1
|
Tang S, Long X, Li F, Jiang S, Fu Y, Liu J. Identification of RUVBL2 as a novel biomarker to predict the prognosis and drug sensitivity in multiple myeloma based on ferroptosis genes. Hematology 2025; 30:2467499. [PMID: 39985176 DOI: 10.1080/16078454.2025.2467499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy with the proliferation of malignant plasma cells. Numerous studies have highlighted the critical role of ferroptosis in MM. However, how to use ferroptosis-related genes (FRGs) for prognostic prediction and treatment guidance in MM remains unknown. METHODS By analysis of GEO databases, the prognostic gene was identified and a therapeutic strategy for MM patients based on FRGs was explored. A total of 12 FRGs were identified, utilizing the STRING database and Cytoscape software, and the PPI networks were constructed to identify hub genes and further functional enrichment analyses. Based on the aforementioned data, this study analyzed the expression of RUVBL2 in MM patients by qRT-PCR and Western blotting. To validate the functional role of RUVBL2 in the MM cells, cellular experiments were ultimately conducted. RESULTS The analysis highlighted six hub genes, including TP53, MCM5, TLR4, RUVBL2, GCLM and ITGA6, and functional enrichment analyses indicating enrichment in DNA replication, regulation of apoptotic signaling pathway and PI3K/AKT signaling pathway. Prognostic analysis indicated that TP53, RUVBL2, and MCM5 are associated with MM prognosis, with RUVBL2 displaying a notable area under the curve (AUC) of 0.823 in ROC analysis. The study first determined that RUVBL2 is highly expressed in MM, siRUVBL2-mediated deletion of RUVBL2 inhibited proliferation, promoted apoptosis and increased the sensitivity of BTZ in MM cells, and also overcame BTZ resistance in CD138+ primary cells from MM patients. CONCLUSIONS Our study first suggested that RUVBL2 may be regarded as potential therapeutic targets and prognostic value in MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinyi Long
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Palacios-Abella A, López-Perrote A, Boskovic J, Fonseca S, Úrbez C, Rubio V, Llorca O, Alabadí D. The structure of the R2T complex reveals a different architecture from the related HSP90 cochaperone R2TP. Structure 2025; 33:740-752.e8. [PMID: 40015274 DOI: 10.1016/j.str.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
The R2TP complex is a specialized HSP90 cochaperone essential for the maturation of macromolecular complexes such as RNAPII and TORC1. R2TP is formed by a hetero-hexameric ring of AAA-ATPases RuvBL1 and RuvBL2, which interact with RPAP3 and PIH1D1. Several R2TP-like complexes have been described, but these are less well characterized. Here, we identified, characterized and determined the cryo-electron microscopy (cryo-EM) structure of R2T from Arabidopsis thaliana, which lacks PIH1D1 and is probably the only form of the complex in seed plants. In contrast to R2TP, R2T is organized as two rings of AtRuvBL1-AtRuvBL2a interacting back-to-back, with one AtRPAP3 anchored per ring. AtRPAP3 has no effect on the ATPase activity of AtRuvBL1-AtRuvBL2a and binds with a different stoichiometry than in human R2TP. We show that the interaction of AtRPAP3 with AtRuvBL2a and AtHSP90 occurs via a conserved mechanism. However, the distinct architectures of R2T and R2TP suggest differences in their functions and mechanisms.
Collapse
Affiliation(s)
- Alberto Palacios-Abella
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jasminka Boskovic
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sandra Fonseca
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Wang Z, Yang C, Wang X, Liao H, Liu X, Liu H, Zhang M, Zhang L, Wang H. Knockdown of RUVBL2 improves hnRNPA2/B1-stress granules dynamics to inhibit perioperative neurocognitive disorders in aged mild cognitive impairment rats. Aging Cell 2025; 24:e14418. [PMID: 39610020 PMCID: PMC11896576 DOI: 10.1111/acel.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND. We assessed the effect of hippocampal RUVBL2 knockdown on hnRNPA2/B1-SGs in aged MCI rats through behavioral studies, biochemical experiments and MRI. We also examined hnRNPA2/B1-SGs dynamics using immunofluorescence staining and fluorescence recovery after photobleaching (FRAP) in rat primary hippocampal neurons. Our results revealed that hnRNPA2/B1 in the hippocampus of aged MCI rats translocates to the cytoplasm to form SGs following anesthesia. RUVBL2 knockdown promotes the disappearance of hnRNPA2/B1-SGs, allowing hnRNPA2/B1 to return to the nucleus and enhancing functional activity in the brain regions of aged MCI rats. In primary hippocampal neurons, RUVBL2 deletion facilitated hnRNPA2/B1-SGs transition from hydrogel to liquid, promoting disassembly. We compared three commonly used general anesthetics-3% sevoflurane, 40 mg·kg-1·h-1 propofol, and 9% desflurane. Sevoflurane upregulated RUVBL2, which decreased the intraneuronal pH and disrupted energy metabolism. These changes resulted in greater stabilization of hnRNPA2/B1- SGs. In conclusion, our findings indicated that the knockdown of RUVBL2 expression contributes to the transition of hnRNPA2/B1-SGs from the hydrogel phase to the liquid phase. Targeted interference with RUVBL2 may represent a novel approach to delay the progression to dementia due to PND in aged MCI patients.
