1
|
Giudice A, Castillo G, Díaz V, Moyano A, Palladini A, Pérez-Staples D, Olea CDL, Abraham S. Male seminal fluid allocation according to socio-sexual context in the South American fruit fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:235-245. [PMID: 39775031 DOI: 10.1007/s00359-024-01728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
During copulation male insects transfer sperm and seminal fluids, including accessory gland proteins (Acps) to females, produced in the accessory glands (AGs). These Acps influence female behavior and physiology, inhibiting sexual receptivity, promoting ovulation and/or oviposition. The theory of ejaculate allocation postulates that production is costly; therefore, males strategically allocate ejaculates based on perception of sperm competition and quality and availability of females. The objective of this study was to determine in the South American fruit fly Anastrepha fraterculus whether there is differential allocation of Acps by males under different social contexts: (i) presence or absence of males in the mating arena (male social context), (ii) presence/absence of females in the mating arena (female social context), and (iii) female condition (sugar-fed/protein-fed). This was inferred through female behavior (fecundity, fertility and remating) and the dynamics of the reduction in male AGs size and protein content after copulation. No effect was observed from the various social contexts perceived by males on female's fecundity, fertility, or remating. Mated males had less protein in their AGs compared to unmated males. Male social context affected AG size after copulation: there was a marked decrease in AG size in males which mated in the presence of rival males; moreover, males mated under competition had lower protein content in their AGs than males mating without competition, suggesting that males can adjust seminal fluid quantity depending on social-mating context, although this difference did not impact the physiology and behavior of females after copulation. Our results also indicate that AG size and protein content are correlated.
Collapse
Affiliation(s)
- Antonella Giudice
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina.
| | - Gisela Castillo
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Viviana Díaz
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Andrea Moyano
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Alfonsina Palladini
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz, 91090, México
| | | | - Solana Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina
| |
Collapse
|
2
|
Ahmed KA, Yeap HL, Coppin CW, Liu JW, Pandey G, Taylor PW, Lee SF, Oakeshott JG. Seminal fluid proteins in the Queensland fruit fly: Tissue origins, effects of mating and comparative genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104247. [PMID: 39667437 DOI: 10.1016/j.ibmb.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In many insect species, the ability of males to inhibit their mates from remating is an important component of fitness. This ability is also essential for the effective management of insect pests, including tephritid fruit flies, using the Sterile Insect Technique. Here we apply transcriptomics and proteomics to male reproductive tissues before and after mating to characterize components of semen that might mediate remating inhibition in Queensland fruit fly. We found 144 genes whose transcripts were enriched, or proteins expressed, in reproductive tissue and which also varied in amount after mating. Some were associated with testes, accessory glands and ejaculatory apodeme, but those from the ejaculatory apodeme were over-represented compared to those not enriched in reproductive tissue or mating responsive. These included 13 related genes clustered within one Mb on chromosome 5. Functional annotations implicated a broad range of biochemical processes in the genes/proteins enriched in reproductive tissue and mating responsive, with cuticle structure most commonly implicated among the subset of these that were apodeme-enriched and a kinase involved in vitellogenesis implicated for one of the 13 clustered genes. We did not find a homolog of the much studied Drosophila melanogaster Sex Peptide but comparative genomics indicated that some of the tissue-enriched, mating responsive genes/proteins were rapidly evolving in tephritids (including in the Queensland fruit fly lineage), suggesting recent adaptation to new functional niches. Our results provide a set of candidate mediators of remating inhibition for further functional testing.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Australian Animal Health Laboratory (AAHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC, 3220, Australia.
