1
|
Manurung MD, Heieis GA, König M, Azimi S, Ndao M, Veldhuizen T, Hoving D, Hoekstra PT, Kruize YCM, Wammes LJ, Menafra R, Cisse M, Mboup S, Dieye A, Kloet S, Tahapary DL, Supali T, Wuhrer M, Hokke CH, Everts B, Mahfouz A, Jochems SP, Yazdanbakhsh M, Mbow M. Systems analysis unravels a common rural-urban gradient in immunological profile, function, and metabolic dependencies. SCIENCE ADVANCES 2025; 11:eadu0419. [PMID: 40305616 PMCID: PMC12042899 DOI: 10.1126/sciadv.adu0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Urbanization affects environmental exposures and lifestyle, shaping immune system variation and influencing disease susceptibility and vaccine responses. Here, we present systems analysis of immune profiles across the rural-urban gradient, comparing rural and urban Senegalese with urban Dutch individuals. By integrating single-cell phenotyping, metabolic profiling, and functional analysis, we reveal a trajectory of immune remodeling along the gradient. This includes enrichment of proinflammatory CD11c+ B cells associated with altered IgG Fc glycosylation, adaptive NK cells with reduced responsiveness to accessory cytokines, and CD161+CD4+T cells with enhanced cytokine production in rural settings. Metabolic perturbation studies demonstrated distinct dependencies on glycolysis, pentose phosphate pathway, and fatty acid synthesis for cellular cytokine responses across populations. We validate core rural-urban immune signatures in an independent Indonesian cohort, suggesting shared immunological adaptations to urbanization across ancestries and geographical areas. Our findings provide insights into rural-urban immune function in understudied populations.
Collapse
Affiliation(s)
- Mikhael D. Manurung
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Graham A. Heieis
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Shohreh Azimi
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Malick Ndao
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Tom Veldhuizen
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Dennis Hoving
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Pytsje T. Hoekstra
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Yvonne C. M. Kruize
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Linda J. Wammes
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Marouba Cisse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Souleymane Mboup
- Institute of Health Research, Epidemiological Surveillance, and Training, Dakar, Senegal
| | - Alioune Dieye
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Susan Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dicky L. Tahapary
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Simon P. Jochems
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Moustapha Mbow
- Department of Immunology, Faculty of Medicine, Pharmacy, and Odontology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| |
Collapse
|
2
|
Nimmerjahn F. Role of Antibody Glycosylation in Health, Disease, and Therapy. Handb Exp Pharmacol 2025. [PMID: 40119204 DOI: 10.1007/164_2025_744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Immunoglobulin G (IgG) antibodies are an essential component of humoral immunity protecting the host from recurrent infections. Among all antibody isotypes, IgG antibodies have a uniquely long half-life, can basically reach any tissue in the body, and have the ability to kill opsonized target cells, which has made them the molecule of choice for therapeutic interventions in cancer and autoimmunity. Moreover, IgG antibodies in the form of pooled serum IgG preparations from healthy donors are used to treat chronic inflammatory and autoimmune diseases, providing evidence that serum IgG antibodies can have an active immunomodulatory activity. Research over the last two decades has established that the single sugar moiety attached to each IgG heavy chain plays a very important role in modulating the pro- and anti-inflammatory activities of IgG. Moreover, specific sugar moieties such as sialic acid and galactose residues can serve as highly specific biomarkers for ongoing inflammatory processes. This chapter will summarize how different sugar residues in the IgG sugar moiety change upon inflammation and how such changes may translate to altered IgG function and hence maybe useful for optimizing or modulating the function of therapeutic antibodies.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
3
|
Wang H, Li H, Guo Z, Hou H, Hou H, Chen B. Immunoglobulin G N-Glycome as a biomarker of mortality risk in Escherichia coli induced sepsis. Front Immunol 2025; 16:1532145. [PMID: 40165956 PMCID: PMC11955649 DOI: 10.3389/fimmu.2025.1532145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Background Sepsis is a life-threatening syndrome caused by an imbalance in the inflammatory response to an infection that can lead to a high mortality rate. Escherichia coli is a common pathogen that causes sepsis. The role of immunoglobulin G N-glycome in estimating the mortality in patients with sepsis remains unknown. This study aims to reveal the clinical application of immunoglobulin G N-glycome as a potentially novel biomarker to predict mortality risk in Escherichia coli-induced sepsis. Methods The serum immunoglobulin G N-glycome levels in 100 adult septic patient serum samples on the day of intensive care unit (ICU) admission, and 100 healthy volunteers were measured and analyzed. Immunoglobulin G N-glycome was compared with existing risk scores on predicting in-hospital death. Results We identified that the fucosylation level was significantly decreased in patients. Importantly, bisecting GlcNAc, sialylation, and galactosylation have different levels between sepsis and control groups. In addition, the AUC values of the SOFA score combined with GP4, GP5, and GP9 were 0.76 (95%CI: 0.61 to 0.90), 0.58 (95%CI: 0.40 to 0.7) and 0.57 (95%CI: 0.38 to 0.76). The AUC value of the SOFA score combined with GP4 and GP7 was 0.85 (95%CI: 0.76 to 0.93) in predicting in-hospital mortality in patients with sepsis. Conclusions Immunoglobulin G N-glycome concentrations at ICU admission are valuable for predicting the in-hospital mortality risk of patients with sepsis, suggesting that immunoglobulin G N-glycome may be a novel biomarker.
Collapse
Affiliation(s)
- Huachen Wang
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, Tianjin, China
- Intensive Care Unit, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Houqiang Li
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zheng Guo
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Hongda Hou
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, Tianjin, China
- Intensive Care Unit, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bing Chen
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, Tianjin, China
- Intensive Care Unit, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Edwards DL, Huang M, Wang TT. Soluble Factors and Mechanisms Regulated by Sialylated IgG Signaling. Immunol Rev 2025; 330:e70021. [PMID: 40084926 PMCID: PMC12042769 DOI: 10.1111/imr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Inflammation is a complex biological response that can be both induced and actively suppressed by IgG-Fc gamma receptor (FcγR) interactions. This review explores the role of IgG sialylation in reducing or blocking inflammatory responses. We first revisit foundational studies that established the anti-inflammatory properties of sialylated IgG1 Fc. These early investigations revealed that the sialylated fraction is crucial for intravenous immunoglobulin's (IVIg's) ability to reduce inflammation in many autoinflammatory diseases and defined a paracrine signaling mechanism underlying this activity. Next, we discuss a recently identified mechanism whereby sialylated IgG directly induces RE1-Silencing Transcription Factor (REST) which functions as a transcriptional repressor of NF-κB1. This mechanism suggests a very broad role for sialylated IgG signaling in inflammation control since NF-κB is a central mediator of responses downstream of diverse activating receptors on both adaptive and innate immune cells. Finally, we review a set of soluble factors that are suppressed by sialylated IgG signaling in the murine airway and in purified human macrophages, providing additional insight into mechanisms by which sialylated IgG contributes to broad inflammatory control.
Collapse
Affiliation(s)
- Desmond L. Edwards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Min Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Taia T. Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
5
|
Mishra B, Gou Y, Tan Z, Wang Y, Hu G, Athar M, Mukhtar MS. Integrative systems biology framework discovers common gene regulatory signatures in mechanistically distinct inflammatory skin diseases. NPJ Syst Biol Appl 2025; 11:21. [PMID: 40016271 PMCID: PMC11868562 DOI: 10.1038/s41540-025-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
More than 20% of the population across the world is affected by non-communicable inflammatory skin diseases including psoriasis, atopic dermatitis, hidradenitis suppurativa, rosacea, etc. Many of these chronic diseases are painful and debilitating with limited effective therapeutic interventions. This study aims to identify common regulatory pathways and master regulators that regulate the molecular pathogenesis of inflammatory skin diseases. We designed an integrative systems biology framework to identify the significant regulators across several diseases. Network analytics unraveled 55 high-value proteins as significant regulators in molecular pathogenesis which can serve as putative drug targets for more effective treatments. We identified IKZF1 as a shared master regulator in hidradenitis suppurativa, atopic dermatitis, and rosacea with known disease-derived molecules for developing efficacious combinatorial treatments for these diseases. The proposed framework is very modular and indicates a significant path of molecular mechanism-based drug development from complex transcriptomics data and other multi-omics data.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Yifei Gou
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Zhengzhi Tan
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Yiqing Wang
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Getian Hu
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - M Shahid Mukhtar
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA.