Collapse
Affiliation(s)
- Zixuan Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | | | - Xinyi Wang
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Nankai UniversityTianjinChina
- Nankai University Affinity The Third Central HospitalTianjinChina
| | - Huihui Liao
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Xing Liu
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Miao Zhang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Lin Zhang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Nankai UniversityTianjinChina
- Nankai University Affinity The Third Central HospitalTianjinChina
| |
Collapse
|
4
|
Abéza C, Busse P, Paiva ACF, Chagot ME, Schneider J, Robert MC, Vandermoere F, Schaeffer C, Charpentier B, Sousa PMF, Bandeiras TM, Manival X, Cianferani S, Bertrand E, Verheggen C. The HSP90/R2TP Quaternary Chaperone Scaffolds Assembly of the TSC Complex. J Mol Biol 2024; 436:168840. [PMID: 39490680 DOI: 10.1016/j.jmb.2024.168840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes. The TSC is a key regulator of mTORC1 and is composed of TSC1, TSC2 and TBC1D7. We show a direct interaction of TSC1 with the PIH phospho-binding domain of PIH1D1, which is, surprisingly, phosphorylation independent. Via the use of mutants and KO cell lines, we observe that TSC2 makes independent interactions with HSP90 and the TPR domains of RPAP3. Moreover, inactivation of PIH1D1 or the RUVBL1/2 ATPase activity inhibits the association of TSC1 with TSC2. Taken together, these data suggest a model in which the R2TP recruits TSC1 via PIH1D1 and TSC2 via RPAP3 and HSP90, and use the chaperone-like activities of RUVBL1/2 to stimulate their assembly.
Collapse
Affiliation(s)
- Claire Abéza
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Philipp Busse
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Justine Schneider
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France
| | | | | | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnologica, Apartado 12, Oeiras, 2781-901, Portugal
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianferani
- LSMBO, IPHC, Université de Strasbourg, CNRS UMR7178, Strasbourg, France
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Guarra F, Sciva C, Bonollo G, Pasala C, Chiosis G, Moroni E, Colombo G. Cracking the chaperone code through the computational microscope. Cell Stress Chaperones 2024; 29:626-640. [PMID: 39142378 PMCID: PMC11399801 DOI: 10.1016/j.cstres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
The heat shock protein 90 kDa (Hsp90) chaperone machinery plays a crucial role in maintaining cellular homeostasis. Beyond its traditional role in protein folding, Hsp90 is integral to key pathways influencing cellular function in health and disease. Hsp90 operates through the modular assembly of large multiprotein complexes, with their composition, stability, and localization adapting to the cell's needs. Its functional dynamics are finely tuned by ligand binding and post-translational modifications (PTMs). Here, we discuss how to disentangle the intricacies of the complex code that governs the crosstalk between dynamics, binding, PTMs, and the functions of the Hsp90 machinery using computer-based approaches. Specifically, we outline the contributions of computational and theoretical methods to the understanding of Hsp90 functions, ranging from providing atomic-level insights into its dynamics to clarifying the mechanisms of interactions with protein clients, cochaperones, and ligands. The knowledge generated in this framework can be actionable for the design and development of chemical tools and drugs targeting Hsp90 in specific disease-associated cellular contexts. Finally, we provide our perspective on how computation can be integrated into the study of the fine-tuning of functions in the highly complex Hsp90 landscape, complementing experimental methods for a comprehensive understanding of this important chaperone system.
Collapse
Affiliation(s)
| | | | | | - Chiranjeevi Pasala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies (SCITEC) - Italian National Research Council (CNR), Milano, Italy.
| | | |
Collapse
|
6
|
Warnock JL, Ball JA, Najmi SM, Henes M, Vazquez A, Koshnevis S, Wieden HJ, Conn GL, Ghalei H. Differential roles of putative arginine fingers of AAA + ATPases Rvb1 and Rvb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593962. [PMID: 38798342 PMCID: PMC11118528 DOI: 10.1101/2024.05.13.593962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.