| | - Heng Lin Yeap
- CSIRO Environment, Black Mountain, ACT, 2601, Australia; CSIRO Health and Biosecurity, Parkville, VIC, 3052, Australia
| | | | - Jian-Wei Liu
- CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia
| | | | - Siu Fai Lee
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, NSW, 2109, Australia; CSIRO Environment, Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
3
|
Liu C, Tian N, Chang P, Zhang W. Mating reconciles fitness and fecundity by switching diet preference in flies. Nat Commun 2024; 15:9912. [PMID: 39548088 PMCID: PMC11568147 DOI: 10.1038/s41467-024-54369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-rich diets shorten lifespan but increase fecundity in many organisms. Animals actively adjust their feeding behavior to meet their nutritional requirements. However, the neural mechanisms underlying the dynamic regulation of protein consumption remain unclear. Here we find that both sexes of fruit flies exhibit a preference for protein food before mating to prepare for reproduction. Mated female flies display an increased appetite for yeast to benefit their offspring, albeit at the cost of stress resistance and lifespan. In contrast, males show a momentarily reduced yeast appetite after mating likely to restore their fitness. This mating state-dependent switch between sexes is mediated by a sexually dimorphic neural circuit labeled with leucokinin in the anterior brain. Furthermore, intermittent yeast consumption benefits both the lifespan and fecundity of males, while maximizing female fecundity without compromising lifespan.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Ning Tian
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
5
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Mol Biol Evol 2024; 41:msae065. [PMID: 38518286 PMCID: PMC11017328 DOI: 10.1093/molbev/msae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Akiki P, Delamotte P, Poidevin M, van Dijk EL, Petit AJR, Le Rouzic A, Mery F, Marion-Poll F, Montagne J. Male manipulation impinges on social-dependent tumor suppression in Drosophila melanogaster females. Sci Rep 2024; 14:6411. [PMID: 38494531 PMCID: PMC10944827 DOI: 10.1038/s41598-024-57003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
Physiological status can influence social behavior, which in turn can affect physiology and health. Previously, we reported that tumor growth in Drosophila virgin females depends on the social context, but did not investigate the underlying physiological mechanisms. Here, we sought to characterize the signal perceived between tumorous flies, ultimately discovering that the tumor suppressive effect varies depending on reproductive status. Firstly, we show that the tumor suppressive effect is neither dependent on remnant pheromone-like products nor on the microbiota. Transcriptome analysis of the heads of these tumorous flies reveals social-dependent gene-expression changes related to nervous-system activity, suggesting that a cognitive-like relay might mediate the tumor suppressive effect. The transcriptome also reveals changes in the expression of genes related to mating behavior. Surprisingly, we observed that this social-dependent tumor-suppressive effect is lost in fertilized females. After mating, Drosophila females change their behavior-favoring offspring survival-in response to peptides transferred via the male ejaculate, a phenomenon called "male manipulation". Remarkably, the social-dependent tumor suppressive effect is restored in females mated by sex-peptide deficient males. Since male manipulation has likely been selected to favor male gene transmission, our findings indicate that this evolutionary trait impedes social-dependent tumor growth slowdown.
Collapse
Affiliation(s)
- Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Erwin L van Dijk
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Apolline J R Petit
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Arnaud Le Rouzic
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
| | - Frederic Mery
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Laboratoire Biométrie Et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France
| | - Frederic Marion-Poll
- UMR EGCE, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, IRD, France
- Université Paris-Saclay, AgroParisTech, 91123, Palaiseau Cedex, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, CEA, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567744. [PMID: 38013995 PMCID: PMC10680801 DOI: 10.1101/2023.11.19.567744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to the sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we predicted the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SPR interacts with SP through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from the pre-existing MIP-SPR interface as well as early chance events both inside and outside the pre-existing interface that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
12
|
Delbare SYN, Venkatraman S, Scuderi K, Wells MT, Wolfner MF, Basu S, Clark AG. Time series transcriptome analysis implicates the circadian clock in the Drosophila melanogaster female's response to sex peptide. Proc Natl Acad Sci U S A 2023; 120:e2214883120. [PMID: 36706221 PMCID: PMC9945991 DOI: 10.1073/pnas.2214883120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Sex peptide (SP), a seminal fluid protein of Drosophila melanogaster males, has been described as driving a virgin-to-mated switch in females, through eliciting an array of responses including increased egg laying, activity, and food intake and a decreased remating rate. While it is known that SP achieves this, at least in part, by altering neuronal signaling in females, the genetic architecture and temporal dynamics of the female's response to SP remain elusive. We used a high-resolution time series RNA-sequencing dataset of female heads at 10 time points within the first 24 h after mating to learn about the genetic architecture, at the gene and exon levels, of the female's response to SP. We find that SP is not essential to trigger early aspects of a virgin-to-mated transcriptional switch, which includes changes in a metabolic gene regulatory network. However, SP is needed to maintain and diversify metabolic changes and to trigger changes in a neuronal gene regulatory network. We further find that SP alters rhythmic gene expression in females and suggests that SP's disruption of the female's circadian rhythm might be key to its widespread effects.