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Radovani B, Nimmerjahn F. IgG Glycosylation: Biomarker, Functional Modulator, and Structural Component. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1573-1584. [PMID: 39556784 DOI: 10.4049/jimmunol.2400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
The family of IgG Abs is a crucial component of adaptive immunity. Glycosylation of IgG maintains its structural integrity and modulates its effector functions. In this review, we discuss IgG glycosylation covering cell biological as well as therapeutic and disease-related aspects, focusing on the glycan structures in distinct IgG regions (Fab versus Fc). We also cover the impact of IgG glycosylation on disease modulation and therapeutic outcomes, alongside the potential for development of vaccines designed to induce Ag-specific IgG with glycoforms for optimal immune responses. Overall, we emphasize the significance of studying glycosylation to enhance our understanding of the dynamics and functional impacts of IgG glycosylation. These insights could be beneficial for advancing future research and clinical applications.
Collapse
Affiliation(s)
- Barbara Radovani
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Profile Center Immunomedicine, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Lv Y, Chen Y, Li X, Huang Q, Lu R, Ye J, Meng W, Fan C, Mo X. Predicting psychiatric risk: IgG N-glycosylation traits as biomarkers for mental health. Front Psychiatry 2024; 15:1431942. [PMID: 39649366 PMCID: PMC11622602 DOI: 10.3389/fpsyt.2024.1431942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Background Growing evidence suggests that chronic inflammation, resulting from intricate immune system interactions, significantly contributes to the onset of psychiatric disorders. Observational studies have identified a link between immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but the causality of these associations remains unclear. Methods Genetic variants for IgG N-glycosylation traits and psychiatric disorders were obtained from published genome-wide association studies. The inverse-variance-weighted (IVW) method, MR-Egger, and weighted median were used to estimate causal effects. The Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and MR-PRESSO global test were used for sensitivity analyses. Results In the Psychiatric Genomics Consortium (PGC) database, genetically predicted IGP7 showed a protective role in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP), while elevated IGP34, and IGP57 increased SCZ risk. High levels of IGP21 were associated with an increased risk of post-traumatic stress disorder (PTSD), while elevated levels of IGP22 exhibited a causal association with a decreased risk of attention-deficit/hyperactivity disorder (ADHD). No causal relationship between IgG N-glycan traits and autism spectrum disorder (ASD) and no evidence of reverse causal associations was found. Conclusion Here, we demonstrate that IgG N-glycan traits have a causal relationship with psychiatric disorders, especially IGP7's protective role, offering new insights into their pathogenesis. Our findings suggest potential strategies for predicting and intervening in psychiatric disorder risk through IgG N-glycan traits.
Collapse
Affiliation(s)
- Yinchun Lv
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Chen
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaorong Huang
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Lu
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Junman Ye
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wentong Meng
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xianming Mo
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Meng X, Liu D, Cao M, Wang W, Wang Y. Potentially causal association between immunoglobulin G N-glycans and cardiometabolic diseases: Bidirectional two-sample Mendelian randomization study. Int J Biol Macromol 2024; 279:135125. [PMID: 39208880 DOI: 10.1016/j.ijbiomac.2024.135125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Observational studies support that altered immunoglobulin G (IgG) N-glycosylation and inflammatory factors are associated with cardiometabolic diseases (CMDs); nevertheless, the causality between them remains unclear. METHODS Two-sample Mendelian randomization (MR) analyses were conducted to systematically investigate the bidirectional causality between IgG N-glycans and nine CMDs in both East Asians and Europeans. RESULTS In the forward MR analysis, the univariable MR analysis presented suggestive causality of 14 and eight genetically instrumented IgG N-glycans with CMDs in East Asians and Europeans, respectively; the multivariable MR analysis showed that ten and 11 pairs of glycan-CMD associations were identified in East Asian and European populations, respectively. In the reverse MR analysis, based on East Asians and Europeans, the univariable MR analysis presented suggestive causality of seven and 12 genetically instrumented CMDs with IgG N-glycans, respectively; the multivariable MR analysis presented that six and five CMD-glycan causality were found in East Asian and Europeans, respectively. CONCLUSIONS The comprehensive MR analyses provide suggestive evidence of bidirectional causality between IgG N-glycans and CMDs. This work helps to understand the molecular mechanism of the occurrence/progression of CMDs, optimize existing and develop new strategies to prevent CMDs, and contribute to the early identification of high-risk groups of CMDs.
Collapse
Affiliation(s)
- Xiaoni Meng
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Di Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meiling Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China; Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
9
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024; 328:143-170. [PMID: 39364834 PMCID: PMC11659926 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research LaboratoryZagrebCroatia
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
| |
Collapse
|
10
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Vujić A, Klasić M, Lauc G, Polašek O, Zoldoš V, Vojta A. Predicting Biochemical and Physiological Parameters: Deep Learning from IgG Glycome Composition. Int J Mol Sci 2024; 25:9988. [PMID: 39337475 PMCID: PMC11432235 DOI: 10.3390/ijms25189988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In immunoglobulin G (IgG), N-glycosylation plays a pivotal role in structure and function. It is often altered in different diseases, suggesting that it could be a promising health biomarker. Studies indicate that IgG glycosylation not only associates with various diseases but also has predictive capabilities. Additionally, changes in IgG glycosylation correlate with physiological and biochemical traits known to reflect overall health state. This study aimed to investigate the power of IgG glycans to predict physiological and biochemical parameters. We developed two models using IgG N-glycan data as an input: a regression model using elastic net and a machine learning model using deep learning. Data were obtained from the Korčula and Vis cohorts. The Korčula cohort data were used to train both models, while the Vis cohort was used exclusively for validation. Our results demonstrated that IgG glycome composition effectively predicts several biochemical and physiological parameters, especially those related to lipid and glucose metabolism and cardiovascular events. Both models performed similarly on the Korčula cohort; however, the deep learning model showed a higher potential for generalization when validated on the Vis cohort. This study reinforces the idea that IgG glycosylation reflects individuals' health state and brings us one step closer to implementing glycan-based diagnostics in personalized medicine. Additionally, it shows that the predictive power of IgG glycans can be used for imputing missing covariate data in deep learning frameworks.