Collapse
Affiliation(s)
- Jennifer L. Warnock
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Jacob A. Ball
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Saman M. Najmi
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Mina Henes
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell & Developmental Biology (BCDB), Emory University, Atlanta, Georgia, USA
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amanda Vazquez
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Sohail Koshnevis
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, Faculty of Science, University of Manitoba, Manitoba, Canada
| | - Graeme L. Conn
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| | - Homa Ghalei
- Emory University School of Medicine, Department of Biochemistry, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Pinard M, Moursli A, Coulombe B. Drugs targeting the particle for arrangement of quaternary structure (PAQosome) and protein complex assembly. Expert Opin Drug Discov 2024; 19:57-71. [PMID: 37840283 DOI: 10.1080/17460441.2023.2267974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The PAQosome is a 12-subunit complex that acts as a co-factor of the molecular chaperones HSP90 and HSP70. This co-chaperone has been shown to participate in assembly and maturation of several protein complexes, including nuclear RNA polymerases, RNA processing factors, the ribosome, PIKKs, and others. Subunits of the PAQosome, adaptors, and clients have been reported to be involved in various diseases, making them interesting targets for drug discovery. AREA COVERED In this review, the authors cover the detailed mechanisms of PAQosome and chaperone function. Specifically, the authors summarize the status of the PAQosome and some related chaperones and co-chaperones as candidate targets for drug discovery. Indeed, a number of compounds are currently being tested for the development of treatments against diseases, such as cancers and neurodegenerative conditions. EXPERT OPINION Searching for new drugs targeting the PAQosome requires a better understanding of PAQosome subunit interactions and the discovery of new interaction partners. Thus, PAQosome subunit crystallization is an important experiment to initiate virtual screening against new target and the development of in silico tools such as AlphaFold-multimer could accelerate the search for new interaction partner and determine more rapidly the interaction pocket needed for virtual drug screening.
Collapse
Affiliation(s)
- Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
López-Perrote A, Serna M, Llorca O. Maturation and Assembly of mTOR Complexes by the HSP90-R2TP-TTT Chaperone System: Molecular Insights and Mechanisms. Subcell Biochem 2024; 104:459-483. [PMID: 38963496 DOI: 10.1007/978-3-031-58843-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| | - Marina Serna
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| |
Collapse
|
9
|
Castelli M, Magni A, Bonollo G, Pavoni S, Frigerio F, Oliveira ASF, Cinquini F, Serapian SA, Colombo G. Molecular mechanisms of chaperone-directed protein folding: Insights from atomistic simulations. Protein Sci 2023; 33:e4880. [PMID: 38145386 PMCID: PMC10895457 DOI: 10.1002/pro.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Molecular chaperones, a family of proteins of which Hsp90 and Hsp70 are integral members, form an essential machinery to maintain healthy proteomes by controlling the folding and activation of a plethora of substrate client proteins. This is achieved through cycles in which Hsp90 and Hsp70, regulated by task-specific co-chaperones, process ATP and become part of a complex network that undergoes extensive compositional and conformational variations. Despite impressive advances in structural knowledge, the mechanisms that regulate the dynamics of functional assemblies, their response to nucleotides, and their relevance for client remodeling are still elusive. Here, we focus on the glucocorticoid receptor (GR):Hsp90:Hsp70:co-chaperone Hop client-loading and the GR:Hsp90:co-chaperone p23 client-maturation complexes, key assemblies in the folding cycle of glucocorticoid receptor (GR), a client strictly dependent upon Hsp90/Hsp70 for activity. Using a combination of molecular dynamics simulation approaches, we unveil with unprecedented detail the mechanisms that underpin function in these chaperone machineries. Specifically, we dissect the processes by which the nucleotide-encoded message is relayed to the client and how the distinct partners of the assemblies cooperate to (pre)organize partially folded GR during Loading and Maturation. We show how different ligand states determine distinct dynamic profiles for the functional interfaces defining the interactions in the complexes and modulate their overall flexibility to facilitate progress along the chaperone cycle. Finally, we also show that the GR regions engaged by the chaperone machinery display peculiar energetic signatures in the folded state, which enhance the probability of partial unfolding fluctuations. From these results, we propose a model where a dynamic cross-talk emerges between the chaperone dynamics states and remodeling of client-interacting regions. This factor, coupled to the highly dynamic nature of the assemblies and the conformational heterogeneity of their interactions, provides the basis for regulating the functions of distinct assemblies during the chaperoning cycle.
