1
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Huo R, Li W, Wu H, He K, Wang H, Zhang S, Jiang SH, Li R, Xue J. Transcription factor ONECUT3 regulates HDAC6/HIF-1α activity to promote the Warburg effect and tumor growth in colorectal cancer. Cell Death Dis 2025; 16:149. [PMID: 40032849 PMCID: PMC11876336 DOI: 10.1038/s41419-025-07457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
The Warburg effect, also known as aerobic glycolysis, plays a crucial role in the onset and progression of colorectal cancer (CRC), although its mechanism remains unclear. In this study, bioinformatics analysis of public databases combined with validation using clinical specimens identified the transcription factor ONECUT3 as a key regulator related to the Warburg effect in CRC. Functionally, silencing ONECUT3 reverses the Warburg effect and suppresses tumor growth. Importantly, ONECUT3 promotes tumor growth in a glycolysis-dependent manner through hypoxia-inducible factor 1α (HIF-1α). Mechanistically, ONECUT3 does not directly regulate the expression of HIF-1α but instead inhibits its acetylation via histone deacetylase 6 (HDAC6). This deacetylation enhances the transcriptional activity of HIF-1α, ultimately upregulating multiple glycolysis-related genes downstream of HIF-1α, thereby driving the Warburg effect and facilitating tumor growth in CRC. These findings reveal a novel mechanism by which ONECUT3 regulates the Warburg effect in CRC and suggest that targeting ONECUT3 may offer a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Weihan Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Hao Wu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Shan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Rongkun Li
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China.
| |
Collapse
|
3
|
Serhan CN, Levy BD. Proresolving Lipid Mediators in the Respiratory System. Annu Rev Physiol 2025; 87:491-512. [PMID: 39303274 PMCID: PMC11810588 DOI: 10.1146/annurev-physiol-020924-033209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
4
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Tian Y, Sun J, Jiao D, Zhang W. The potential role of n-3 fatty acids and their lipid mediators on asthmatic airway inflammation. Front Immunol 2024; 15:1488570. [PMID: 39720728 PMCID: PMC11666451 DOI: 10.3389/fimmu.2024.1488570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently. In asthma therapy, n-3 PUFAs may reduce asthma risk by controlling on levels of inflammatory cytokines and regulating recruitment of inflammatory cells in asthma. The specialized pro-resolving mediators (SPMs) derived from n-3 PUFAs, including the E- and D-series resolvins, protectins, and maresins, were discovered in inflammatory exudates and their biosynthesis by lipoxygenase mediated pathways elucidated., SPMs alleviated T-helper (Th)1/Th17 and type 2 cytokine immune imbalance, and regulated macrophage polarization and recruitment of inflammatory cells in asthma via specific receptors such as formyl peptide receptor 2 (ALX/FPR2) and G protein-coupled receptor 32. In conclusion, the further study of n-3 PUFAs and their derived SPMs may lead to novel anti-inflammatory asthma treatments.
Collapse
Affiliation(s)
- Yuan Tian
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - JingMeng Sun
- Department of Pharmacy, First Hospital of Jilin University, Changchun, China
| | - DongMei Jiao
- Analytical Preparation Process Department, Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - WeiYu Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Ao Y, Guo Y, Zhang Y, Xie L, Xia R, Xu J, Shi M, Gao X, Yu X, Chen Z. Hypoxia-Mimicking Mediated Macrophage-Elimination of Erythrocytes Promotes Bone Regeneration via Regulating Integrin α vβ 3/Fe 2+-Glycolysis-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403921. [PMID: 39352318 PMCID: PMC11615788 DOI: 10.1002/advs.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/20/2024] [Indexed: 12/06/2024]
Abstract
Erythrocytes are the dominant component of a blood clot in terms of volume and number. However, longstanding compacted erythrocytes in blood clots form a physical barrier and make fibrin mesh more anti-fibrinolytic, thus impeding infiltration of mesenchymal stem cells. The necrosis or lysis of erythrocytes that are not removed timely can also lead to the release of pro-inflammatory toxic metabolites, interfering with bone regeneration. Proper bio-elimination of erythrocytes is essential for an undisturbed bone regeneration process. Here, hypoxia-mimicking is applied to enhance macrophage-elimination of erythrocytes. The effect of macrophage-elimination of erythrocytes on the macrophage intracellular reaction, bone regenerative microenvironment, and bone regeneration outcome is investigated. Results show that the hypoxia-mimicking agent dimethyloxalylglycine successfully enhances erythrophagocytosis by macrophages in a dose-dependent manner primarily by up-regulating the expression of integrin αvβ3. Increased phagocytosed erythrocytes then regulate macrophage intracellular Fe2+-glycolysis-inflammation, creating an improved bone regenerative microenvironment characterized by loose fibrin meshes with down-regulated local inflammatory responses in vivo, thus effectively promoting early osteogenesis and ultimate bone generation. Modulating macrophage-elimination of erythrocytes can be a promising strategy for eradicating erythrocyte-caused bone regeneration hindrance and offers a new direction for advanced biomaterial development focusing on the bio-elimination of erythrocytes.
Collapse
Affiliation(s)
- Yong Ao
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Yuanlong Guo
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Yingye Zhang
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Lv Xie
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Ruidi Xia
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Jieyun Xu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Mengru Shi
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Xiaomeng Gao
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Xiaoran Yu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Zetao Chen
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| |
Collapse
|
7
|
Simard M, Nshimiyimana R, Chiang N, Rodriguez AR, Spur BW, Serhan CN. A potent proresolving mediator 17R-resolvin D2 from human macrophages, monocytes, and saliva. SCIENCE ADVANCES 2024; 10:eadq4785. [PMID: 39565847 PMCID: PMC11578181 DOI: 10.1126/sciadv.adq4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Production of specialized proresolving mediators (SPMs) during the resolution phase in the acute inflammatory response is key to orchestrating complete resolution. Here, we uncovered a trihydroxy resolvin in fresh human saliva. We identified and determined its complete stereochemistry as 7S,16R,17R-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid (17R-RvD2) using total organic synthesis and matching of physical properties. The 17R-RvD2 was produced by activated human M2-like macrophages, M1-like macrophages, and human peripheral blood monocytes. 17R-RvD2 displayed potent proresolving functions (picomolar to nanomolar). Topical application of 17R-RvD2 on mouse ear skin reduced neutrophilic infiltration (~50%). 17R-RvD2 increased M2 markers CD206 and CD163 on human monocyte-derived macrophages and enhanced efferocytosis of senescent red blood cells by M2-like macrophages (EC50 ~ 2.6 × 10-14 M). In addition, 17R-RvD2 activated the RvD2 receptor and was equipotent to its epimer RvD2. 17R-RvD2 also significantly increased phagocytosis of Escherichia coli by human neutrophils. Together, these results establish the complete stereochemistry and potent proresolving functions of the previously unknown 17R-RvD2.