Collapse
Affiliation(s)
- Ana Vujić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Croatian Science Foundation, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Aleksandar Vojta
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Gaifem J, Rodrigues CS, Petralia F, Alves I, Leite-Gomes E, Cavadas B, Dias AM, Moreira-Barbosa C, Revés J, Laird RM, Novokmet M, Štambuk J, Habazin S, Turhan B, Gümüş ZH, Ungaro R, Torres J, Lauc G, Colombel JF, Porter CK, Pinho SS. A unique serum IgG glycosylation signature predicts development of Crohn's disease and is associated with pathogenic antibodies to mannose glycan. Nat Immunol 2024; 25:1692-1703. [PMID: 39080486 PMCID: PMC11362009 DOI: 10.1038/s41590-024-01916-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gut. There is growing evidence in Crohn's disease (CD) of the existence of a preclinical period characterized by immunological changes preceding symptom onset that starts years before diagnosis. Gaining insight into this preclinical phase will allow disease prediction and prevention. Analysis of preclinical serum samples, up to 6 years before IBD diagnosis (from the PREDICTS cohort), revealed the identification of a unique glycosylation signature on circulating antibodies (IgGs) characterized by lower galactosylation levels of the IgG fragment crystallizable (Fc) domain that remained stable until disease diagnosis. This specific IgG2 Fc glycan trait correlated with increased levels of antimicrobial antibodies, specifically anti-Saccharomyces cerevisiae (ASCA), pinpointing a glycome-ASCA hub detected in serum that predates by years the development of CD. Mechanistically, we demonstrated that this agalactosylated glycoform of ASCA IgG, detected in the preclinical phase, elicits a proinflammatory immune pathway through the activation and reprogramming of innate immune cells, such as dendritic cells and natural killer cells, via an FcγR-dependent mechanism, triggering NF-κB and CARD9 signaling and leading to inflammasome activation. This proinflammatory role of ASCA was demonstrated to be dependent on mannose glycan recognition and galactosylation levels in the IgG Fc domain. The pathogenic properties of (anti-mannose) ASCA IgG were validated in vivo. Adoptive transfer of antibodies to mannan (ASCA) to recipient wild-type mice resulted in increased susceptibility to intestinal inflammation that was recovered in recipient FcγR-deficient mice. Here we identify a glycosylation signature in circulating IgGs that precedes CD onset and pinpoint a specific glycome-ASCA pathway as a central player in the initiation of inflammation many years before CD diagnosis. This pathogenic glyco-hub may constitute a promising new serum biomarker for CD prediction and a potential target for disease prevention.
Collapse
Affiliation(s)
- Joana Gaifem
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Cláudia S Rodrigues
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inês Alves
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Eduarda Leite-Gomes
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Joana Revés
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Military Medicine, Inc., Bethesda, MD, USA
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića, Zagreb, Croatia
| | - Jean-Frederic Colombel
- Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chad K Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, MD, USA
| | - Salomé S Pinho
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
- ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
13
|
Oliveira T, Zhang M, Chen CW, Packer NH, von Itzstein M, Heisterkamp N, Kolarich D. Remodelling of the glycome of B-cell precursor acute lymphoblastic leukemia cells developing drug-tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609211. [PMID: 39229073 PMCID: PMC11370571 DOI: 10.1101/2024.08.22.609211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Reduced responsiveness of precursor B-acute lymphoblastic leukemia (BCP-ALL) to chemotherapy can be first detected in the form of minimal residual disease leukemia cells that persist after 28 days of initial treatment. The ability of these cells to resist chemotherapy is partly due to the microenvironment of the bone marrow, which promotes leukemia cell growth and provides protection, particularly under these conditions of stress. It is unknown if and how the glycocalyx of such cells is remodelled during the development of tolerance to drug treatment, even though glycosylation is the most abundant cell surface post-translational modification present on the plasma membrane. To investigate this, we performed omics analysis of BCP-ALL cells that survived a 30-day vincristine chemotherapy treatment while in co-culture with bone marrow stromal cells. Proteomics showed decreased levels of some metabolic enzymes. Overall glycocalyx changes included a shift from Core-2 to less complex Core-1 O-glycans, and reduced overall sialylation, with a shift from α2-6 to α2-3 linked Neu5Ac. Interestingly, there was a clear increase in bisecting complex N-glycans with a concomitant increased mRNA expression of MGAT3 , the only enzyme known to form bisecting N-glycans. These small but reproducible quantitative differences suggest that individual glycoproteins become differentially glycosylated. Glycoproteomics confirmed glycosite-specific modulation of cell surface and lysosomal proteins in drug-tolerant BCP-ALL cells, including HLA-DRA, CD38, LAMP1 and PPT1. We conclude that drug-tolerant persister leukemia cells that grow under continuous chemotherapy stress have characteristic glycotraits that correlate with and perhaps contribute to their ability to survive and could be tested as neoantigens in drug-resistant leukemia.
Collapse
|
14
|
Visconti A, Rossi N, Bondt A, Ederveen AH, Thareja G, Koeleman CAM, Stephan N, Halama A, Lomax-Browne HJ, Pickering MC, Zhou XJ, Wuhrer M, Suhre K, Falchi M. The genetics and epidemiology of N- and O-immunoglobulin A glycomics. Genome Med 2024; 16:96. [PMID: 39123268 PMCID: PMC11312925 DOI: 10.1186/s13073-024-01369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Immunoglobulin (Ig) glycosylation modulates the immune response and plays a critical role in ageing and diseases. Studies have mainly focused on IgG glycosylation, and little is known about the genetics and epidemiology of IgA glycosylation. METHODS We generated, using a novel liquid chromatography-mass spectrometry method, the first large-scale IgA glycomics dataset in serum from 2423 twins, encompassing 71 N- and O-glycan species. RESULTS We showed that, despite the lack of a direct genetic template, glycosylation is highly heritable, and that glycopeptide structures are sex-specific, and undergo substantial changes with ageing. We observe extensive correlations between the IgA and IgG glycomes, and, exploiting the twin design, show that they are predominantly influenced by shared genetic factors. A genome-wide association study identified eight loci associated with both the IgA and IgG glycomes (ST6GAL1, ELL2, B4GALT1, ABCF2, TMEM121, SLC38A10, SMARCB1, and MGAT3) and two novel loci specifically modulating IgA O-glycosylation (C1GALT1 and ST3GAL1). Validation of our findings in an independent cohort of 320 individuals from Qatar showed that the underlying genetic architecture is conserved across ancestries. CONCLUSIONS Our study delineates the genetic landscape of IgA glycosylation and provides novel potential functional links with the aetiology of complex immune diseases, including genetic factors involved in IgA nephropathy risk.
Collapse
Affiliation(s)
- Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Center for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Niccolò Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Agnes Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gaurav Thareja
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nisha Stephan
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Anna Halama
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hannah J Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Peking University, Beijing, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
15
|
Wang Y, Liu Y, Liu S, Cheng L, Liu X. Recent advances in N-glycan biomarker discovery among human diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1156-1171. [PMID: 38910518 PMCID: PMC11464920 DOI: 10.3724/abbs.2024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Si Liu
- Department of Epidemiology and Health StatisticsSchool of Public HealthFujian Medical UniversityFuzhou350122China
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
16
|
Lauc G, Primorac D. The role of glycans in personalization of preventive health care. Croat Med J 2024; 65:293-296. [PMID: 38868975 PMCID: PMC11157255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Gordan Lauc
- Gordan Lauc, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia,
| | | |
Collapse
|
17
|
Wang H, Liu D, Meng X, Sun W, Li C, Lu H, Zheng D, Wu L, Sun S, Wang Y. Bidirectional Two-Sample Mendelian Randomization Study of Immunoglobulin G N-Glycosylation and Senescence-Associated Secretory Phenotype. Int J Mol Sci 2024; 25:6337. [PMID: 38928043 PMCID: PMC11203829 DOI: 10.3390/ijms25126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Observational studies revealed changes in Immunoglobulin G (IgG) N-glycosylation during the aging process. However, it lacks causal insights and remains unclear in which direction causal relationships exist. The two-sample bidirectional Mendelian randomization (MR) design was adopted to explore causal associations between IgG N-glycans and the senescence-associated secretory phenotype (SASP). Inverse variance weighted (IVW) and Wald ratio methods were used as the main analyses, supplemented by sensitivity analyses. Forward MR analyses revealed causal associations between the glycan peak (GP) and SASP, including GP6 (odds ratio [OR] = 0.428, 95% confidence interval [CI] = 0.189-0.969) and GP17 (OR = 0.709, 95%CI = 0.504-0.995) with growth/differentiation factor 15 (GDF15), GP19 with an advanced glycosylation end-product-specific receptor (RAGE) (OR = 2.142, 95% CI = 1.384-3.316), and GP15 with matrix metalloproteinase 2 (MMP2) (OR = 1.136, 95% CI =1.008-1.282). The reverse MR indicated that genetic liability to RAGE was associated with increased levels of GP17 (OR = 1.125, 95% CI = 1.003-1.261) and GP24 (OR = 1.222, 95% CI = 1.046-1.428), while pulmonary and activation-regulated chemokines (PARC) exhibited causal associations with GP10 (OR = 1.269, 95% CI = 1.048-1.537) and GP15 (OR = 1.297, 95% CI = 1.072-1.570). The findings provided suggested evidence on the bidirectional causality between IgG N-glycans and SASP, which might reveal potential regulatory mechanisms.