Collapse
Affiliation(s)
| | - Andrea Magni
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy
| | | | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Fabrizio Cinquini
- Upstream & Technical Services - TECS/STES - Eni Spa, San Donato Milanese, Italy
| | | | | |
Collapse
|
10
|
Luthuli SD, Shonhai A. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Biophys Rev 2023; 15:1951-1965. [PMID: 38192347 PMCID: PMC10771493 DOI: 10.1007/s12551-023-01127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100-450 g/L that take up approximately 5-40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure-function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
Collapse
Affiliation(s)
- Sifiso Duncan Luthuli
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
11
|
Deng C, Li S, Liu Y, Bao W, Xu C, Zheng W, Wang M, Ma X. Split-Cas9-based targeted gene editing and nanobody-mediated proteolysis-targeting chimeras optogenetically coordinated regulation of Survivin to control the fate of cancer cells. Clin Transl Med 2023; 13:e1382. [PMID: 37620295 PMCID: PMC10449816 DOI: 10.1002/ctm2.1382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Precise regulation of partial critical proteins in cancer cells, such as anti-apoptotic proteins, is one of the crucial strategies for treating cancer and discovering related molecular mechanisms. Still, it is also challenging in actual research and practice. The widely used CRISPR/Cas9-based gene editing technology and proteolysis-targeting chimeras (PROTACs) have played an essential role in regulating gene expression and protein function in cells. However, the accuracy and controllability of their targeting remain necessary. METHODS Construction of UMUC-3-EGFP stable transgenic cell lines using the Sleeping Beauty system, Flow cytometry, quantitative real-time PCR, western blot, fluorescence microplate reader and fluorescence inverted microscope analysis of EGFP intensity. Characterization of Survivin inhibition was done by using Annexin V-FITC/PI apoptosis, calcein/PI/DAPI cell viability/cytotoxicity assay, cloning formation assay and scratch assay. The cell-derived xenograft (CDX) model was constructed to assess the in vivo effects of reducing Survivin expression. RESULTS Herein, we established a synergistic control platform that coordinated photoactivatable split-Cas9 targeted gene editing and light-induced protein degradation, on which the Survivin gene in the nucleus was controllably edited by blue light irradiation (named paCas9-Survivin) and simultaneously the Survivin protein in the cytoplasm was degraded precisely by a nanobody-mediated target (named paProtacL-Survivin). Meanwhile, in vitro experiments demonstrated that reducing Survivin expression could effectively promote apoptosis and decrease the proliferation and migration of bladder cancerous cells. Furthermore, the CDX model was constructed using UMUC-3 cell lines, results from animal studies indicated that both the paCas9-Survivin system and paProtacL-Survivin significantly inhibited tumour growth, with higher inhibition rates when combined. CONCLUSIONS In short, the coordinated regulatory strategies and combinable technology platforms offer clear advantages in controllability and targeting, as well as an excellent reference value and universal applicability in controlling the fate of cancer cells through multi-level regulation of key intracellular factors.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Shihui Li
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wen Bao
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Chengnan Xu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory BiologyInstitute of BiomedicalSciences and School of Life SciencesEast China Normal UniversityShanghaiP. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
12
|
Li M, Yang L, Chan AKN, Pokharel SP, Liu Q, Mattson N, Xu X, Chang W, Miyashita K, Singh P, Zhang L, Li M, Wu J, Wang J, Chen B, Chan LN, Lee J, Zhang XH, Rosen ST, Müschen M, Qi J, Chen J, Hiom K, Bishop AJR, Chen C. Epigenetic Control of Translation Checkpoint and Tumor Progression via RUVBL1-EEF1A1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206584. [PMID: 37075745 PMCID: PMC10265057 DOI: 10.1002/advs.202206584] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lu Yang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Anthony K. N. Chan
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Sheela Pangeni Pokharel
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Qiao Liu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Nicole Mattson
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Xiaobao Xu
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Wen‐Han Chang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kazuya Miyashita
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Priyanka Singh
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Leisi Zhang
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Maggie Li
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jun Wu
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Jinhui Wang
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Bryan Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Lai N. Chan
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOH44195USA
| | - Jaewoong Lee
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
- School of Biosystems and Biomedical SciencesCollege of Health ScienceKorea UniversitySeoul02841South Korea
- Interdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841South Korea
| | | | | | - Markus Müschen
- Center of Molecular and Cellular OncologyYale Cancer CenterYale School of MedicineNew HavenCT06510USA
| | - Jun Qi
- Department of Cancer BiologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Kevin Hiom
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeNethergateDundeeDD1 4HNUK
| | - Alexander J. R. Bishop
- Department of Cellular Systems and AnatomyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Chun‐Wei Chen
- Department of Systems BiologyBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- Division of Epigenetic and Transcriptional EngineeringBeckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCA91010USA
- City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| |
Collapse
|
13
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
14
|
Chagot ME, Boutilliat A, Kriznik A, Quinternet M. Structural Analysis of the Plasmodial Proteins ZNHIT3 and NUFIP1 Provides Insights into the Selectivity of a Conserved Interaction. Biochemistry 2022; 61:479-493. [PMID: 35315277 DOI: 10.1021/acs.biochem.1c00792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria is a widespread and lethal disease caused by the Plasmodium parasites that can infect human beings through Anopheles mosquitoes. For that reason, the biology of Plasmodium needs to be studied to develop antimalarial treatments. By determining the three-dimensional structures of macromolecules, structural biology helps to understand the function of proteins and can reveal how interactions occur between biological partners. Here, we studied the ZNHIT3 and NUFIP1 proteins from Plasmodium falciparum, two proteins tightly linked to the ribosome biology. Due to their important functions in post-translational modifications of ribosomal RNAs and in ribophagy, these proteins participate in the survival of cells. In this study, we solved the three-dimensional structure of a thermally stable and species-dependent complex between fragments of these proteins. Our results were compared to the AlphaFold predictions, which motivated the study of the free ZNHIT3 fragment that binds NUFIP1. We showed that the latter fragment multimerized in vitro but also had the inner ability to change its conformation to escape the solvent exposition of key hydrophobic residues involved in the interaction with NUFIP1. Our data could open the gate to selective drug discovery processes involving these two proteins.