Collapse
Affiliation(s)
- Mélissa Simard
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana R. Rodriguez
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine & Life Sciences of Rowan University, Stratford, NJ 08084, USA
| | - Bernd W. Spur
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine & Life Sciences of Rowan University, Stratford, NJ 08084, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Dooley M, Saliani A, Dalli J. Development and Validation of Methodologies for the Identification of Specialized Pro-Resolving Lipid Mediators and Classic Eicosanoids in Biological Matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2331-2343. [PMID: 39252416 PMCID: PMC11450820 DOI: 10.1021/jasms.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Lipid mediators, which include specialized pro-resolving mediators and classic eicosanoids, are pivotal in both initiating and resolving inflammation. The regulation of these molecules determines whether inflammation resolves naturally or persists. However, our understanding of how these mediators are regulated over time in various inflammatory contexts is limited. This gap hinders our grasp of the mechanisms underlying the disease onset and progression. Due to their localized action and low endogenous levels in many tissues, developing robust and highly sensitive methodologies is imperative for assessing their endogenous regulation in diverse inflammatory settings. These methodologies will help us gain insight into their physiological roles. Here, we establish methodologies for extracting, identifying, and quantifying these mediators. Using our methods, we identified a total of 37 lipid mediators. Additionally, by employing a reverse-phase HPLC method, we successfully separated both double-bond and chiral isomers of select lipid mediators, including Lipoxin (LX) A4, 15-epi-LXA4, Protectin (PD) D1, PDX, and 17R-PD1. Validation of the method was performed in both solvent and surrogate matrix for linearity of the standard curves, lower limits of quantitation (LLOQ), accuracy, and precision. Results from these studies demonstrated that linearity was good with r2 values > 0.98, and LLOQ for the mediators ranged from 0.01 to 0.9 pg in phase and from 0.1 to 8.5 pg in surrogate matrix. The relative standard deviation (RSD) for inter- and intraday precision in solvent ranged from 5% to 12% at low, intermediate, and high concentrations, whereas the RSD for the inter- and intraday variability in the accuracy ranged from 95% to 87% at low to high concentrations. The recovery in biological matrices (plasma and serum) for the internal standards used ranged from 60% to 118%. We observed a marked ion suppression for molecules evaluated in negative ionization mode, while there was an ion enhancement effect by the matrix for molecules evaluated in positive ionization mode. Comparison of the integration algorithms, namely, AutoPeak and MQ4, and approaches for calculating signal-to-noise ratios (i.e., US Pharmacopeia, relative noise, peak to peak, and standard deviation) demonstrated that different integration algorithms tested had little influence on signal-to-noise ratio calculations. In contrast, the method used to calculate the signal-to-noise ratio had a more significant effect on the results, with the relative noise approach proving to be the most robust. The methods described herein provide a platform to study the SPM and classic eicosanoids in biological tissues that will help further our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Matthew Dooley
- Biochemical
Pharmacology, William Harvey Research Institute, Barts and The London
Faculty of Medicine and Dentistry, Queen
Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Amitis Saliani
- Biochemical
Pharmacology, William Harvey Research Institute, Barts and The London
Faculty of Medicine and Dentistry, Queen
Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- Biochemical
Pharmacology, William Harvey Research Institute, Barts and The London
Faculty of Medicine and Dentistry, Queen
Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- Centre
for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
9
|
Huang X, Lin Z, Zheng ZM, Shi JL, Lu KY, Wang JR, Li MQ, Shao J. A Hypoxia-Decidual Macrophage Regulatory Axis in Normal Pregnancy and Spontaneous Miscarriage. Int J Mol Sci 2024; 25:9710. [PMID: 39273657 PMCID: PMC11395248 DOI: 10.3390/ijms25179710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The significance of hypoxia at the maternal-fetal interface is proven to be self-explanatory in the context of pregnancy. During the first trimester, low oxygen conditions play a crucial role in processes such as angiogenesis, trophoblast invasion and differentiation, and immune regulation. Recently, there has been increasing research on decidual macrophages, which contribute to the maintenance of immune tolerance, placental and fetal vascular development, and spiral artery remodeling, to investigate the effects of hypoxia on their biological behaviors. On these grounds, this review describes the dynamic changes in oxygen levels at the maternal-fetal interface throughout gestation, summarizing current knowledge on how the hypoxic environment sustains a successful pregnancy by regulating retention, differentiation and efferocytosis of decidual macrophages. Additionally, we explore the relationship between spontaneous miscarriages and an abnormal hypoxia-macrophage axis, shedding light on the underlying mechanisms. However, further studies are essential to elucidate these pathways in greater detail and to develop targeted interventions that could improve pregnancy outcomes.
Collapse
Affiliation(s)
- Xu Huang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jia-Lu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ke-Yu Lu
- Xing Lin College, Nantong University, Nantong 226236, China
| | - Jia-Rui Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200010, China
| |
Collapse
|
10
|
Peh HY, Nshimiyimana R, Brüggemann TR, Duvall MG, Nijmeh J, Serhan CN, Levy BD. 15-epi-lipoxin A 5 promotes neutrophil exit from exudates for clearance by splenic macrophages. FASEB J 2024; 38:e23807. [PMID: 38989570 PMCID: PMC11344644 DOI: 10.1096/fj.202400610r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Specialized proresolving mediators (SPMs) promote local macrophage efferocytosis but excess leukocytes early in inflammation require additional leukocyte clearance mechanism for resolution. Here, neutrophil clearance mechanisms from localized acute inflammation were investigated in mouse dorsal air pouches. 15-HEPE (15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid) levels were increased in the exudates. Activated human neutrophils converted 15-HEPE to lipoxin A5 (5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), 15-epi-lipoxin A5 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), and resolvin E4 (RvE4; 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid). Exogenous 15-epi-lipoxin A5, 15-epi-lipoxin A4 and a structural lipoxin mimetic significantly decreased exudate neutrophils and increased local tissue macrophage efferocytosis, with comparison to naproxen. 15-epi-lipoxin A5 also cleared exudate neutrophils faster than the apparent local capacity for stimulated macrophage efferocytosis, so the fate of exudate neutrophils was tracked with CD45.1 variant neutrophils. 15-epi-lipoxin A5 augmented the exit of adoptively transferred neutrophils from the pouch exudate to the spleen, and significantly increased splenic SIRPa+ and MARCO+ macrophage efferocytosis. Together, these findings demonstrate new systemic resolution mechanisms for 15-epi-lipoxin A5 and RvE4 in localized tissue inflammation, which distally engage the spleen to activate macrophage efferocytosis for the clearance of tissue exudate neutrophils.