Collapse
Affiliation(s)
- Sofie Y. N. Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Sara Venkatraman
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Kate Scuderi
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Martin T. Wells
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Mariana F. Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Sumanta Basu
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
13
|
Misra S, Buehner NA, Singh A, Wolfner MF. Female factors modulate Sex Peptide's association with sperm in Drosophila melanogaster. BMC Biol 2022; 20:279. [PMID: 36514080 PMCID: PMC9749180 DOI: 10.1186/s12915-022-01465-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Male-derived seminal fluid proteins (SFPs) that enter female fruitflies during mating induce a myriad of physiological and behavioral changes, optimizing fertility of the mating pair. Some post-mating changes in female Drosophila melanogaster persist for ~10-14 days. Their long-term persistence is because the seminal protein that induces these particular changes, the Sex Peptide (SP), is retained long term in females by binding to sperm, with gradual release of its active domain from sperm. Several other "long-term response SFPs" (LTR-SFPs) "prime" the binding of SP to sperm. Whether female factors play a role in this process is unknown, though it is important to study both sexes for a comprehensive physiological understanding of SFP/sperm interactions and for consideration in models of sexual conflict. RESULTS We report here that sperm in male ejaculates bind SP more weakly than sperm that have entered females. Moreover, we show that the amount of SP, and other SFPs, bound to sperm increases with time and transit of individual seminal proteins within the female reproductive tract (FRT). Thus, female contributions are needed for maximal and appropriate binding of SP, and other SFPs, to sperm. Towards understanding the source of female molecular contributions, we ablated spermathecal secretory cells (SSCs) and/or parovaria (female accessory glands), which contribute secretory proteins to the FRT. We found no dramatic change in the initial levels of SP bound to sperm stored in mated females with ablated or defective SSCs and/or parovaria, indicating that female molecules that facilitate the binding of SP to sperm are not uniquely derived from SSCs and parovaria. However, we observed higher levels of SP (and sperm) retention long term in females whose SSCs and parovaria had been ablated, indicating secretions from these female tissues are necessary for the gradual release of Sex Peptide's active region from stored sperm. CONCLUSION This study reveals that the SP-sperm binding pathway is not entirely male-derived and that female contributions are needed to regulate the levels of SP associated with sperm stored in their storage sites.
Collapse
Affiliation(s)
- Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Present address: School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, UK, 248007, India
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Akanksha Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Present address: Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, 500043, India
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
König C, Gerber B. Age-related decrease in appetitive associative memory in fruit flies. J Exp Biol 2022; 225:282117. [DOI: 10.1242/jeb.244915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT
Memory scores are dynamic across developmental stages. In particular, memory scores typically decrease from late adolescence into old age, reflecting complex changes in mnemonic and sensory-motor faculties, metabolic and motivational changes, and changes in cognitive strategy as well. In Drosophila melanogaster, such age-related decreases in memory scores have been studied intensely for the association of odours with electric shock punishment. We report that odour–sucrose reward memory scores likewise decrease as the flies age. This was observed after one-trial and after two-trial conditioning, and for both immediate testing and recall tests 1 day later. This decrease was particularly pronounced in relatively young animals, in the first 2–3 weeks after adult hatching, and was more pronounced in female than in male flies.