Collapse
Affiliation(s)
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.,Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
15
|
Seraphim TV, Nano N, Cheung YWS, Aluksanasuwan S, Colleti C, Mao YQ, Bhandari V, Young G, Höll L, Phanse S, Gordiyenko Y, Southworth DR, Robinson CV, Thongboonkerd V, Gava LM, Borges JC, Babu M, Barbosa LRS, Ramos CHI, Kukura P, Houry WA. Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure 2022; 30:156-171.e12. [PMID: 34492227 DOI: 10.1016/j.str.2021.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nardin Nano
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Yiu Wing Sunny Cheung
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Siripat Aluksanasuwan
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Colleti
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Yu-Qian Mao
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Larissa Höll
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yuliya Gordiyenko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lisandra M Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
16
|
Abel Y, Charron C, Virciglio C, Bourguignon-Igel V, Quinternet M, Chagot ME, Robert MC, Verheggen C, Branlant C, Bertrand E, Manival X, Charpentier B, Rederstorff M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2172-2189. [PMID: 35150569 PMCID: PMC8887487 DOI: 10.1093/nar/gkac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.
Collapse
Affiliation(s)
| | | | | | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLOR, F-54000, Nancy, France
| | | | - Marie-Cécile Robert
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Céline Verheggen
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | | | - Edouard Bertrand
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
17
|
Serna M, González-Corpas A, Cabezudo S, López-Perrote A, Degliesposti G, Zarzuela E, Skehel JM, Muñoz J, Llorca O. CryoEM of RUVBL1-RUVBL2-ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Res 2021; 50:1128-1146. [PMID: 34951455 PMCID: PMC8789047 DOI: 10.1093/nar/gkab1267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Biogenesis of the U5 small nuclear ribonucleoprotein (snRNP) is an essential and highly regulated process. In particular, PRPF8, one of U5 snRNP main components, requires HSP90 working in concert with R2TP, a cochaperone complex containing RUVBL1 and RUVBL2 AAA-ATPases, and additional factors that are still poorly characterized. Here, we use biochemistry, interaction mapping, mass spectrometry and cryoEM to study the role of ZNHIT2 in the regulation of the R2TP chaperone during the biogenesis of PRPF8. ZNHIT2 forms a complex with R2TP which depends exclusively on the direct interaction of ZNHIT2 with the RUVBL1–RUVBL2 ATPases. The cryoEM analysis of this complex reveals that ZNHIT2 alters the conformation and nucleotide state of RUVBL1–RUVBL2, affecting its ATPase activity. We characterized the interactions between R2TP, PRPF8, ZNHIT2, ECD and AAR2 proteins. Interestingly, PRPF8 makes a direct interaction with R2TP and this complex can incorporate ZNHIT2 and other proteins involved in the biogenesis of PRPF8 such as ECD and AAR2. Together, these results show that ZNHIT2 participates in the assembly of the U5 snRNP as part of a network of contacts between assembly factors required for PRPF8 biogenesis and the R2TP-HSP90 chaperone, while concomitantly regulating the structure and nucleotide state of R2TP.
Collapse
Affiliation(s)
- Marina Serna
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana González-Corpas
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sofía Cabezudo
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Eduardo Zarzuela
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Javier Muñoz
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
18
|
Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells. Nat Commun 2021; 12:5463. [PMID: 34526502 PMCID: PMC8443592 DOI: 10.1038/s41467-021-25550-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 isoform, Δ133p53β, is critical in promoting cancer. Here we report that Δ133p53β activity is regulated through an aggregation-dependent mechanism. Δ133p53β aggregates were observed in cancer cells and tumour biopsies. The Δ133p53β aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53β aggregates and loss of Δ133p53β dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53β from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.
Collapse
|
19
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
21
|
Pal M, Muñoz-Hernandez H, Bjorklund D, Zhou L, Degliesposti G, Skehel JM, Hesketh EL, Thompson RF, Pearl LH, Llorca O, Prodromou C. Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. Cell Rep 2021; 36:109317. [PMID: 34233195 PMCID: PMC8278493 DOI: 10.1016/j.celrep.2021.109317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
The R2TP (RUVBL1-RUVBL2-RPAP3-PIH1D1) complex, in collaboration with heat shock protein 90 (HSP90), functions as a chaperone for the assembly and stability of protein complexes, including RNA polymerases, small nuclear ribonucleoprotein particles (snRNPs), and phosphatidylinositol 3-kinase (PI3K)-like kinases (PIKKs) such as TOR and SMG1. PIKK stabilization depends on an additional complex of TELO2, TTI1, and TTI2 (TTT), whose structure and function are poorly understood. The cryoelectron microscopy (cryo-EM) structure of the human R2TP-TTT complex, together with biochemical experiments, reveals the mechanism of TOR recruitment to the R2TP-TTT chaperone. The HEAT-repeat TTT complex binds the kinase domain of TOR, without blocking its activity, and delivers TOR to the R2TP chaperone. In addition, TTT regulates the R2TP chaperone by inhibiting RUVBL1-RUVBL2 ATPase activity and by modulating the conformation and interactions of the PIH1D1 and RPAP3 components of R2TP. Taken together, our results show how TTT couples the recruitment of TOR to R2TP with the regulation of this chaperone system.
