID: PMC9839882 DOI: 10.1002/advs.202203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Bacterial cell filamentation is a morphological change wherein cell division is blocked, which can improve bacterial survival under unfavorable conditions (e.g., antibiotic stress that causes DNA damage). As an extrachromosomal DNA molecule, plasmids can confer additionally advantageous traits including antibiotic resistance on the host. However, little is known about whether plasmids could shift bacterial morphological responses to antibiotic stress. Here, it is reported that plasmid-free cells, rather than plasmid-bearing cells, exhibit filamentation and asymmetrical cell division under exposure to sub-inhibitory concentrations of antibiotics (ciprofloxacin and cephalexin). The underlying mechanism is revealed by investigating DNA damage, cell division inhibitor sulA, the SOS response, toxin-antitoxin module (parDE) located on plasmids, and efflux pumps. Significantly higher expression of sulA is observed in plasmid-free cells, compared to plasmid-bearing cells. Plasmid carriage enables the hosts to suffer less DNA damage, exhibit stronger efflux pump activities, and thus have a higher antibiotic tolerance. These benefits are attributed to the parDE module that mediates stress responses from plasmid-bearing cells and mainly contributes to cell morphological changes. Collectively, the findings demonstrate that plasmids can confer additional innate defenses on the host to antibiotics, thus advancing the understanding of how plasmids affect bacterial evolution in hostile environments.
Collapse
Affiliation(s)
- Zhigang Yu
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Emily C. A. Goodall
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Ian R. Henderson
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
| |
Collapse
|
50
|
Kim H, Kim JH, Cho H, Ko KS. Overexpression of a DNA Methyltransferase Increases Persister Cell Formation in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0265522. [PMID: 36416541 PMCID: PMC9769888 DOI: 10.1128/spectrum.02655-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Many mechanisms have been proposed to be involved in the formation of bacterial persister cells. In this study, we investigated the impact of dam encoding DNA methylation on persister cell formation in Acinetobacter. We constructed plasmids overexpressing dam encoding DNA-(adenine N6)-methyltransferase and four genes as possibly involved in persistence and introduced them into three A. baumannii strains. For persister cell formation assays, bacteria were exposed to ciprofloxacin, imipenem, cefotaxime, and rifampin, and the transcription levels of the genes were measured by qRT-PCR. In addition, growth curves of strains were determined. We found that all five genes were upregulated following antibiotic exposure. Dam overexpression increased persister cell formation rates and activated the four persister cell-involved genes. Among the four persister cell-involved genes, only RecC overexpression increase persister cell formation rates. While recC-overexpressing strains showed higher growth rates, dam-overexpressing strains showed decreased growth rates. In this study, we revealed that a DNA methyltransferase may regulate persister cell formation in A. baumannii, while RecC seems to mediate epigenetic regulation of persister cell formation. However, Dam and RecC may act at different persister cell formation states. IMPORTANCE Bacterial persister cells are not killed by high concentration of antibiotics, despite its antibiotic susceptibility. It has been known that they may cause antibiotic treatment failure and contribute to the evolution of antibiotic resistance. Although many mechanisms have been suggested and verified for persister cell formation, many remains to be uncovered. In this study, we report that DNA methyltransferase leads to an increase in persister cell formation, through transcriptional activation of several regulatory genes. Our results suggest that DNA methyltransferases could be target proteins to prevent formation of persister cells.
Collapse
Affiliation(s)
- Hyunkeun Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jee Hong Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|