Collapse
Affiliation(s)
- Christian König
- Leibniz Institute for Neurobiology (LIN) 1 , Department Genetics of Learning and Memory, 39118 Magdeburg , Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN) 1 , Department Genetics of Learning and Memory, 39118 Magdeburg , Germany
- Otto von Guericke University, Institute of Biology 2 , 39106 Magdeburg , Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University 3 , 39106 Magdeburg , Germany
| |
Collapse
|
15
|
Boehm AC, Friedrich AB, Hunt S, Bandow P, Siju KP, De Backer JF, Claussen J, Link MH, Hofmann TF, Dawid C, Grunwald Kadow IC. A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females. eLife 2022; 11:e77643. [PMID: 36129174 PMCID: PMC9536836 DOI: 10.7554/elife.77643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.
Collapse
Affiliation(s)
- Ariane C Boehm
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
| | - Anja B Friedrich
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Sydney Hunt
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Paul Bandow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
| | - KP Siju
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Jean Francois De Backer
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Julia Claussen
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Marie Helen Link
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Thomas F Hofmann
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Corinna Dawid
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Ilona C Grunwald Kadow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- University of Bonn, Faculty of Medicine, Institute of Physiology IIBonnGermany
| |
Collapse
|
16
|
Córdova-García G, Esquivel CJ, Pérez-Staples D, Ruiz-May E, Herrera-Cruz M, Reyes-Hernández M, Abraham S, Aluja M, Sirot L. Characterization of reproductive proteins in the Mexican fruit fly points towards the evolution of novel functions. Proc Biol Sci 2022; 289:20212806. [PMID: 35765836 PMCID: PMC9240691 DOI: 10.1098/rspb.2021.2806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.
Collapse
Affiliation(s)
- Guadalupe Córdova-García
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | | | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | - Eliel Ruiz-May
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Mariana Herrera-Cruz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex-Hda de Aguilera S/N, C.P. 68020, Oaxaca, Oaxaca, México
| | - Martha Reyes-Hernández
- Universidad Autónoma de Guadalajara, Av. Patria 1201, Col. Lomas del Valle, CP 45129 Zapopan, Jalisco, México
| | - Solana Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, CP 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Laura Sirot
- Department of Biology, College of Wooster, 931 College Mall, Wooster, OH 44691, USA
| |
Collapse
|
17
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
18
|
Nallasivan MP, Haussmann IU, Civetta A, Soller M. Channel nuclear pore protein 54 directs sexual differentiation and neuronal wiring of female reproductive behaviors in Drosophila. BMC Biol 2021; 19:226. [PMID: 34666772 PMCID: PMC8527774 DOI: 10.1186/s12915-021-01154-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Female reproductive behaviors and physiology change profoundly after mating. The control of pregnancy-associated changes in physiology and behaviors are largely hard-wired into the brain to guarantee reproductive success, yet the gene expression programs that direct neuronal differentiation and circuit wiring at the end of the sex determination pathway in response to mating are largely unknown. In Drosophila, the post-mating response induced by male-derived sex-peptide in females is a well-established model to elucidate how complex innate behaviors are hard-wired into the brain. Here, we use a genetic approach to further characterize the molecular and cellular architecture of the sex-peptide response in Drosophila females. Results Screening for mutations that affect the sensitivity to sex-peptide, we identified the channel nuclear pore protein Nup54 gene as an essential component for mediating the sex-peptide response, with viable mutant alleles leading to the inability of laying eggs and reducing receptivity upon sex-peptide exposure. Nup54 directs correct wiring of eight adult brain neurons that express pickpocket and are required for egg-laying, while additional channel Nups also mediate sexual differentiation. Consistent with links of Nups to speciation, the Nup54 promoter is a hot spot for rapid evolution and promoter variants alter nucleo-cytoplasmic shuttling. Conclusions These results implicate nuclear pore functionality to neuronal wiring underlying the sex-peptide response and sexual differentiation as a response to sexual conflict arising from male-derived sex-peptide to direct the female post-mating response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01154-6.