Collapse
Affiliation(s)
- Hong Yong Peh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thayse R. Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
12
|
Babar MU, Nassar AF, Nie X, Zhang T, He J, Yeung J, Norris P, Ogura H, Muldoon A, Chen L, Libreros S. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part II: Role of Specialized Pro-Resolving Mediators in Inflammation, Infections, and Cancer. Metabolites 2024; 14:314. [PMID: 38921449 PMCID: PMC11205484 DOI: 10.3390/metabo14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Acute inflammation is the body's first defense in response to pathogens or injury that is partially governed by a novel genus of endogenous lipid mediators that orchestrate the resolution of inflammation, coined specialized pro-resolving mediators (SPMs). SPMs, derived from omega-3-polyunstaturated fatty acids (PUFAs), include the eicosapentaenoic acid-derived and docosahexaenoic acid-derived Resolvins, Protectins, and Maresins. Herein, we review their biosynthesis, structural characteristics, and therapeutic effectiveness in various diseases such as ischemia, viral infections, periodontitis, neuroinflammatory diseases, cystic fibrosis, lung inflammation, herpes virus, and cancer, especially focusing on therapeutic effectiveness in respiratory inflammation and ischemia-related injuries. Resolvins are sub-nanomolar potent agonists that accelerate the resolution of inflammation by reducing excessive neutrophil infiltration, stimulating macrophage functions including phagocytosis, efferocytosis, and tissue repair. In addition to regulating neutrophils and macrophages, Resolvins control dendritic cell migration and T cell responses, and they also reduce the pro-inflammatory cytokines, proliferation, and metastasis of cancer cells. Importantly, several lines of evidence have demonstrated that Resolvins reduce tumor progression in melanoma, oral squamous cell carcinoma, lung cancer, and liver cancer. In addition, Resolvins enhance tumor cell debris clearance by macrophages in the tumor's microenvironment. Resolvins, with their unique stereochemical structure, receptors, and biosynthetic pathways, provide a novel therapeutical approach to activating resolution mechanisms during cancer progression.
Collapse
Affiliation(s)
- Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Kobe 678-1297, Japan
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Inomata R, Tsubouchi H, Takao T, Kurokawa M, Yanagi S, Sakai K, Miyazaki T. Resolvin D4 mitigates lipopolysaccharide-induced lung injury in mice. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102652. [PMID: 39368237 DOI: 10.1016/j.plefa.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition involving severe lung inflammation. The excessive oxidative stress and persistent inflammation that occur in ARDS lead to decreased epithelial integrity and hypoxemia due to pulmonary edema via increased vascular permeability. Resolvin D4 (RvD4) is one of the lipid mediators that is biosynthesized from omega-3 polyunsaturated fatty acids. It plays a role in the resolution of inflammation and reduces oxidative stress and cell death. We investigated the therapeutic potential of the administration of RvD4 in a murine model of lipopolysaccharide (LPS)-induced ARDS. Concurrent with the intratracheal administration of LPS, RvD4 or saline was administered to mice via the caudal vein every 12 h. This treatment with RvD4 alleviated the LPS-induced infiltration of inflammatory cells in lungs, inhibited increased pulmonary vascular permeability, decreased the levels of IL-1β, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF), and suppressed the reduction of the expression levels of the tight junction protein, Zonula occludens-1 (Zo-1) and the NAD+-dependent deacetylase, Sirtuin-3 (Sirt3). In vitro experiments revealed that in LPS-stimulated BEAS-2B cells, treatment with RvD4 suppressed the increases in the expressions of pro-inflammatory cytokines and maintained the epithelial cell barrier function and cell viability. The silencing of SIRT3 abolished both the anti-inflammatory effect and the retention of cell integrity in BEAS-2B cells. Together these results indicate that treatment with RvD4 can (i) protect against LPS-induced lung injury by inhibiting inflammation, and (ii) maintain epithelial barrier function via a reduction in the downregulation of SIRT3.
Collapse
Affiliation(s)
- Rika Inomata
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hironobu Tsubouchi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Mone Kurokawa
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shigehisa Yanagi
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Katsuya Sakai
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| | - Taiga Miyazaki
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
14
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
15
|
Thamizhchelvan AM, Masoud AR, Su S, Lu Y, Peng H, Kobayashi Y, Wang Y, Archer NK, Hong S. Bactericidal Efficacy of the Combination of Maresin-like Proresolving Mediators and Carbenicillin Action on Biofilm-Forming Burn Trauma Infection-Related Bacteria. Int J Mol Sci 2024; 25:2792. [PMID: 38474038 PMCID: PMC10932429 DOI: 10.3390/ijms25052792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Biofilm-associated bacterial infections are the major reason for treatment failure in many diseases including burn trauma infections. Uncontrolled inflammation induced by bacteria leads to materiality, tissue damage, and chronic diseases. Specialized proresolving mediators (SPMs), including maresin-like lipid mediators (MarLs), are enzymatically biosynthesized from omega-3 essential long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), by macrophages and other leukocytes. SPMs exhibit strong inflammation-resolving activities, especially inflammation provoked by bacterial infection. In this study, we explored the potential direct inhibitory activities of three MarLs on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria in their biofilms that are leading bacteria in burn trauma-related infections. We also examined the effects of MarLs on the bactericidal activities of a typical broad-spectrum antibiotic, carbenicillin (carb), on these bacteria in their preformed biofilms. The results revealed that MarLs combined with carbenicillin can inhibit the survival of Gram-positive and Gram-negative bacteria in their biofilms although MarLs alone did not exhibit bactericidal activity. Thus, our findings suggest that the combination of MarLs and carbenicillin can lower the antibiotic requirements to kill the bacteria in preformed biofilms.
Collapse
Affiliation(s)
- Anbu Mozhi Thamizhchelvan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| | - Shanchun Su
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Kanagawa, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yu Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (Y.W.); (N.K.A.)
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; (Y.W.); (N.K.A.)