Collapse
Affiliation(s)
- Haotian Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Di Liu
- Centre for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenxin Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Cancan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huimin Lu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Deqiang Zheng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shengzhi Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Youxin Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- Centre for Precision Medicine, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
18
|
Lauc G. Can we suppress chronic systemic inflammation and postpone age-related diseases by targeting the IgG glycome? Expert Opin Ther Targets 2024; 28:491-499. [PMID: 37897176 DOI: 10.1080/14728222.2023.2277218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Glycans attached to immunoglobulin G are an important regulator of chronic systemic inflammation, one of the key drivers of aging. As people age, glycans that suppress inflammation are being replaced with inflammation-promoting glycans, but the rate of this conversion is highly individual and is affected by genetic, epigenetic, and environmental factors. AREAS COVERED This review summarizes key studies of IgG glycosylation changes in aging and disease, effects of lifestyle and pharmacological interventions, and mechanisms that regulate IgG glycosylation. EXPERT OPINION IgG glycome is an important contributor to the process of aging that can be modulated by both lifestyle and pharmacological interventions. Small molecule drugs that would suppress chronic systemic inflammation by modulation of the IgG glycome are still not available, but since gene network regulating IgG glycosylation has been identified and a high-throughput in vitro screening system is available, it is likely that this highly innovative approach to manage chronic systemic inflammation will be developed soon.
Collapse
Affiliation(s)
- GordAn Lauc
- University of Zagreb Faculty of Pharmacy and Biochemistry & Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
19
|
Cindrić A, Pribić T, Lauc G. High-throughput N-glycan analysis in aging and inflammaging: State of the art and future directions. Semin Immunol 2024; 73:101890. [PMID: 39383621 DOI: 10.1016/j.smim.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
As the global population ages at an unprecedented rate, the prevalence of age-related diseases is increasing, making inflammaging - a phenomenon characterized by a chronic, low-grade inflammatory state that follows aging - a significant concern. Understanding the mechanisms of inflammaging and its impact on health is critical for developing strategies to improve the quality of life and manage health in the aging population. Despite their crucial roles in various biological processes, including immune response modulation, N-glycans, oligosaccharides covalently attached to many proteins, are often overlooked in clinical and research studies. This repeated oversight is largely due to their inherent complexity and the complexity of the analysis methods. High-throughput N-glycan analysis has emerged as a transformative tool in N-glycosylation research, enabling cost- and time-effective, detailed, and large-scale examination of N-glycan profiles. This paper is the first to explore the application of high-throughput N-glycomics techniques to investigate the complex interplay between N-glycosylation and the immune system in aging. Technological advancements have significantly improved Nglycan detection and characterization, providing insights into age-related changes in Nglycosylation. Key findings highlight consistent shifts in immunoglobulin G (IgG) and plasma/serum glycoprotein glycosylation with age, with a pronounced rise in agalactosylated structures bound to IgG that also affect the composition of the total plasma N-glycome. These N-glycan modifications seem to be strongly associated with inflammaging and have been identified as valuable biomarkers for biological age, predictors of disease risk, and proxy biomarkers for monitoring intervention efficacy at the individual level. Despite current challenges related to data complexity and methodological limitations, ongoing technological innovations and interdisciplinary research are expected tofurther advance our knowledge of glycan biology, improve diagnostic and therapeutic strategies, and promote healthier aging. The integration of glycomics with other omics approaches holds promise for a more comprehensive understanding of the aging immune system, paving the way for personalized medicine and targeted interventions to mitigate inflammaging. In conclusion, this paper underscores the transformative impact of high-throughput Nglycan analysis in aging and inflammaging.
Collapse
Affiliation(s)
- A Cindrić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - T Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - G Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
20
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky SM, Witt MD, Post WS, Kossenkov A, Landay AL, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat Commun 2024; 15:3035. [PMID: 38600088 PMCID: PMC11006954 DOI: 10.1038/s41467-024-47279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Margaret A Fischl
- Division of Infectious Disease, Department of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mallory D Witt
- Lundquist Institute of Biomedical Research at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
21
|
de Graaf EL, Larsen MD, van der Bolt N, Visser R, Verhagen OJHM, Hipgrave Ederveen AL, Koeleman CAM, van der Schoot CE, Wuhrer M, Vidarsson G. Assessment of IgG-Fc glycosylation from individual RhD-specific B cell clones reveals regulation at clonal rather than clonotypic level. Immunology 2024; 171:428-439. [PMID: 38097893 DOI: 10.1111/imm.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2024] Open
Abstract
The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.
Collapse
Affiliation(s)
- Erik L de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Nieke van der Bolt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Onno J H M Verhagen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Frkatović-Hodžić A, Mijakovac A, Miškec K, Nostaeva A, Sharapov SZ, Landini A, Haller T, van den Akker E, Sharma S, Cuadrat RRC, Mangino M, Li Y, Keser T, Rudman N, Štambuk T, Pučić-Baković M, Trbojević-Akmačić I, Gudelj I, Štambuk J, Pribić T, Radovani B, Tominac P, Fischer K, Beekman M, Wuhrer M, Gieger C, Schulze MB, Wittenbecher C, Polasek O, Hayward C, Wilson JF, Spector TD, Köttgen A, Vučković F, Aulchenko YS, Vojta A, Krištić J, Klarić L, Zoldoš V, Lauc G. Mapping of the gene network that regulates glycan clock of ageing. Aging (Albany NY) 2023; 15:14509-14552. [PMID: 38149987 PMCID: PMC10781487 DOI: 10.18632/aging.205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 12/28/2023]
Abstract
Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.
Collapse
Affiliation(s)
| | - Anika Mijakovac
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karlo Miškec
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Arina Nostaeva
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Sodbo Z. Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik van den Akker
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Sapna Sharma
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rafael R. C. Cuadrat
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Tea Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Barbara Radovani
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Petra Tominac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Krista Fischer
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Marian Beekman
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B. Schulze
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- SciLifeLab, Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Yurii S. Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Lucija Klarić
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Long F, Xiao C, Cui H, Wang W, Jiang Z, Tang M, Zhang W, Liu Y, Xiang R, Zhang L, Zhao X, Yang C, Yan P, Wu X, Wang Y, Zhou Y, Lu R, Chen Y, Li J, Jiang X, Fan C, Zhang B. The impact of immunoglobulin G N-glycosylation level on COVID-19 outcome: evidence from a Mendelian randomization study. Front Immunol 2023; 14:1217444. [PMID: 37662938 PMCID: PMC10472139 DOI: 10.3389/fimmu.2023.1217444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has exerted a profound influence on humans. Increasing evidence shows that immune response is crucial in influencing the risk of infection and disease severity. Observational studies suggest an association between COVID-19 and immunoglobulin G (IgG) N-glycosylation traits, but the causal relevance of these traits in COVID-19 susceptibility and severity remains controversial. Methods We conducted a two-sample Mendelian randomization (MR) analysis to explore the causal association between 77 IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity using summary-level data from genome-wide association studies (GWAS) and applying multiple methods including inverse-variance weighting (IVW), MR Egger, and weighted median. We also used Cochran's Q statistic and leave-one-out analysis to detect heterogeneity across each single nucleotide polymorphism (SNP). Additionally, we used the MR-Egger intercept test, MR-PRESSO global test, and PhenoScanner tool to detect and remove SNPs with horizontal pleiotropy and to ensure the reliability of our results. Results We found significant causal associations between genetically predicted IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity. Specifically, we observed reduced risk of COVID-19 with the genetically predicted increased IgG N-glycan trait IGP45 (OR = 0.95, 95% CI = 0.92-0.98; FDR = 0.019). IGP22 and IGP30 were associated with a higher risk of COVID-19 hospitalization and severity. Two (IGP2 and IGP77) and five (IGP10, IGP14, IGP34, IGP36, and IGP50) IgG N-glycosylation traits were causally associated with a decreased risk of COVID-19 hospitalization and severity, respectively. Sensitivity analyses did not identify any horizontal pleiotropy. Conclusions Our study provides evidence that genetically elevated IgG N-glycosylation traits may have a causal effect on diverse COVID-19 outcomes. Our findings have potential implications for developing targeted interventions to improve COVID-19 outcomes by modulating IgG N-glycosylation levels.