Collapse
Affiliation(s)
- Mohanakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Wainwright SM, Hopkins BR, Mendes CC, Sekar A, Kroeger B, Hellberg JEEU, Fan SJ, Pavey A, Marie PP, Leiblich A, Sepil I, Charles PD, Thézénas ML, Fischer R, Kessler BM, Gandy C, Corrigan L, Patel R, Wigby S, Morris JF, Goberdhan DCI, Wilson C. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc Natl Acad Sci U S A 2021; 118:e2019622118. [PMID: 33495334 PMCID: PMC7865141 DOI: 10.1073/pnas.2019622118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.
Collapse
Affiliation(s)
- S Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Cláudia C Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Josephine E E U Hellberg
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Abigail Pavey
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Pauline P Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Irem Sepil
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| | - Philip D Charles
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Marie L Thézénas
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Laura Corrigan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Rachel Patel
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden D-01069, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - John F Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom;
| |
Collapse
|
21
|
Lee JH, Lee NR, Kim DH, Kim YJ. Molecular characterization of ligand selectivity of the sex peptide receptors of Drosophila melanogaster and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103472. [PMID: 32971207 DOI: 10.1016/j.ibmb.2020.103472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Drosophila melanogaster sex peptide receptor (DrmSPR) is a G protein-coupled receptor (GPCR) with 'dual ligand selectivity' towards sex peptide (SP) and myoinhibitory peptides (MIPs), which are only remotely related to one another. SPR is conserved in almost all the sequenced lophotrochozoan and ecdysozoan genomes. SPRs from non-drosophilid taxa, such as those from the mosquitoes Aedes aegypti (AeaSPR), Anopheles gambiae (AngSPR), and the sea slug Aplysia californica (ApcSPR), are highly sensitive to MIP, but not to SP. To understand how Drosophila SPRs evolved their SP sensitivity while maintaining MIP sensitivity, we examined ligand selectivity in a series of chimeric GPCRs that combine domains from the SP-sensitive DrmSPR and the SP-insensitive AeaSPR. We found replacement of Pro 238 (P238) in DrmSPR with the corresponding residue from AeaSPR (L310) reduced its SP sensitivity 2.7 fold without altering its MIP sensitivity. The P238 residue located in the third extracellular loop (ECL3) is conserved in Drosophila SPRs and in SPR from the moth Bombyx mori (BomSPR), which is considerably more sensitive to SP than AeaSPR, AngSPR, or ApcSPR. We found, however, that rather than improving AeaSPR's sensitivity to SP, replacement of L310 in AeaSPR with Pro significantly reduces its MIP sensitivity. Thus, our identification of a single amino acid residue critical for SP sensitivity, but not for MIP sensitivity is an important step in clarifying how DrmSPR evolved the ability to detect SP.
Collapse
Affiliation(s)
- Jae-Hyuk Lee
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea
| | - Na-Rae Lee
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea.
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute and Science and Technology (GIST), Gwangju, 500-712, South Korea.
| |
Collapse
|
22
|
Kerwin P, von Philipsborn AC. Copulation Song in Drosophila: Do Females Sing to Change Male Ejaculate Allocation and Incite Postcopulatory Mate Choice? Bioessays 2020; 42:e2000109. [PMID: 32964470 DOI: 10.1002/bies.202000109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Drosophila males sing a courtship song to achieve copulations with females. Females were recently found to sing a distinct song during copulation, which depends on male seminal fluid transfer and delays female remating. Here, it is hypothesized that female copulation song is a signal directed at the copulating male and changes ejaculate allocation. This may alter female remating and sperm usage, and thereby affect postcopulatory mate choice. Mechanisms of how female copulation song is elicited, how males respond to copulation song, and how remating is modulated, are considered. The potential adaptive value of female signaling during copulation is discussed with reference to vertebrate copulation calls and their proposed function in eliciting mate guarding. Female copulation song may be widespread within the Drosophila genus. This newly discovered behavior opens many interesting avenues for future research, including investigation of how sexually dimorphic neuronal circuits mediate communication between nervous system and reproductive organs.