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| |
Collapse
|
16
|
永 胜, 郭 玉, 陈 晓, 许 玉, 胡 英. [Mechanism of IL-17 Signaling Pathway in Spleen Inflammatory Response Induced by Altitude Hypoxia in Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:118-124. [PMID: 38322537 PMCID: PMC10839503 DOI: 10.12182/20240160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the mechanism of spleen tissue inflammatory response induced by altitude hypoxia in mice. Methods C57BL/6 mice were randomly assigned to a plain, i.e., low-altitude, normoxia group and an altitude hypoxia group, with 5 mice in each group. In the plain normoxia group, the mice were kept in a normoxic environment at the altitude of 400 m above sea level (with an oxygen concentration of 19.88%). The mice in the altitude hypoxia group were kept in an environment at the altitude of 4200 m above sea level (with an oxygen concentration of 14.23%) to establish the animal model of altitude hypoxia. On day 30, spleen tissues were collected to determine the splenic index. HE staining was performed to observe the histopathological changes in the spleen tissues of the mice. Real time fluorogenic quantitative PCR (RT-qPCR) and Western blot were conducted to determine the mRNA and protein expressions of interleukin (IL)-6, IL-12, and IL-1β in the spleen tissue of the mice. High-throughput transcriptome sequencing was performed with RNA sequencing (RNA-seq). KEGG enrichment analysis was performed for the differentially expressed genes (DEGs). The DEGs in the key pathways were verified by RT-qPCR. Results Compared with the plain normoxia group, the mice exposed to high-altitude hypoxic environment had decreased spleen index (P<0.05) and exhibited such pathological changes as decreased white pulp, enlarged germinal center, blurred edge, and venous congestion. The mRNA and protein expression levels of IL-6, IL-12, and IL-1β in the spleen tissue of mice in the altitude hypoxia group were up-regulated (P<0.05). According to the results of transcriptome sequencing and KEGG pathway enrichment analysis, 4218 DEGs were enriched in 178 enrichment pathways (P<0.05). DEGs were significantly enriched in multiple pathways associated with immunity and inflammation, such as T cell receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway (P<0.05) in the spleen of mice exposed to high-altitude hypoxic environment. Among them, IL-17 signaling pathway and the downstream inflammatory factors were highly up-regulated (P<0.05). Compared with the plain normoxia group, the mRNA expression levels of key genes in the IL-17 signaling pathway, including IL-17, IL-17R, and mitogen-activated protein kinase genes (MAPKs), and the downstream inflammatory factors, including matrix metallopeptidase 9 (MMP9), S100 calcium binding protein A8 gene (S100A8), S100 calcium binding protein A9 gene (S100A9), and tumor necrosis factor α (TNF-α), were up-regulated or down-regulated (P<0.05) in the altitude hypoxia group. According to the validation of RT-qPCR results, the mRNA expression levels of DEGs were consistent with the RNA-seq results. Conclusion Altitude hypoxia can induce inflammatory response in the mouse spleen tissue by activating IL-17 signaling pathway and promoting the release of downstream inflammatory factors.
Collapse
Affiliation(s)
- 胜 永
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉静 郭
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 晓晨 陈
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉珍 许
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 英 胡
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| |
Collapse
|
17
|
Wang X, Du C, Subramanian S, Turner L, Geng H, Bu HF, Tan XD. Severe gut mucosal injury induces profound systemic inflammation and spleen-associated lymphoid organ response. Front Immunol 2024; 14:1340442. [PMID: 38259439 PMCID: PMC10800855 DOI: 10.3389/fimmu.2023.1340442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Clinical evidence indicates a connection between gut injuries, infections, inflammation, and an increased susceptibility to systemic inflammation. Nevertheless, the animal models designed to replicate this progression are inadequate, and the fundamental mechanisms are still largely unknown. This research explores the relationship between gut injuries and systemic inflammation using a Dextran Sulfate Sodium (DSS)-induced colonic mucosal injury mouse model. Continuous treatment of adult mice with 4% DSS drinking water yielded a remarkable mortality rate by day 7, alongside intensified gut injury and detectable peripheral inflammation. Moreover, RNAscope in situ hybridization with 16S rRNA probe noted bacterial penetration into deeper colon compartments of the mice following treatment with DSS for 7 days. Histological analysis revealed inflammation in the liver and lung tissues of DSS-treated mice. In addition, we found that DSS-treated mice exhibited elevation of Alanine transaminase (ALT) and Aspartate transaminase (AST) in peripheral blood and pro-inflammatory cytokine levels in the liver. Notably, the DSS-treated mice displayed a dampened metabolic profile, reduced CD45 marker expression, and an increase in apoptosis within the lymphoid organ such as spleen. These findings suggest that high-dose DSS-induced gut injury gives rise to sepsis-like systemic inflammation characterized by multiple organ injury and profound splenocyte apoptosis and dysfunction of CD45+ cells in the spleen, indicating the role of the spleen in the pathogenesis of gut-derived systemic inflammation. Together, the severe colonic mucosal injury model facilitates research into gut damage and associated peripheral immune responses, providing a vital framework for investigating mechanisms related to clinically relevant, gut-derived systemic inflammation.
Collapse
Affiliation(s)
- Xiao Wang
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chao Du
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Saravanan Subramanian
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lucas Turner
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hua Geng
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Heng-Fu Bu
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Xiao-Di Tan
- Pediatric Mucosal Inflammation and Regeneration Research Program, Center for Pediatric Translational Research and Education, Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Reinertsen AF, Libreros S, Nshimiyimana R, Serhan CN, Hansen TV. Metabolization of Resolvin E4 by ω-Oxidation in Human Neutrophils: Synthesis and Biological Evaluation of 20-Hydroxy-Resolvin E4 (20-OH-RvE4). ACS Pharmacol Transl Sci 2023; 6:1898-1908. [PMID: 38093843 PMCID: PMC10714428 DOI: 10.1021/acsptsci.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Resolvin E4 (RvE4) belongs to the resolvin family of specialized pro-resolving mediators (SPMs). The resolvins are endogenously formed mediators with both potent pro-resolving and anti-inflammatory biological activities and have attracted considerable attention in both inflammation research and drug discovery. Hence, further metabolism of the resolvins is of interest. Gaining knowledge about the structure-function of further metabolites of the resolvins is important due to their interest in drug-discovery efforts. For the first time, the total synthesis and biological evaluations of the ω-20 hydroxylated metabolite of RvE4, named herein 20-OH-RvE4, are presented. RvE4 was converted to 20-OH-RvE4 by human polymorphonuclear leukocytes. LC-MS/MS analysis and UV spectrophotometry reveal that the synthetic 20-OH-RvE4 matched RvE4-converted product 20-OH-RvE4 by human neutrophils. Cellular studies have revealed that RvE4 is formed from eicosapentaenoic acid in physiologic hypoxia by human neutrophils and macrophages, and we herein established that 20-OH-RvE4 is a secondary metabolite formed by the ω-oxidation of RvE4 in human neutrophils. A direct comparison of the biological actions between RvE4 and its metabolic product suggested that 20-OH-RvE4 displayed reduced bioactions in stimulating the efferocytosis of human senescent erythrocytes by human M2-like macrophages. At concentrations down to 0.1 nM, RvE4 increased macrophage erythrophagocytosis, an important pro-resolving function that was diminished due to metabolic transformation. The results provided herein contribute to a novel molecular insight on the further local metabolization of RvE4, the newest member among the SPM superfamily.