Collapse
Affiliation(s)
- Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Hugo Muñoz-Hernandez
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Dennis Bjorklund
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW1E 6BT, UK.
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
22
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Dermouche S, Chagot ME, Manival X, Quinternet M. Optimizing the First TPR Domain of the Human SPAG1 Protein Provides Insight into the HSP70 and HSP90 Binding Properties. Biochemistry 2021; 60:2349-2363. [PMID: 33739091 DOI: 10.1021/acs.biochem.1c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.
Collapse
Affiliation(s)
- Sana Dermouche
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, F-54000 Nancy, France
| |
Collapse
|
24
|
Abel Y, Paiva ACF, Bizarro J, Chagot ME, Santo PE, Robert MC, Quinternet M, Vandermoere F, Sousa PMF, Fort P, Charpentier B, Manival X, Bandeiras TM, Bertrand E, Verheggen C. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Res 2021; 49:1094-1113. [PMID: 33367824 PMCID: PMC7826282 DOI: 10.1093/nar/gkaa1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.
Collapse
Affiliation(s)
- Yoann Abel
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Jonathan Bizarro
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France
| | | | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Marie-Cécile Robert
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, Biophysics and Structural Biology Core Facility, F-54000, Nancy, France
| | | | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | | | | | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2781-901, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Edouard Bertrand
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| | - Céline Verheggen
- IGMM, CNRS, Univ Montpellier, Montpellier, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France.,IGH, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
25
|
López-Perrote A, Hug N, González-Corpas A, Rodríguez CF, Serna M, García-Martín C, Boskovic J, Fernandez-Leiro R, Caceres JF, Llorca O. Regulation of RUVBL1-RUVBL2 AAA-ATPases by the nonsense-mediated mRNA decay factor DHX34, as evidenced by Cryo-EM. eLife 2020; 9:63042. [PMID: 33205750 PMCID: PMC7707835 DOI: 10.7554/elife.63042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades aberrant mRNAs and also regulates the expression of a wide range of physiological transcripts. RUVBL1 and RUVBL2 AAA-ATPases form an hetero-hexameric ring that is part of several macromolecular complexes such as INO80, SWR1, and R2TP. Interestingly, RUVBL1-RUVBL2 ATPase activity is required for NMD activation by an unknown mechanism. Here, we show that DHX34, an RNA helicase regulating NMD initiation, directly interacts with RUVBL1-RUVBL2 in vitro and in cells. Cryo-EM reveals that DHX34 induces extensive changes in the N-termini of every RUVBL2 subunit in the complex, stabilizing a conformation that does not bind nucleotide and thereby down-regulates ATP hydrolysis of the complex. Using ATPase-deficient mutants, we find that DHX34 acts exclusively on the RUVBL2 subunits. We propose a model, where DHX34 acts to couple RUVBL1-RUVBL2 ATPase activity to the assembly of factors required to initiate the NMD response.
Collapse
Affiliation(s)
- Andres López-Perrote
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburghx, Edinburgh, United Kingdom
| | - Ana González-Corpas
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlos F Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen García-Martín
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rafael Fernandez-Leiro
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier F Caceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburghx, Edinburgh, United Kingdom
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
26
|
Dauden MI, López-Perrote A, Llorca O. RUVBL1-RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Curr Opin Struct Biol 2020; 67:78-85. [PMID: 33129013 DOI: 10.1016/j.sbi.2020.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
RUVBL1 and RUVBL2 are two highly conserved AAA+ ATPases that form a hetero-hexameric complex that participates in a wide range of unrelated cellular processes, including chromatin remodeling, Fanconi Anemia (FA), nonsense-mediated mRNA decay (NMD), and assembly and maturation of several large macromolecular complexes such as RNA polymerases, the box C/D small nucleolar ribonucleoprotein (snoRNP) and mTOR complexes. How the RUVBL1-RUVBL2 complex works in such a variety of processes, sometimes antagonistic, has been obscure for a long time. Recent cryo-electron microscopy (cryo-EM) studies have started to reveal how RUVBL1-RUVBL2 forms a scaffold for complex protein-protein interactions and how the structure and ATPase activity of RUVBL1-RUVBL2 can be affected and regulated by the interaction with clients.