Collapse
Affiliation(s)
- Feiwu Long
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zongze Jiang
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Zhou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ran Lu
- Department of Urology and Pelvic Surgery, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- Department of Environment and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yulin Chen
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Nutrition and Food Hygiene, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell Biology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- Department of Oncology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Environment and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Wang B, Gao L, Zhang J, Meng X, Xu X, Hou H, Xing W, Wang W, Wang Y. Unravelling the genetic causality of immunoglobulin G N-glycans in ischemic stroke. Glycoconj J 2023; 40:413-420. [PMID: 37341803 DOI: 10.1007/s10719-023-10127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Evidence suggests that immunoglobulin G (IgG) N-glycosylation is associated with ischemic stroke (IS). However, the causality of IgG N-glycosylation for IS remains unknown. METHODS Two-sample Mendelian randomization (MR) analyses were performed to investigate the potential causal effects of genetically determined IgG N-glycans on IS using publicly available summarized genetic data from East Asian and European populations. Genetic instruments were used as proxies for IgG N-glycan traits. IgG N-glycans were analysed using ultra-performance liquid chromatography. Four complementary MR methods were performed, including the inverse variance weighted method (IVW), MR‒Egger, weighted median and penalized weighted median. Furthermore, to further test the robustness of the results, MR based on Bayesian model averaging (MR-BMA) was then applied to select and prioritize IgG N-glycan traits as risk factors for IS. RESULTS After correcting for multiple testing, in two-sample MR analyses, genetically predicted IgG N-glycans were unrelated to IS in both East Asian and European populations, and the results remained consistent and robust in the sensitivity analysis. Moreover, MR-BMA also showed consistent results in both East Asian and European populations. CONCLUSIONS Contrary to observational studies, the study did not provide enough genetic evidence to support the causal associations of genetically predicted IgG N-glycan traits and IS, suggesting that N-glycosylation of IgG might not directly involve in the pathogenesis of IS.
Collapse
Affiliation(s)
- Biyan Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- Department of Health Management, the Second Affiliated Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lei Gao
- Department of Medical Engineering and Medical Supplies Center, PLA General Hospital, Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Centre for Precision Medicine, Edith Cowan University, Perth, WA, 6027, Australia
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Centre for Precision Medicine, Edith Cowan University, Perth, WA, 6027, Australia.
- Centre for Precision Medicine, Edith Cowan University, Perth, 60127, Australia.
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
- Centre for Precision Medicine, Edith Cowan University, Perth, WA, 6027, Australia.
- School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
26
|
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 2023; 24:1244-1255. [PMID: 37414906 DOI: 10.1038/s41590-023-01544-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023]
Abstract
Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
27
|
Porcino GN, Bladergroen MR, Dotz V, Nicolardi S, Memarian E, Gardinassi LG, Nery Costa CH, Pacheco de Almeida R, Ferreira de Miranda Santos IK, Wuhrer M. Total serum N-glycans mark visceral leishmaniasis in human infections with Leishmania infantum. iScience 2023; 26:107021. [PMID: 37485378 PMCID: PMC10362369 DOI: 10.1016/j.isci.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Visceral leishmaniasis (VL) is a clinical form of leishmaniasis with high mortality rates when not treated. Diagnosis suffers from invasive techniques and sub-optimal sensitivities. The current (affordable) treatment with pentavalent antimony as advised by the WHO is possibly harmful to the patient. There is need for an improved diagnosis to prevent possibly unnecessary treatment. N-glycan analysis may aid in diagnosis. We evaluated the N-glycan profiles from active VL, asymptomatic infections (ASYMP) and controls from non-endemic (NC) and endemic (EC) areas. Active VL has a distinct N-glycome profile that associates with disease severity. Our study suggests that the observed glycan signatures could be a valuable additive to diagnosis and assist in identifying possible markers of disease and understanding the pathogenesis of VL. Further studies are warranted to assess a possible future role of blood glycome analysis in active VL diagnosis and should aim at disease specificity.
Collapse
Affiliation(s)
- Gabriane Nascimento Porcino
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Marco René Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Elham Memarian
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Luiz Gustavo Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Brazil
| | | | - Roque Pacheco de Almeida
- Departamento de Medicina, Programa de Pós-Graduação em Ciências da Saúde – PPGCS, Universidade Federal de Sergipe, Aracajú 49060-100, Brazil
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
28
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Sharapov SZ, Timoshchuk AN, Aulchenko YS. Genetic control of N-glycosylation of human blood plasma proteins. Vavilovskii Zhurnal Genet Selektsii 2023; 27:224-239. [PMID: 37293449 PMCID: PMC10244589 DOI: 10.18699/vjgb-23-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2022] [Indexed: 06/10/2023] Open
Abstract
Glycosylation is an important protein modification, which influences the physical and chemical properties as well as biological function of these proteins. Large-scale population studies have shown that the levels of various plasma protein N-glycans are associated with many multifactorial human diseases. Observed associations between protein glycosylation levels and human diseases have led to the conclusion that N-glycans can be considered a potential source of biomarkers and therapeutic targets. Although biochemical pathways of glycosylation are well studied, the understanding of the mechanisms underlying general and tissue-specific regulation of these biochemical reactions in vivo is limited. This complicates both the interpretation of the observed associations between protein glycosylation levels and human diseases, and the development of glycan-based biomarkers and therapeutics. By the beginning of the 2010s, high-throughput methods of N-glycome profiling had become available, allowing research into the genetic control of N-glycosylation using quantitative genetics methods, including genome-wide association studies (GWAS). Application of these methods has made it possible to find previously unknown regulators of N-glycosylation and expanded the understanding of the role of N-glycans in the control of multifactorial diseases and human complex traits. The present review considers the current knowledge of the genetic control of variability in the levels of N-glycosylation of plasma proteins in human populations. It briefly describes the most popular physical-chemical methods of N-glycome profiling and the databases that contain genes involved in the biosynthesis of N-glycans. It also reviews the results of studies of environmental and genetic factors contributing to the variability of N-glycans as well as the mapping results of the genomic loci of N-glycans by GWAS. The results of functional in vitro and in silico studies are described. The review summarizes the current progress in human glycogenomics and suggests possible directions for further research.
Collapse
Affiliation(s)
- S Zh Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - A N Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Y S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
30
|
Plećaš D, Mraz N, Patanaude AM, Pribić T, Pavlinac Dodig I, Pecotić R, Lauc G, Polašek O, Đogaš Z. Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea. Biomolecules 2023; 13:880. [PMID: 37371460 DOI: 10.3390/biom13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent disease associated with increased risk for cardiovascular and metabolic diseases and shortened lifespan. The aim of this study was to explore the possibility of using N-glycome as a biomarker for the severe form of OSA. Seventy subjects who underwent a whole-night polysomnography/polygraphy and had apnea-hypopnea index (AHI) over 30 were compared to 23 controls (AHI under 5). Plasma samples were used to extract 39 glycan peaks using ultra-high-performance liquid chromatography (UPLC) and 27 IgG peaks using capillary gel electrophoresis (CGE). We also measured glycan age, a molecular proxy for biological aging. Three plasma and one IgG peaks were significant in a multivariate model controlling for the effects of age, sex, and body mass index. These included decreased GP24 (disialylated triantennary glycans as major structure) and GP28 (trigalactosylated, triantennary, disialylated, and trisialylated glycans), and increased GP32 (trisialylated triantennary glycan). Only one IgG glycan peak was significantly increased (P26), which contains biantennary digalactosylated glycans with core fucose. Patients with severe OSA exhibited accelerated biological aging, with a median of 6.9 years more than their chronological age (p < 0.001). Plasma N-glycome can be used as a biomarker for severe OSA.