Collapse
Affiliation(s)
- Amalie Føreid Reinertsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
20
|
Irún P, Carrera-Lasfuentes P, Sánchez-Luengo M, Belio Ú, Domper-Arnal MJ, Higuera GA, Hawkins M, de la Rosa X, Lanas A. Pharmacokinetics and Changes in Lipid Mediator Profiling after Consumption of Specialized Pro-Resolving Lipid-Mediator-Enriched Marine Oil in Healthy Subjects. Int J Mol Sci 2023; 24:16143. [PMID: 38003333 PMCID: PMC10671020 DOI: 10.3390/ijms242216143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
| | - Patricia Carrera-Lasfuentes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Faculty of Health Sciences, Campus Universitario Villanueva de Gállego, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Marta Sánchez-Luengo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Úrsula Belio
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - María José Domper-Arnal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Gustavo A. Higuera
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Malena Hawkins
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Xavier de la Rosa
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Campus Plaza San Francisco, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Fredman G, Khan S. Specialized pro-resolving mediators enhance the clearance of dead cells. Immunol Rev 2023; 319:151-157. [PMID: 37787174 DOI: 10.1111/imr.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The failure to resolve inflammation underpins to several prevalent diseases, like atherosclerosis, and so identifying ways to boost resolution is unmet clinical needs. The resolution of inflammation is governed by several factors such as specialized pro-resolving mediators (SPMs) that counter-regulate pro-inflammatory pathways and promote tissue repair without compromising host defense. A major function of nearly all SPMs is to enhance the clearance of dead cells or efferocytosis. As such, phagocytes, such as macrophages, are essential cellular players in the resolution of inflammation because of their ability to rapidly and efficiently clear dead cells. This review highlights the role of SPMs in the clearance of apoptotic and necroptotic cells and offers insights into how targeting efferocytosis may provide new treatments for non-resolving diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
23
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
24
|
Nshimiyimana R, Libreros S, Simard M, Chiang N, Rodriguez AR, Spur BW, Haeggström JZ, Serhan CN. Stereochemistry and functions of the new cysteinyl-resolvin, 4S,5R-RCTR1, in efferocytosis and erythrophagocytosis of human senescent erythrocytes. Am J Hematol 2023; 98:1000-1016. [PMID: 37139907 PMCID: PMC10429686 DOI: 10.1002/ajh.26932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Specialized pro-resolving lipid mediators play key functions in the resolution of the acute inflammatory response. Herein, we elucidate the stereochemical structure of the new 4S,5R-RCTR1, a cysteinyl-resolvin, recently uncovered in human leukocytes incubated with a 4S,5S-epoxy-resolvin intermediate, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultra-violet (UV) spectrophotometry. With this approach, the physical properties of the new mediator prepared by total organic synthesis were matched to enzymatically produced biogenic material. In addition, we confirmed the potent biological actions of 4S,5R-RCTR1 with human M2-like macrophage phagocytosis of live bacteria, efferocytosis of apoptotic neutrophils, and erythrophagocytosis of senescent human red blood cells in a concentration-dependent manner from 0.1 to 10 nM. Taken together, these results establish the complete stereochemistry of 4S,5R-RCTR1 as 5R-glutathionyl-4S,17S-dihydroxy-6E,8E,10Z,13Z,15E,19Z-docosahexaenoic acid and give evidence of its novel bioactivities in human phagocyte responses. Moreover, they confirm and extend the stereoselective functions of the 4S,5R-RCTR1 with isolated human phagocytes of interest in the resolution of inflammation.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mélissa Simard
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ana R. Rodriguez
- Department of Cell Biology, Rowan University–School of Medicine, Stratford, New Jersey 08084, USA
| | - Bernd W. Spur
- Department of Cell Biology, Rowan University–School of Medicine, Stratford, New Jersey 08084, USA
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska institute, S-171 77 Stockholm, Sweden
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Möller I, Rodas G, Villalón JM, Rodas JA, Angulo F, Martínez N, Vergés J. Randomized, double-blind, placebo-controlled study to evaluate the effect of treatment with an SPMs-enriched oil on chronic pain and inflammation, functionality, and quality of life in patients with symptomatic knee osteoarthritis: GAUDI study. J Transl Med 2023; 21:423. [PMID: 37386594 PMCID: PMC10308764 DOI: 10.1186/s12967-023-04283-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs), including 18-HEPE, 17-HDHA, and 14-HDHA are recognized as potentially therapeutic in inflammatory diseases because SPMs regulate the inflammation process, which leads to, for example; swelling and the sensation of pain. In osteoarthritis (OA), chronic pain is described as the symptom that reduces patients´ quality of life (QoL). The GAUDI study evaluated the efficacy of SPMs supplementation in reducing pain in the symptomatic knee of OA patients. METHODS This randomized, multicenter, double-blind, and placebo-controlled parallel-group pilot study was performed in Spain and conducted on adults 18-68 years old diagnosed with symptomatic knee OA. Patients were enrolled in the study for up to 24 weeks, which included a 12-week intervention period and a follow-up visit on week 24. The primary endpoint was pain change measured through a Visual Analog Scale (VAS). Secondary endpoints included: Pain change evaluation, stiffness, and function according to the WOMAC index; assessment of constant, intermittent, and total pain according to the OMERACT-OARSI score; evaluation of changes in health-related QoL parameters; the use or not of concomitant, rescue, and anti-inflammatory medication; and safety and tolerability assessments. RESULTS Patients were enrolled in the study from May 2018 to September 2021. VAS pain score was evaluated in the per protocol population (n = 51 patients), in which we observed a statistically significant reduction after 8 weeks (p = 0.039) and 12 weeks (p = 0.031) of treatment in patients consuming SPMs (n = 23 subjects) vs. placebo (n = 28 subjects). In line with the OMERACT-OARSI score, intermittent pain was reduced after 12 weeks with statistical significance (p = 0.019) in patients treated with SPMs (n = 23 subjects) vs. placebo (n = 28 subjects). Functional status as WOMAC score did not significantly change after SPMs or placebo consumption. Notably, patients consuming SPMs showed improvements in all five aspects of the EUROQoL-5, including a significant improvement in the usual-activities dimension. None of the patients required rescue medication, nor were any adverse events reported. CONCLUSIONS These findings suggest that sustained SPMs consumption reduces pain in OA patients while also improving their Quality of Life. These results also support the safety profile of SPMs supplementation. Trial registration NCT05633849. Registered 1 December 1 2022. Retrospectively registered, https://clinicaltrials.gov/ct2/show/study/NCT05633849.
Collapse
Affiliation(s)
| | | | | | | | | | - Nina Martínez
- Osteoarthritis Foundation International (OAFI), Barcelona, Spain
| | - Josep Vergés
- Osteoarthritis Foundation International (OAFI), Barcelona, Spain.