Collapse
Affiliation(s)
- Maria I Dauden
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Andrés López-Perrote
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
27
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
28
|
Ju D, Zhang W, Yan J, Zhao H, Li W, Wang J, Liao M, Xu Z, Wang Z, Zhou G, Mei L, Hou N, Ying S, Cai T, Chen S, Xie X, Lai L, Tang C, Park N, Takahashi JS, Huang N, Qi X, Zhang EE. Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Sci Transl Med 2020; 12:12/542/eaba0769. [DOI: 10.1126/scitranslmed.aba0769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
Transcriptional regulation lies at the core of the circadian clockwork, but how the clock-related transcription machinery controls the circadian phase is not understood. Here, we show both in human cells and in mice that RuvB-like ATPase 2 (RUVBL2) interacts with other known clock proteins on chromatin to regulate the circadian phase. Pharmacological perturbation of RUVBL2 with the adenosine analog compound cordycepin resulted in a rapid-onset 12-hour clock phase-shift phenotype at human cell, mouse tissue, and whole-animal live imaging levels. Using simple peripheral injection treatment, we found that cordycepin penetrated the blood-brain barrier and caused rapid entrainment of the circadian phase, facilitating reduced duration of recovery in a mouse jet-lag model. We solved a crystal structure for human RUVBL2 in complex with a physiological metabolite of cordycepin, and biochemical assays showed that cordycepin treatment caused disassembly of an interaction between RUVBL2 and the core clock component BMAL1. Moreover, we showed with spike-in ChIP-seq analysis and binding assays that cordycepin treatment caused disassembly of the circadian super-complex, which normally resides at E-box chromatin loci such as PER1, PER2, DBP, and NR1D1. Mathematical modeling supported that the observed type 0 phase shifts resulted from derepression of E-box clock gene transcription.
Collapse
Affiliation(s)
- Dapeng Ju
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- RPXDs (Suzhou) Co. Ltd., Suzhou City, Jiangsu Province 215028, China
| | - Jiawei Yan
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Li
- RPXDs (Suzhou) Co. Ltd., Suzhou City, Jiangsu Province 215028, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhancong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhiqiang Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guanshen Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Long Mei
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Nannan Hou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shuhua Ying
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaowen Xie
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Noheon Park
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Niu Huang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
29
|
Rodríguez CF, Llorca O. RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells 2020; 9:cells9051139. [PMID: 32384603 PMCID: PMC7290369 DOI: 10.3390/cells9051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.
Collapse
Affiliation(s)
| | - Oscar Llorca
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3000/3033)
| |
Collapse
|
30
|
Nano N, Ugwu F, Seraphim TV, Li T, Azer G, Isaac M, Prakesch M, Barbosa LRS, Ramos CHI, Datti A, Houry WA. Sorafenib as an Inhibitor of RUVBL2. Biomolecules 2020; 10:biom10040605. [PMID: 32295120 PMCID: PMC7226205 DOI: 10.3390/biom10040605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
RUVBL1 and RUVBL2 are highly conserved ATPases that belong to the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various complexes and cellular processes, several of which are closely linked to oncogenesis. The proteins were implicated in DNA damage signaling and repair, chromatin remodeling, telomerase activity, and in modulating the transcriptional activities of proto-oncogenes such as c-Myc and β-catenin. Moreover, both proteins were found to be overexpressed in several different types of cancers such as breast, lung, kidney, bladder, and leukemia. Given their various roles and strong involvement in carcinogenesis, the RUVBL proteins are considered to be novel targets for the discovery and development of therapeutic cancer drugs. Here, we describe the identification of sorafenib as a novel inhibitor of the ATPase activity of human RUVBL2. Enzyme kinetics and surface plasmon resonance experiments revealed that sorafenib is a weak, mixed non-competitive inhibitor of the protein’s ATPase activity. Size exclusion chromatography and small angle X-ray scattering data indicated that the interaction of sorafenib with RUVBL2 does not cause a significant effect on the solution conformation of the protein; however, the data suggested that the effect of sorafenib on RUVBL2 activity is mediated by the insertion domain in the protein. Sorafenib also inhibited the ATPase activity of the RUVBL1/2 complex. Hence, we propose that sorafenib could be further optimized to be a potent inhibitor of the RUVBL proteins.
Collapse
Affiliation(s)
- Nardin Nano
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Thiago V. Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Tangzhi Li
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Gina Azer
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (M.I.); (M.P.)
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (M.I.); (M.P.)
| | | | - Carlos H. I. Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP 13083-970, Brazil;
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (N.N.); (F.U.); (T.V.S.); (T.L.); (G.A.)
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Correspondence: ; Tel.: +(416)-946-7141; Fax: +(416)-978-8548
| |
Collapse
|
31
|
Yeast R2TP Interacts with Extended Termini of Client Protein Nop58p. Sci Rep 2019; 9:20228. [PMID: 31882871 PMCID: PMC6934851 DOI: 10.1038/s41598-019-56712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 01/15/2023] Open
Abstract
The AAA + ATPase R2TP complex facilitates assembly of a number of ribonucleoprotein particles (RNPs). Although the architecture of R2TP is known, its molecular basis for acting upon multiple RNPs remains unknown. In yeast, the core subunit of the box C/D small nucleolar RNPs, Nop58p, is the target for R2TP function. In the recently observed U3 box C/D snoRNP as part of the 90 S small subunit processome, the unfolded regions of Nop58p are observed to form extensive interactions, suggesting a possible role of R2TP in stabilizing the unfolded region of Nop58p prior to its assembly. Here, we analyze the interaction between R2TP and a Maltose Binding Protein (MBP)-fused Nop58p by biophysical and yeast genetics methods. We present evidence that R2TP interacts largely with the unfolded termini of Nop58p. Our results suggest a general mechanism for R2TP to impart specificity by recognizing unfolded regions in its clients.