Collapse
Affiliation(s)
- Doris Plećaš
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Nikol Mraz
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
| | | | - Tea Pribić
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
| | - Ivana Pavlinac Dodig
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| | - Renata Pecotić
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| | - Gordan Lauc
- Genos Glycoscience Ltd., 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, 21000 Split, Croatia
- Department of General Courses, Algebra University, 10000 Zagreb, Croatia
| | - Zoran Đogaš
- Department for Neuroscience, School of Medicine, Sleep Medicine Center, University of Split, 21000 Split, Croatia
| |
Collapse
|
31
|
Kerep R, Šeba T, Borko V, Weitner T, Keser T, Lauc G, Gabričević M. Potential Clinically Relevant Effects of Sialylation on Human Serum AAG-Drug Interactions Assessed by Isothermal Titration Calorimetry: Insight into Pharmacoglycomics? Int J Mol Sci 2023; 24:8472. [PMID: 37239819 PMCID: PMC10218007 DOI: 10.3390/ijms24108472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Human serum alpha-1 acid glycoprotein is an acute-phase plasma protein involved in the binding and transport of many drugs, especially basic and lipophilic substances. It has been reported that the sialic acid groups that terminate the N-glycan chains of alpha-1 acid glycoprotein change in response to certain health conditions and may have a major impact on drug binding to alpha-1 acid glycoprotein. The interaction between native or desialylated alpha-1 acid glycoprotein and four representative drugs-clindamycin, diltiazem, lidocaine, and warfarin-was quantitatively evaluated using isothermal titration calorimetry. The calorimetry assay used here is a convenient and widely used approach to directly measure the amount of heat released or absorbed during the association processes of biomolecules in solution and to quantitatively estimate the thermodynamics of the interaction. The results showed that the binding of drugs with alpha-1 acid glycoprotein were enthalpy-driven exothermic interactions, and the binding affinity was in the range of 10-5-10-6 M. Desialylated alpha-1 acid glycoprotein showed significantly different binding with diltiazem, lidocaine, and warfarin compared with native alpha-1 acid glycoprotein, whereas clindamycin showed no significant difference. Therefore, a different degree of sialylation may result in different binding affinities, and the clinical significance of changes in sialylation or glycosylation of alpha-1 acid glycoprotein in general should not be neglected.
Collapse
Affiliation(s)
- Robert Kerep
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tino Šeba
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Valentina Borko
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tin Weitner
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Toma Keser
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Gabričević
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Wang J, Mai X, He Y, Zhu C, Zhou D. IgG1-Dominant Antibody Response Induced by Recombinant Trimeric SARS-CoV-2 Spike Protein with PIKA Adjuvant. Vaccines (Basel) 2023; 11:vaccines11040827. [PMID: 37112739 PMCID: PMC10144704 DOI: 10.3390/vaccines11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant induces potent and durable neutralizing antibodies that protect against multiple SARS-CoV-2 variants. The immunoglobulin subclasses of viral-specific antibodies remain unknown, as do their glycosylation status on Fc regions. In this study, we analyzed immunoglobulins adsorbed by plate-bound recombinant trimeric SARS-CoV-2 Spike protein from serum of Cynomolgus monkey immunized by recombinant trimeric SARS-CoV-2 Spike protein with PIKA (polyI:C) adjuvant. The results showed that IgG1 was the dominant IgG subclass as revealed by ion mobility mass spectrometry. The average percentage of Spike protein-specific IgG1 increased to 88.3% as compared to pre-immunization. Core fucosylation for Fc glycopeptide of Spike protein-specific IgG1 was found to be higher than 98%. These results indicate that a unique Th1-biased, IgG1-dominant antibody response was responsible for the effectiveness of PIKA (polyI:C) adjuvant. Vaccine-induced core-fucosylation of IgG1 Fc region may reduce incidence of severe COVID-19 disease associated with overstimulation of FCGR3A by afucosylated IgG1.
Collapse
Affiliation(s)
- Jingxia Wang
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Xinjia Mai
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Yu He
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Chenxi Zhu
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| | - Dapeng Zhou
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, 500 Zhennan Road, Shanghai 200331, China
| |
Collapse
|
33
|
Trbojević-Akmačić I, Vučković F, Pribić T, Vilaj M, Černigoj U, Vidič J, Šimunović J, Kępka A, Kolčić I, Klarić L, Novokmet M, Pučić-Baković M, Rapp E, Štrancar A, Polašek O, Wilson JF, Lauc G. Comparative analysis of transferrin and IgG N-glycosylation in two human populations. Commun Biol 2023; 6:312. [PMID: 36959410 PMCID: PMC10036557 DOI: 10.1038/s42003-023-04685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.
Collapse
Affiliation(s)
| | | | - Tea Pribić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Urh Černigoj
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Jana Vidič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | | | - Agnieszka Kępka
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Immunology, Faculty of Biology, Institute of Zoology, University of Warsaw, Warsaw, Poland
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Lucija Klarić
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Aleš Štrancar
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - James F Wilson
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
34
|
Pan H, Wu Z, Zhang H, Zhang J, Liu Y, Li Z, Feng W, Wang G, Liu Y, Zhao D, Zhang Z, Liu Y, Zhang Z, Liu X, Tao L, Luo Y, Wang X, Yang X, Zhang F, Li X, Guo X. Identification and validation of IgG N-glycosylation biomarkers of esophageal carcinoma. Front Immunol 2023; 14:981861. [PMID: 36999031 PMCID: PMC10043232 DOI: 10.3389/fimmu.2023.981861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionAltered Immunoglobulin G (IgG) N-glycosylation is associated with aging, inflammation, and diseases status, while its effect on esophageal squamous cell carcinoma (ESCC) remains unknown. As far as we know, this is the first study to explore and validate the association of IgG N-glycosylation and the carcinogenesis progression of ESCC, providing innovative biomarkers for the predictive identification and targeted prevention of ESCC.MethodsIn total, 496 individuals of ESCC (n=114), precancerosis (n=187) and controls (n=195) from the discovery population (n=348) and validation population (n=148) were recruited in the study. IgG N-glycosylation profile was analyzed and an ESCC-related glycan score was composed by a stepwise ordinal logistic model in the discovery population. The receiver operating characteristic (ROC) curve with the bootstrapping procedure was used to assess the performance of the glycan score.ResultsIn the discovery population, the adjusted OR of GP20 (digalactosylated monosialylated biantennary with core and antennary fucose), IGP33 (the ratio of all fucosylated monosyalilated and disialylated structures), IGP44 (the proportion of high mannose glycan structures in total neutral IgG glycans), IGP58 (the percentage of all fucosylated structures in total neutral IgG glycans), IGP75 (the incidence of bisecting GlcNAc in all fucosylated digalactosylated structures in total neutral IgG glycans), and the glycan score are 4.03 (95% CI: 3.03-5.36, P<0.001), 0.69 (95% CI: 0.55-0.87, P<0.001), 0.56 (95% CI: 0.45-0.69, P<0.001), 0.52 (95% CI: 0.41-0.65, P<0.001), 7.17 (95% CI: 4.77-10.79, P<0.001), and 2.86 (95% CI: 2.33-3.53, P<0.001), respectively. Individuals in the highest tertile of the glycan score own an increased risk (OR: 11.41), compared with those in the lowest. The average multi-class AUC are 0.822 (95% CI: 0.786-0.849). Findings are verified in the validation population, with an average AUC of 0.807 (95% CI: 0.758-0.864).DiscussionOur study demonstrated that IgG N-glycans and the proposed glycan score appear to be promising predictive markers for ESCC, contributing to the early prevention of esophageal cancer. From the perspective of biological mechanism, IgG fucosylation and mannosylation might involve in the carcinogenesis progression of ESCC, and provide potential therapeutic targets for personalized interventions of cancer progression.