| |
Collapse
|
26
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Li Q, Zhang W, Deng J, Li Q, Fu X, Kou Y, Han N. Ameliorative Effects of Extracellular Vesicles Derived from Mesenchymal Stem Cells on Apoptosis and Differentiation of Osteoblasts Treated with CoCl 2. Cell Reprogram 2023; 25:99-108. [PMID: 37184657 DOI: 10.1089/cell.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Severe osteoporotic fracture occurring in sites with inadequate blood supply can cause irreversible damage to cells, particularly osteoblasts, with current drug and surgical interventions exhibiting limitations for elderly individuals. As participants mediating intercellular communication, extracellular vesicles (EVs) are rarely reported to play functional roles in osteoblasts under hypoxia. Our study mainly investigated the effects of bone marrow mesenchymal stem cells-derived EVs (BMSCs-EVs) on apoptosis and differentiation of osteoblasts treated with CoCl2. Primary rat BMSCs and osteoblasts were extracted as required for the following experiments. Cell counting kit 8 assay was used to explore the concentration of CoCl2 for treating osteoblasts, and we found that 100 μM CoCl2 was appropriate to treat osteoblasts for 48 hours. The analysis of flow cytometer showed that CoCl2-treated osteoblasts apoptosis can be ameliorated when cocultured with BMSCs-EVs. Further findings revealed that reactive oxygen species (ROS) was related to CoCl2-induced apoptosis. In addition, our results demonstrated that EVs exerted an important role in increasing expression levels of ALP, BMP-2, OCN, and OSTERIX under hypoxia. Similarly, the functional effects of BMSCs-EVs were observed on the osteoblasts mineralization. In summary, these findings provide insight that BMSCs-EVs might decrease the effect of CoCl2-induced apoptosis through inhibiting ROS, and promote osteogenic differentiation under hypoxia.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Wei Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Qiuya Li
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Xiaoyang Fu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
- National Center of Trauma Medicine, Beijing, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
- National Center of Trauma Medicine, Beijing, China
| |
Collapse
|
28
|
Sorokin AV, Arnardottir H, Svirydava M, Ng Q, Baumer Y, Berg A, Pantoja CJ, Florida E, Teague HL, Yang ZH, Dagur PK, Powell-Wiley TM, Yu ZX, Playford MP, Remaley AT, Mehta NN. Comparison of the dietary omega-3 fatty acids impact on murine psoriasis-like skin inflammation and associated lipid dysfunction. J Nutr Biochem 2023; 117:109348. [PMID: 37044136 DOI: 10.1016/j.jnutbio.2023.109348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Persistent skin inflammation and impaired resolution are the main contributors to psoriasis and associated cardiometabolic complications. Omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to exert beneficial effects on inflammatory response and lipid function. However, a specific role of omega-3 PUFAs in psoriasis and accompanied pathologies are still a matter of debate. Here, we carried out a direct comparison between EPA and DHA 12 weeks diet intervention treatment of psoriasis-like skin inflammation in the K14-Rac1V12 mouse model. By utilizing sensitive techniques, we targeted EPA- and DHA-derived specialized pro-resolving lipid mediators and identified tightly connected signaling pathways by RNA sequencing. Treatment with experimental diets significantly decreased circulating pro-inflammatory cytokines and bioactive lipid mediators, altered psoriasis macrophage phenotypes and genes of lipid oxidation. The superficial role of these changes was related to DHA treatment and included increased levels of resolvin D5, protectin DX and maresin 2 in the skin. EPA treated mice had less pronounced effects but demonstrated a decreased skin accumulation of prostaglandin E2 and thromboxane B2. These results indicate that modulating psoriasis skin inflammation with the omega-3 PUFAs may have clinical significance and DHA treatment might be considered over EPA in this specific disease.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hildur Arnardottir
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, Sweden
| | - Maryia Svirydava
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qimin Ng
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Berg
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carla J Pantoja
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Florida
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
30
|
Kahnt AS, Schebb NH, Steinhilber D. Formation of lipoxins and resolvins in human leukocytes. Prostaglandins Other Lipid Mediat 2023; 166:106726. [PMID: 36878381 DOI: 10.1016/j.prostaglandins.2023.106726] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins are formed by the consecutive action of 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- or 15-lipoxygenases using arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid as substrate. Lipoxins are trihydroxylated oxylipins which are formed from arachidonic and eicosapentaenoic acid. The latter can also be converted to di- and trihydroxylated resolvins of the E series, whereas docosahexaenoic acid is the substrate for the formation of di- and trihydroxylated resolvins of the D series. Here, we summarize the formation of lipoxins and resolvins in leukocytes. From the data published so far, it becomes evident that FLAP is required for the biosynthesis of most of the lipoxins and resolvins. Even in the presence of FLAP, formation of the trihydroxylated SPMs (lipoxins, RvD1-RvD4, RvE1) in leukocytes is very low or undetectable which is obviously due to the extremely low epoxide formation by 5-LO from oxylipins such as 15-H(p)ETE, 18-H(p)EPE or 17-H(p)DHA. As a result, only the dihydroxylated oxylipins (5 S,15S-diHETE, 5 S,15S-diHEPE) and resolvins (RvD5, RvE2, RvE4) can be consistently detected using leukocytes as SPM source. However, the reported levels of these dihydroxylated lipid mediators are still much lower than those of the typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g. 5-HETE), leukotrienes or cyclooxygenase-derived prostaglandins. Since 5-LO expression is mainly restricted to leukocytes these cells are considered as the main source of SPMs. The low formation of trihydroxylated SPMs in leukocytes, the fact that they are hardly detected in biological samples as well as the lack of functional signaling by their receptors make it highly questionable that trihydroxylated SPMs play a role as endogenous mediators in the resolution of inflammation.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Abstract
Angiogenesis, the growth of new blood vessels, plays a critical role in tissue repair and regeneration, as well as in cancer. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving mediators (SPMs), including resolvins. Angiogenesis and the resolution of inflammation are critical interdependent processes. Disrupted inflammation resolution can accelerate tumor growth, which is angiogenesis-dependent. SPMs, including resolvins and lipoxins, inhibit physiologic and pathological angiogenesis at nanogram concentrations. The failure of resolution of inflammation is an emerging hallmark of angiogenesis-dependent diseases including arthritis, psoriasis, diabetic retinopathy, age-related macular degeneration, inflammatory bowel disease, atherosclerosis, endometriosis, Alzheimer's disease, and cancer. Whereas therapeutic angiogenesis repairs tissue damage (e.g., limb ischemia), inhibition of pathological angiogenesis suppresses tumor growth and other non-neoplastic diseases such as retinopathies. Stimulation of resolution of inflammation via pro-resolving lipid mediators promotes the repair of tissue damage and wound healing, accelerates tissue regeneration, and inhibits cancer. Here we provide an overview of the mechanisms of cross talk between angiogenesis and inflammation resolution in chronic inflammation-driven diseases. Stimulating the resolution of inflammation via pro-resolving lipid mediators has emerged as a promising new field to treat angiogenic diseases.