Collapse
|
32
|
Yenerall P, Das AK, Wang S, Kollipara RK, Li LS, Villalobos P, Flaming J, Lin YF, Huffman K, Timmons BC, Gilbreath C, Sonavane R, Kinch LN, Rodriguez-Canales J, Moran C, Behrens C, Hirasawa M, Takata T, Murakami R, Iwanaga K, Chen BPC, Grishin NV, Raj GV, Wistuba II, Minna JD, Kittler R. RUVBL1/RUVBL2 ATPase Activity Drives PAQosome Maturation, DNA Replication and Radioresistance in Lung Cancer. Cell Chem Biol 2019; 27:105-121.e14. [PMID: 31883965 DOI: 10.1016/j.chembiol.2019.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023]
Abstract
RUVBL1 and RUVBL2 (collectively RUVBL1/2) are essential AAA+ ATPases that function as co-chaperones and have been implicated in cancer. Here we investigated the molecular and phenotypic role of RUVBL1/2 ATPase activity in non-small cell lung cancer (NSCLC). We find that RUVBL1/2 are overexpressed in NSCLC patient tumors, with high expression associated with poor survival. Utilizing a specific inhibitor of RUVBL1/2 ATPase activity, we show that RUVBL1/2 ATPase activity is necessary for the maturation or dissociation of the PAQosome, a large RUVBL1/2-dependent multiprotein complex. We also show that RUVBL1/2 have roles in DNA replication, as inhibition of its ATPase activity can cause S-phase arrest, which culminates in cancer cell death via replication catastrophe. While in vivo pharmacological inhibition of RUVBL1/2 results in modest antitumor activity, it synergizes with radiation in NSCLC, but not normal cells, an attractive property for future preclinical development.
Collapse
Affiliation(s)
- Paul Yenerall
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit K Das
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shan Wang
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Long Shan Li
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Josiah Flaming
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Fen Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brenda C Timmons
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collin Gilbreath
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajni Sonavane
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cesar Moran
- Department of Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makoto Hirasawa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Takehiko Takata
- Oncology Medical Science Department, Medical Affairs, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Ryo Murakami
- Oncology Research Laboratories II, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Koichi Iwanaga
- Oncology Medical Science Department, Medical Affairs, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Benjamin P C Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V Raj
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
34
|
Yan T, Liu F, Gao J, Lu H, Cai J, Zhao X, Sun Y. Multilevel regulation of RUVBL2 expression predicts poor prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19:249. [PMID: 31572066 PMCID: PMC6764127 DOI: 10.1186/s12935-019-0974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second-most lethal cancer worldwide with a complex pathogenesis. RuvB-like 2 (RUVBL2) was previously found to contribute to hepatocarcinogenesis. However, its expression, regulation and clinical significance have not been systematically evaluated in a large number of clinical samples. Methods Here, we performed a comprehensive analysis of RUVBL2 based on multiple datasets from 371 liver cancer patients of The Cancer Genome Atlas (TCGA) and on immunohistochemical staining in 153 subjects. In addition, the aberrant signaling pathways caused by RUVBL2 overexpression were investigated. Results We demonstrated that promoter hypomethylation, copy number gain, MYC amplification and CTNNB1 mutation were all responsible for RUVBL2 overexpression in HCC. High levels of RUVBL2 mRNA were associated with shorter recurrence-free survival time (RFS) but not overall survival time (OS). Furthermore, RUVBL2 protein was overexpressed in the nucleus and cytoplasm of HCC samples. Univariate and multivariate survival analyses showed that strong nuclear and cytoplasmic staining of RUVBL2 independently predicted worse OS and RFS with a 2.03-fold and a 1.71-fold increase in the hazard ratio, respectively. High levels of RUVBL2 promoted carcinogenesis through the heat shock protein 90 (HSP90)-Cell Division Cycle 37 (CDC37), AKT serine/threonine kinase (AKT) and mitogen-activated protein kinase (ERK/MAPK) pathways. Conclusion The deregulation of RUVBL2 in HCC is influenced at the genomic, epigenetic and transcriptional levels. Our findings highlight the potential roles of RUVBL2 as a promising prognostic marker as well as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Yan
- 1Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Fang Liu
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Jiajia Gao
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Haizhen Lu
- 3Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Jianqiang Cai
- 4Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100021 China
| | - Xiaohang Zhao
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Yulin Sun
- 2State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| |
Collapse
|