Collapse
Affiliation(s)
- Huiying Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Haiping Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yue Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Liu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deli Zhao
- Cancer Centre, The Feicheng People’s Hospital, Feicheng, Shandong, China
| | - Zhiyi Zhang
- Department of Gastroenterology, Gansu Wuwei Cancer Hospital, Wuwei, Gansu, China
| | - Yuqin Liu
- Cancer Epidemiology Research Centre, Gansu Province Cancer Hospital, Lanzhou, Gansu, China
| | - Zhe Zhang
- Department of Occupational Health, Wuwei Center for Disease Prevention and Control, Wuwei, Gansu, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaonan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xinghua Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, Australia
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- *Correspondence: Xiuhua Guo,
| |
Collapse
|
35
|
Rudman N, Kaur S, Simunović V, Kifer D, Šoić D, Keser T, Štambuk T, Klarić L, Pociot F, Morahan G, Gornik O. Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of plasma proteins and IgGs, as well as the complement system, in the development of type 1 diabetes. Diabetologia 2023; 66:1071-1083. [PMID: 36907892 PMCID: PMC10163086 DOI: 10.1007/s00125-023-05881-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Vesna Simunović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Dinko Šoić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Štambuk
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Lucija Klarić
- Institute of Genetics and Cancer, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Grant Morahan
- Centre for Diabetes Research, The Harry Perkins Institute for Medical Research, University of Western Australia, Perth, WA, Australia.
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, VIC, Australia.
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
36
|
Mijakovac A, Frkatović A, Hanić M, Ivok J, Martinić Kavur M, Pučić-Baković M, Spector T, Zoldoš V, Mangino M, Lauc G. Heritability of the glycan clock of biological age. Front Cell Dev Biol 2022; 10:982609. [PMID: 36619858 PMCID: PMC9815111 DOI: 10.3389/fcell.2022.982609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Immunoglobulin G is posttranslationally modified by the addition of complex N-glycans affecting its function and mediating inflammation at multiple levels. IgG glycome composition changes with age and health in a predictive pattern, presumably due to inflammaging. As a result, a novel biological aging biomarker, glycan clock of age, was developed. Glycan clock of age is the first of biological aging clocks for which multiple studies showed a possibility of clock reversal even with simple lifestyle interventions. However, none of the previous studies determined to which extent the glycan clock can be turned, and how much is fixed by genetic predisposition. To determine the contribution of genetic and environmental factors to phenotypic variation of the glycan clock, we performed heritability analysis on two TwinsUK female cohorts. IgG glycans from monozygotic and dizygotic twin pairs were analyzed by UHPLC and glycan age was calculated using the glycan clock. In order to determine additive genetic, shared, and unique environmental contributions, a classical twin design was applied. Heritability of the glycan clock was calculated for participants of one cross-sectional and one longitudinal cohort with three time points to assess the reliability of measurements. Heritability estimate for the glycan clock was 39% on average, suggesting a moderate contribution of additive genetic factors (A) to glycan clock variation. Remarkably, heritability estimates remained approximately the same in all time points of the longitudinal study, even though IgG glycome composition changed substantially. Most environmental contributions came from shared environmental factors (C), with unique environmental factors (E) having a minor role. Interestingly, heritability estimates nearly doubled, to an average of 71%, when we included age as a covariant. This intervention also inflated the estimates of unique environmental factors contributing to glycan clock variation. A complex interplay between genetic and environmental factors defines alternative IgG glycosylation during aging and, consequently, dictates the glycan clock's ticking. Apparently, environmental factors (including lifestyle choices) have a strong impact on the biological age measured with the glycan clock, which additionally clarifies why this aging clock is one of the most potent biomarkers of biological aging.
Collapse
Affiliation(s)
- Anika Mijakovac
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Maja Hanić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jelena Ivok
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | | | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom,NIHR Biomedical Research Centre at Guy’s and St Thoma’s Foundation Trust, London, United Kingdom
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia,*Correspondence: Gordan Lauc,
| |
Collapse
|
37
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
38
|
Wang B, Liu D, Song M, Wang W, Guo B, Wang Y. Immunoglobulin G N-glycan, inflammation and type 2 diabetes in East Asian and European populations: a Mendelian randomization study. Mol Med 2022; 28:114. [PMID: 36104772 PMCID: PMC9476573 DOI: 10.1186/s10020-022-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/07/2022] [Indexed: 12/08/2022] Open
Abstract
Background Immunoglobulin G (IgG) N-glycans have been shown to be associated with the risk of type 2 diabetes (T2D) and its risk factors. However, whether these associations reflect causal effects remain unclear. Furthermore, the associations of IgG N-glycans and inflammation are not fully understood. Methods We examined the causal associations of IgG N-glycans with inflammation (C-reactive protein (CRP) and fibrinogen) and T2D using two-sample Mendelian randomization (MR) analysis in East Asian and European populations. Genetic variants from IgG N-glycan quantitative trait loci (QTL) data were used as instrumental variables. Two-sample MR was conducted for IgG N-glycans with inflammation (75,391 and 18,348 participants of CRP and fibrinogen in the East Asian population, 204,402 participants of CRP in the European population) and T2D risk (77,418 cases and 356,122 controls of East Asian ancestry, 81,412 cases and 370,832 controls of European ancestry). Results After correcting for multiple testing, in the East Asian population, genetically determined IgG N-glycans were associated with a higher risk of T2D, the odds ratios (ORs) were 1.009 for T2D per 1- standard deviation (SD) higher GP5, 95% CI = 1.003–1.015; P = 0.0019; and 1.013 for T2D per 1-SD higher GP13, 95% CI = 1.006–1.021; P = 0.0005. In the European population, genetically determined decreased GP9 was associated with T2D (OR = 0.899 per 1-SD lower GP9, 95% CI: 0.845–0.957). In addition, there was suggestive evidence that genetically determined IgG N-glycans were associated with CRP in both East Asian and European populations after correcting for multiple testing, but no associations were found between IgG N-glycans and fibrinogen. There was limited evidence of heterogeneity and pleiotropy bias. Conclusions Our results provided novel genetic evidence that IgG N-glycans are causally associated with T2D. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00543-z.