Collapse
Affiliation(s)
- Abigail G Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 USA
| |
Collapse
|
32
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
33
|
Wang YT, Trzeciak AJ, Rojas WS, Saavedra P, Chen YT, Chirayil R, Etchegaray JI, Lucas CD, Puleston DJ, Keshari KR, Perry JSA. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab 2023; 35:316-331.e6. [PMID: 36584675 PMCID: PMC9908853 DOI: 10.1016/j.cmet.2022.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is performed by phagocytes, such as macrophages, that inhabit harsh physiological environments. Here, we find that macrophages display enhanced efferocytosis under prolonged (chronic) physiological hypoxia, characterized by increased internalization and accelerated degradation of ACs. Transcriptional and translational analyses revealed that chronic physiological hypoxia induces two distinct but complimentary states. The first, "primed" state, consists of concomitant transcription and translation of metabolic programs in AC-naive macrophages that persist during efferocytosis. The second, "poised" state, consists of transcription, but not translation, of phagocyte function programs in AC-naive macrophages that are translated during efferocytosis. Mechanistically, macrophages efficiently flux glucose into a noncanonical pentose phosphate pathway (PPP) loop to enhance NADPH production. PPP-derived NADPH directly supports enhanced efferocytosis under physiological hypoxia by ensuring phagolysosomal maturation and redox homeostasis. Thus, macrophages residing under physiological hypoxia adopt states that support cell fitness and ensure performance of essential homeostatic functions rapidly and safely.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yan-Ting Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jon Iker Etchegaray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, Scotland, UK; Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, Scotland, UK
| | - Daniel J Puleston
- Bloomberg, Kimmel Institute of Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
34
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
35
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
36
|
Li Q, Xu Z, Fang F, Shen Y, Lei H, Shen X. Identification of key pathways, genes and immune cell infiltration in hypoxia of high-altitude acclimatization via meta-analysis and integrated bioinformatics analysis. Front Genet 2023; 14:1055372. [PMID: 37035734 PMCID: PMC10080023 DOI: 10.3389/fgene.2023.1055372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: For individuals acutely exposed to high-altitude regions, environmental hypobaric hypoxia induces several physiological or pathological responses, especially immune dysfunction. Therefore, hypoxia is a potentially life-threatening factor, which has closely related to high-altitude acclimatization. However, its specific molecular mechanism is still unclear. Methods: The four expression profiles about hypoxia and high altitude were downloaded from the Gene Expression Omnibus database in this study. Meta-analysis of GEO datasets was performed by NetworkAnalyst online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO) enrichment analysis, and visualization were performed using R (version 4.1.3) software, respectively. The CIBERSORT analysis was conducted on GSE46480 to examine immune cell infiltration. In addition, we experimentally verified the bioinformatics analysis with qRT-PCR. Results: The meta-analysis identified 358 differentially expressed genes (DEGs), with 209 upregulated and 149 downregulated. DEGs were mostly enriched in biological processes and pathways associated with hypoxia acclimatization at high altitudes, according to both GO and KEGG enrichment analyses. ERH, VBP1, BINP3L, TOMM5, PSMA4, and POLR2K were identified by taking intersections of the DEGs between meta-analysis and GSE46480 and verified by qRT-PCR experiments, which were inextricably linked to hypoxia. Immune infiltration analysis showed significant differences in immune cells between samples at sea level and high altitudes. Conclusion: Identifying the DEGs and pathways will improve our understanding of immune function during high-altitude hypoxia at a molecular level. Targeting hypoxia-sensitive pathways in immune cells is interesting in treating high-altitude sickness. This study provides support for further research on high-altitude acclimatization.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhichao Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fujin Fang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Huan Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
37
|
Anand S, Azam Ansari M, Kumaraswamy Sukrutha S, Alomary MN, Anwar Khan A, Elderdery AY. Resolvins Lipid Mediators: Potential Therapeutic Targets in Alzheimer and Parkinson Disease. Neuroscience 2022; 507:139-148. [PMID: 36372297 DOI: 10.1016/j.neuroscience.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and resolution are highly programmed processes involving a plethora of immune cells. Lipid mediators synthesized from arachidonic acid metabolism play a pivotal role in orchestrating the signaling cascades in the game of inflammation. The majority of the studies carried out so far on inflammation were aimed at inhibiting the generation of inflammatory molecules, whereas recent research has shifted more towards understanding the resolution of inflammation. Owing to chronic inflammation as evident in neuropathophysiology, the resolution of inflammation together with the class of lipid mediators actively involved in its regulation has attracted the attention of the scientific community as therapeutic targets. Both omega-three polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, orchestrate a vital regulatory role in inflammation development. Resolvins derived from these fatty acids comprise the D-and E-series resolvins. A growing body of evidence using in vitro and in vivo models has revealed the pro-resolving and anti-inflammatory potential of resolvins. This systematic review sheds light on the synthesis, specialized receptors, and resolution of inflammation mediated by resolvins in Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sambamurthy Kumaraswamy Sukrutha
- Department of Microbiology, Biotechnology and Food Technology, Jnana Bharathi Campus, Bangalore University, Bengaluru, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anmar Anwar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| |
Collapse
|
38
|
Li G, Liu J, Guo M, Gu Y, Guan Y, Shao Q, Ma W, Ji X. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Dis 2022; 8:473. [PMID: 36450714 PMCID: PMC9712431 DOI: 10.1038/s41420-022-01260-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Chronic hypoxia leads to irreversible cognitive impairment, primarily due to hippocampal neurodegeneration, for which the underlying mechanism remains poorly understood. We administered hypoxia (13%) to C57BL mice for 1-14 days in this study. Chronic hypoxia for 7 or 14 d, but not 1 or 3 d, resulted in alpha-synuclein hyperphosphorylation at serine129 (α-Syn p-S129) and protein aggregation, hippocampal neurodegeneration, and cognitive deficits, whereas the latter could be prevented by alpha-synuclein knockdown or an administered short peptide competing at α-Syn S129. These results suggest that α-Syn p-S129 mediates hippocampal degeneration and cognitive impairment following chronic hypoxia. Furthermore, we found that chronic hypoxia enhanced ceramide catabolism by inducing hypoxia-inducible factor (HIF)-2α and HIF-2α-dependent transcriptional activation of alkaline ceramidase 2 (Acer2). Thus, the enzymatic activity of protein phosphatase 2A (PP2A), a specific phosphatase for α-syn, is inhibited, leading to the sustained induction of α-Syn p-S129. Finally, we found that intermittent hypoxic preconditioning protected against subsequent chronic hypoxia-induced hippocampal neurodegeneration and cognitive impairment by preventing α-Syn p-S129. These results proved the critical role of α-syn pathology in chronic hypoxia-afforded cognitive impairment and revealed a novel mechanism underlying α-syn hyperphosphorylation during chronic hypoxia. The findings bear implications in developing novel therapeutic interventions for chronic hypoxia-related brain disorders.