Collapse
Affiliation(s)
- Peter Kerwin
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, 8000, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
23
|
Sturm S, Dowle A, Audsley N, Isaac RE. The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103414. [PMID: 32589920 DOI: 10.1016/j.ibmb.2020.103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.
Collapse
Affiliation(s)
- Sebastian Sturm
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil Audsley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - R Elwyn Isaac
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
24
|
Bath E, Thomson J, Perry JC. Anxiety-like behaviour is regulated independently from sex, mating status and the sex peptide receptor in Drosophila melanogaster. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Misra S, Wolfner MF. Drosophila seminal sex peptide associates with rival as well as own sperm, providing SP function in polyandrous females. eLife 2020; 9:58322. [PMID: 32672537 PMCID: PMC7398695 DOI: 10.7554/elife.58322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
When females mate with more than one male, the males’ paternity share is affected by biases in sperm use. These competitive interactions occur while female and male molecules and cells work interdependently to optimize fertility, including modifying the female’s physiology through interactions with male seminal fluid proteins (SFPs). Some modifications persist, indirectly benefiting later males. Indeed, rival males tailor their ejaculates accordingly. Here, we show that SFPs from one male can directly benefit a rival’s sperm. We report that Sex Peptide (SP) that a female Drosophila receives from a male can bind sperm that she had stored from a previous male, and rescue the sperm utilization and fertility defects of an SP-deficient first-male. Other seminal proteins received in the first mating ‘primed’ the sperm (or the female) for this binding. Thus, SP from one male can directly benefit another, making SP a key molecule in inter-ejaculate interaction. When fruit flies and other animals reproduce, a compatible male and a female mate, allowing sperm from the male to swim to and fuse with the female’s egg cells. The males also produce proteins known as seminal proteins that travel with the sperm. These proteins increase the likelihood of sperm meeting an egg and induce changes in the female that increase the number, or quality, of offspring produced. Some seminal proteins help a male to compete against its rivals by decreasing their chances to fertilize eggs. However, since many of the changes seminal proteins induce in females are long-lasting, it is possible that a subsequent male may actually benefit indirectly from the effects of a prior male’s seminal proteins. It remains unclear whether the seminal proteins of one male are also able to directly interact with and help the sperm of another male. Male fruit flies make a seminal protein known as sex peptide. Normally, a sex peptide binds to the sperm it accompanies into the female, increasing the female’s fertility and preventing her from mating again with a different male. To test whether the sex peptide from one male can bind to and help a rival male’s sperm, Misra and Wolfner mated female fruit flies with different combinations of males that did, or did not, produce the sex peptide. The experiments found that female flies that only mated with mutant males lacking the sex peptide produced fewer offspring than if they had mated with a ‘normal’ male. However, in females that mated with a mutant male followed by another male who provided the sex peptide, the second male’s sex peptide was able to bind to the mutant male’s sperm (as well as to his own). This in turn allowed the mutant male’s sperm to be efficiently used to sire offspring, at levels comparable to a normal male providing the sex peptide. These findings demonstrate that the ways individual male fruit flies interact during reproduction are more complex than just simple rivalry. Since humans and other animals also produce seminal proteins comparable to those of fruit flies, this work may aid future advances in human fertility treatments and strategies to control the fertility of livestock and pests, including mosquitoes that transmit diseases.
Collapse
Affiliation(s)
- Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| |
Collapse
|