Collapse
|
39
|
Li P, Shi D, Shen W, Shi S, Guo X, Li J, Xu S, Zhang Y, Zhao Z. Pilot genome-wide association study of antibody response to inactivated SARS-CoV-2 vaccines. Front Immunol 2022; 13:1054147. [PMID: 36451823 PMCID: PMC9704361 DOI: 10.3389/fimmu.2022.1054147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 02/13/2024] Open
Abstract
Vaccines are a key weapon against the COVID-19 pandemic caused by SARS-CoV-2. However, there are inter-individual differences in immune response to SARS-CoV-2 vaccines and genetic contributions to these differences have barely been investigated. Here, we performed genome-wide association study (GWAS) of antibody levels in 168 inactivated SARS-CoV-2 vaccine recipients. A total of 177 SNPs, corresponding to 41 independent loci, were identified to be associated with IgG, total antibodies or neutral antibodies. Specifically, the rs4543780, the intronic variant of FAM89A gene, was associated with total antibodies level and was annotated as a potential regulatory variant affecting gene expression of FAM89A, a biomarker differentiating bacterial from viral infections in febrile children. These findings might advance our knowledge of the molecular mechanisms driving immunity to SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Ping Li
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Wenlong Shen
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xinjie Guo
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Zhang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
40
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
41
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
42
|
Krištić J, Lauc G, Pezer M. Immunoglobulin G glycans - Biomarkers and molecular effectors of aging. Clin Chim Acta 2022; 535:30-45. [PMID: 35970404 DOI: 10.1016/j.cca.2022.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin G (IgG) antibodies are post-translationally modified by the addition of complex carbohydrate molecules - glycans, which have profound effects on the IgG function, most significantly as modulators of its inflammatory capacity. Therefore, it is not surprising that the changes in IgG glycosylation pattern are associated with various physiological states and diseases, including aging and age-related diseases. Importantly, within the inflammaging concept, IgG glycans are considered not only biomarkers but one of the molecular effectors of the aging process. The exact mechanism by which they exert their function, however, remains unknown. In this review, we list and comment on, to our knowledge, all studies that examined changes in IgG glycosylation during aging in humans. We focus on the information obtained from studies on general population, but we also cover the insights obtained from studies of long-lived individuals and people with age-related diseases. We summarize the current knowledge on how levels of different IgG glycans change with age (i.e., the extent and direction of the change with age) and discuss the potential mechanisms and possible functional roles of changes in IgG glycopattern that accompany aging.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
43
|
Zanella I, Degli Antoni M, Marchese V, Castelli F, Quiros-Roldan E. Non-neutralizing antibodies: Deleterious or propitious during SARS-CoV-2 infection? Int Immunopharmacol 2022; 110:108943. [PMID: 35753123 PMCID: PMC9189100 DOI: 10.1016/j.intimp.2022.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Antibody-dependent enhancement (ADE) is a complex phenomenon mediated by antibodies, frequently pre-existing non-neutralizing or sub-neutralizing antibodies. In the course of infectious diseases, ADE may be responsible for worsening the clinical course of the disease by increasing the virulence of pathogens (ADE of infection) or enhancing disease severity (ADE of disease). Here we reviewed the mechanisms thought to be behind the ADE phenomenon and its potential relationship with COVID-19 severity. Since the early COVID-19 epidemics, ADE has been mentioned as a possible mechanism involved in severe COVID-19 disease and, later, as a potential risk in the case of infection after vaccination. However, current data do not support its role in disease severity, both after infection and reinfection.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy,Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Melania Degli Antoni
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Valentina Marchese
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
44
|
Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol 2022; 43:800-814. [PMID: 36008258 PMCID: PMC9395167 DOI: 10.1016/j.it.2022.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.
Collapse
Affiliation(s)
- Janita J Oosterhoff
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
el Bouhaddani S, Uh H, Jongbloed G, Houwing‐Duistermaat J. Statistical integration of heterogeneous omics data: Probabilistic two‐way partial least squares (PO2PLS). J R Stat Soc Ser C Appl Stat 2022. [DOI: 10.1111/rssc.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Said el Bouhaddani
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
| | - Hae‐Won Uh
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
| | - Geurt Jongbloed
- Delft Institute of Applied Mathematics TU Delft Delft The Netherlands
| | - Jeanine Houwing‐Duistermaat
- Department of Data Science and Biostatistics UMC Utrecht UtrechtThe Netherlands
- Department of Statistics University of Leeds Leeds UK
- Department of Statistical Sciences University of Bologna Bologna Italy
| |
Collapse
|
46
|
Gonzalez JC, Chakraborty S, Thulin NK, Wang TT. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes. Immunol Rev 2022; 309:64-74. [PMID: 35781671 PMCID: PMC9539944 DOI: 10.1111/imr.13109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Joseph C. Gonzalez
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA,Program in ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Saborni Chakraborty
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA
| | - Natalie K. Thulin
- Department of ImmunologyUniversity of WashingtonSeattleWashingtonUSA
| | - Taia T. Wang
- Department of Medicine, Division of Infectious DiseasesStanford University School of MedicineStanfordCaliforniaUSA,Program in ImmunologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
47
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
48
|
Zhang X, Cong R, Geng T, Zhang J, Liu D, Tian Q, Meng X, Song M, Wu L, Zheng D, Wang W, Wang B, Wang Y. Assessment of the Causal Effects of IgG N-Glycosylation Level on Risk of Dementia: A 2-Sample Mendelian Randomization Study. J Alzheimers Dis 2022; 88:1435-1441. [DOI: 10.3233/jad-220074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Previous prospective studies highlighted aberrant immunoglobulin G (IgG) N-glycosylation as a risk factor for dementia [such as Alzheimer’s disease (AD) and vascular dementia (VaD)]. It is unclear whether this association is causal or explained by confounding or reverse causation. Objective: The aim is to examine the association of genetically predicted IgG N-glycosylation with dementia using 2-sample Mendelian randomization (MR). Methods: Independent genetic variants for IgG N-glycosylation traits were selected as instrument variables from published genome-wide association studies (GWAS) among individuals of European ancestry. We extracted their corresponding summary statistics from large-scale clinically diagnosed AD GWAS dataset and FinnGen biobank VaD GWAS dataset. The inverse variance weighted (IVW) was performed to calculate the effect estimates. Meanwhile, multiple sensitivity analyses were used to assess horizontal pleiotropy and outliers. Results: There were no associations of genetically predicted IgG N-glycosylation traits with the risk of AD and VaD using the IVW method (all p > 0.0013). These estimates of four additional sensitivity analyses methods were consistent with the IVW estimates in terms of direction and magnitude. Additionally, the MR-PRESSO global test and the intercept of MR-Egger regression indicated no evidence of horizontal pleiotropy. Meanwhile, the heterogeneity test showed no significant heterogeneity using the Cochran Q statistic. The leave-one-out sensitivity analyses also did not detect any significant change. Conclusion: Our MR study did not support evidence for the hypothesis that IgG N-glycosylation level may be causally associated with the risk of dementia.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyi Cong
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Tao Geng
- Geriatric Department, Emergency General Hospital, Beijing, China
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong
| | - Jinxia Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Di Liu
- Centre for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
49
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
50
|
Liu D, Dong J, Zhang J, Xu X, Tian Q, Meng X, Wu L, Zheng D, Chu X, Wang W, Meng Q, Wang Y. Genome-Wide Mapping of Plasma IgG N-Glycan Quantitative Trait Loci Identifies a Potentially Causal Association between IgG N-Glycans and Rheumatoid Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2508-2514. [PMID: 35545292 DOI: 10.4049/jimmunol.2100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2022] [Indexed: 01/03/2023]
Abstract
Observational studies highlight associations of IgG N-glycosylation with rheumatoid arthritis (RA); however, the causality between these conditions remains to be determined. Standard and multivariable two-sample Mendelian randomization (MR) analyses integrating a summary genome-wide association study for RA and IgG N-glycan quantitative trait loci (IgG N-glycan-QTL) data were performed to explore the potentially causal associations of IgG N-glycosylation with RA. After correcting for multiple testing (p < 2 × 10-3), the standard MR analysis based on the inverse-variance weighted method showed a significant association of genetically instrumented IgG N-glycan (GP4) with RA (odds ratioGP4 = 0.906, 95% confidence interval = 0.857-0.958, p = 5.246 × 10-4). In addition, we identified seven significant associations of genetically instrumented IgG N-glycans with RA by multivariable MR analysis (p < 2 × 10-3). Results were broadly consistent in sensitivity analyses using MR_Lasso, MR_weighted median, MR_Egger regression, and leave-one-out analysis with different instruments (all p values <0.05). There was limited evidence of pleiotropy bias (all p values > 0.05). In conclusion, our MR analysis incorporating genome-wide association studies and IgG N-glycan-QTL data revealed that IgG N-glycans were potentially causally associated with RA. Our findings shed light on the role of IgG N-glycosylation in the development of RA. Future studies are needed to validate our findings and to explore the underlying physiological mechanisms in the etiology of RA.
Collapse
Affiliation(s)
- Di Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; and
| | - Qiuyue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiaoni Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xi Chu
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.,School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; and.,Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Western Australia, Australia
| | - Qun Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Youxin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China; .,Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|