Collapse
Affiliation(s)
- Gaifen Li
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuying Guan
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qianqian Shao
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China ,grid.413259.80000 0004 0632 3337Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Jiang X, Xue Y, Mustafa M, Xing Z. An updated review of the effects of eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins on bone preservation. Prostaglandins Other Lipid Mediat 2022; 160:106630. [PMID: 35263670 DOI: 10.1016/j.prostaglandins.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Resolvins are biosynthesized from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in vivo by means of enzymatic activities, and these factors can attenuate inflammation and promote tissue regeneration. Inflammatory bone disorders can lead to bone loss and thereby be harmful to human health. The link between bone preservation and resolvins has been discussed in some experimental studies. Significant evidence has shown that resolvins benefit bone health and bone preservation by promoting the resolution of inflammation and directly regulating osteoclasts and osteoblasts. Therefore, this review highlights the role and beneficial impact of resolvins derived from EPA and DHA on inflammatory bone disorders, such as rheumatoid arthritis and periodontitis. In addition, the mechanisms by which resolvins exert their beneficial effects on bone preservation have also been summarized based on the available literature.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, 5009 Bergen, Norway
| | - Zhe Xing
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
40
|
Resolution of inflammation: Intervention strategies and future applications. Toxicol Appl Pharmacol 2022; 449:116089. [DOI: 10.1016/j.taap.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
|
41
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
42
|
Yao X, Li W, Li L, Li M, Zhao Y, Fang D, Zeng X, Luo Z. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis 2022; 13:258. [PMID: 35319018 PMCID: PMC8940925 DOI: 10.1038/s41419-022-04711-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine modification is the most common RNA modification mechanism in mammals. YTHDF1, a m6A reader, can recognize the m6A of mRNAs to facilitate the interaction with the mRNA ribosome assembly and recruitment of translation initiators to promote translation. From a clinical perspective, YTHDF1 upregulation is frequently observed in breast cancer, but its involvement in those cancer-related events is still unclear. Here we report that YTHDF1 is a cancer driver capable of facilitating the proliferation and invasion of breast cancer cells as well as enhancing tumorigenicity and metastasis through promoting glycolysis. We found that tumor hypoxia can transcriptionally induce HIF1α and post-transcriptionally inhibit the expression of miR-16-5p to promote YTHDF1 expression, which could sequentially enhance tumor glycolysis by upregulating PKM2 and eventually increase the tumorigenesis and metastasis potential of breast cancer cells. Inhibiting YTHDF1 via gene knockdown or miR-16-5p would significantly abolish YTHDF1-dependent tumor growth and metastasis. In summary, we identified the role of the YTHDF1-PKM2 signal axis in the occurrence and development of breast cancer, which can be used as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang, 550004, China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Xiaohua Zeng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
43
|
Schebb NH, Kühn H, Kahnt AS, Rund KM, O’Donnell VB, Flamand N, Peters-Golden M, Jakobsson PJ, Weylandt KH, Rohwer N, Murphy RC, Geisslinger G, FitzGerald GA, Hanson J, Dahlgren C, Alnouri MW, Offermanns S, Steinhilber D. Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators-What is the Evidence so far? Front Pharmacol 2022; 13:838782. [PMID: 35308198 PMCID: PMC8924552 DOI: 10.3389/fphar.2022.838782] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid S. Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina M. Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Valerie B. O’Donnell
- School of Medicine, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolas Flamand
- Département de Médecine, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado-Denver, Aurora, CO, United States
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital of Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| |
Collapse
|
44
|
Ruiz A, Romero-García AS, Mancilla-Jiménez R, Juárez E. Los ácidos grasos poliinsaturados y sus derivados regulan infecciones respiratorias. NCT NEUMOLOGÍA Y CIRUGÍA DE TÓRAX 2022; 81:41-51. [DOI: 10.35366/105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Li C, Chen X, Ren X, Chen JL, Chen H, Yu JJ, Ran QC, Kang S, Chen XM, Zhao ZJ. Identification of Hypoxia-Related Molecular Classification and Associated Gene Signature in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:709865. [PMID: 34888229 PMCID: PMC8649955 DOI: 10.3389/fonc.2021.709865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
The high heterogeneity of oral squamous cell carcinoma (OSCC) is the main obstacle for individualized treatment. Recognizing the characteristics of different subtypes and investigating the promising strategies for each subclass are of great significance in precise treatment. In this study, we systematically evaluated hypoxia-mediated patterns together with immune characteristics of 309 OSCC patients in the TCGA training set and 97 patients in the GSE41613 testing set. We further identified two different hypoxia subtypes with distinct immune microenvironment traits and provided treatment programs for the two subclasses. In order to assess hypoxia level individually, we finally constructed a hypoxia-related risk score, which could predict the clinical outcome and immunotherapy response of OSCC patients. In summary, the recognition of different hypoxia patterns and the establishment of hypoxia-related risk score might enhance our understanding of the tumor microenvironment of OSCC and provide more personalized treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Li
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Jia-Lin Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Hao Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Jing-Jia Yu
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Qiu-Chi Ran
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Shuang Kang
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Xi-Meng Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhen-Jin Zhao
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:12803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
48
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
49
|
Chen Z, He X, Yao MW, Li Z, Xu X. [Research advances on the cholinergic inflammatory reflex and inflammation resolution]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:885-889. [PMID: 34645156 PMCID: PMC11917218 DOI: 10.3760/cma.j.cn501120-20200609-00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The vagus nerve plays an important role in regulating the homeostasis of inflammation. Inflammation signals in the body are passed to the vagus nerve efferent fibers via nerve reflexes, and the signals generated by efferent fibers will play an anti-inflammatory role in various inflammatory diseases through immune cells such as T cells that express choline acetyltransferase and macrophages. However, the resolution of inflammation is not only the interaction between pro-inflammatory and anti-inflammatory cytokines, but also an active process of biosynthesis, including the synthesis of various pro-resolving mediators and their physiological utility process. Moreover, the cholinergic inflammation reflex also plays a crucial role in inflammation resolution. This review reviews and summarizes the cholinergic inflammatory reflex and its key role in the process of inflammation resolution.
Collapse
Affiliation(s)
- Z Chen
- Basic Medical School of Army Medical University (the Third Military Medical University), Chongqing 400038, China
| | - X He
- Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - M W Yao
- Department of Stem Cell and Regenerative Medicine, Army Medical Center of PLA, Chongqing 400042, China
| | - Z Li
- Department of Stem Cell and Regenerative Medicine, Army Medical Center of PLA, Chongqing 400042, China
| | - X Xu
- Department of Stem Cell and Regenerative Medicine, Army Medical Center of PLA, Chongqing 400042, China
| |
Collapse
|
50
|
Koenis DS, Beegun I, Jouvene CC, Aguirre GA, Souza PR, Gonzalez-Nunez M, Ly L, Pistorius K, Kocher HM, Ricketts W, Thomas G, Perretti M, Alusi G, Pfeffer P, Dalli J. Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in COVID-19. Circ Res 2021; 129:e54-e71. [PMID: 34238021 PMCID: PMC8336787 DOI: 10.1161/circresaha.121.319142] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Resolution mechanisms are central in both the maintenance of homeostasis and the return to catabasis following tissue injury and infections. Among the proresolving mediators, the essential fatty acid-derived specialized proresolving lipid mediators (SPM) govern immune responses to limit disease severity. Notably, little is known about the relationship between the expression and activity of SPM pathways, circulating phagocyte function and disease severity in patients infected with the novel severe acute respiratory syndrome coronavirus 2 leading to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Duco Steven Koenis
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Issa Beegun
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Charlotte Camille Jouvene
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gabriel Amador Aguirre
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Patricia Regina Souza
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Maria Gonzalez-Nunez
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Lucy Ly
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kimberly Pistorius
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - William Ricketts
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Gavin Thomas
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Mauro Perretti
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| | - Ghassan Alusi
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul Pfeffer
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Jesmond Dalli
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| |
Collapse
|