1
|
Hou X, Wang H, Yao X, Zhou Q, Niu X. Pt-Induced Sublattice Distortion Facilitates Enzyme Cascade Reactions for Eradicating Intracellularly Methicillin-Resistant Staphylococcus aureus and Enhancing Diabetic Wound Healing. ACS NANO 2025; 19:17709-17727. [PMID: 40307061 DOI: 10.1021/acsnano.5c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Metal oxide nanozymes hold significant potential in combating bacterial infections; however, their ordered crystal structures limit the enhancement of catalytic activity, posing challenges in addressing clinical needs for eliminating intracellularly colonized bacteria. Here, we report the development of an integrated diagnostic-therapeutic microneedle patch incorporates the Res@PtZ-Z nanozyme hybrid. Res@PtZ-Z consists of a ZIF shell loaded with the natural compound resveratrol (Res), encapsulating a Pt-doped zinc oxide (ZnO) nanozyme core (PtZ). The Res component modulates charge distribution on the ZIF shell and attenuates bacterial virulence, thereby promoting the uptake of Res@PtZ-Z by host cells. The PtZ core, doped with Pt4+ to induce sublattice distortion in ZnO, exhibits oxidase-like, peroxidase-like, and catalase-like activities. Under intracellular hypoxic conditions, the cascade of these enzyme-like activities ensures a sustained generation of reactive oxygen species (ROS), enabling robust antibacterial effects. Additionally, Res@PtZ-Z enables real-time infection monitoring by oxidizing the 3,3',5,5'-tetramethylbenzidine (TMB) substrate to produce a distinct colorimetric response. This approach addresses both methicillin-resistant Staphylococcus aureus (MRSA) invasion and intracellular persistence, contributing to improved infection management and promoting wound healing.
Collapse
Affiliation(s)
- Xiaoning Hou
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xinyu Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Qianliao Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
2
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Johnstone BA, Christie MP, Joseph R, Morton CJ, Brown HG, Hanssen E, Sanford TC, Abrahamsen HL, Tweten RK, Parker MW. Structural basis for the pore-forming activity of a complement-like toxin. SCIENCE ADVANCES 2025; 11:eadt2127. [PMID: 40153490 PMCID: PMC11952106 DOI: 10.1126/sciadv.adt2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Pore-forming proteins comprise a highly diverse group of proteins exemplified by the membrane attack complex/perforin (MACPF), cholesterol-dependent cytolysin (CDC), and gasdermin superfamilies, which all form gigantic pores (>150 angstroms). A recently found family of pore-forming toxins, called CDC-like proteins (CDCLs), are wide-spread in gut microbes and are a prevalent means of antibacterial antagonism. However, the structural aspects of how CDCLs assemble a pore remain a mystery. Here, we report the crystal structure of a proteolytically activated CDCL and cryo-electron microscopy structures of a prepore-like intermediate and a transmembrane pore providing detailed snapshots across the entire pore-forming pathway. These studies reveal a sophisticated array of regulatory features to ensure productive pore formation, and, thus, CDCLs straddle the MACPF, CDC, and gasdermin lineages of the giant pore superfamilies.
Collapse
Affiliation(s)
- Bronte A. Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle P. Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hamish G. Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tristan C. Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter L. Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rodney K. Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| |
Collapse
|
4
|
Ren K, Farrell JD, Li Y, Guo X, Xie R, Liu X, Kang Q, Fan Q, Ye F, Ding J, Jiao F. Mechanisms of RCD-1 pore formation and membrane bending. Nat Commun 2025; 16:1011. [PMID: 39856083 PMCID: PMC11760362 DOI: 10.1038/s41467-025-56398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Regulator of cell death-1 (RCD-1) governs the heteroallelic expression of RCD-1-1 and RCD-1-2, a pair of fungal gasdermin (GSDM)-like proteins, which prevent cytoplasmic mixing during allorecognition and safeguard against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (e.g., senescence plasmids) by effecting a form of cytolytic cell death. However, the underlying mechanisms by which RCD-1 acts on the cell membrane remain elusive. Here, we demonstrate that RCD-1 binds acidic lipid membranes, forms pores, and induces membrane bending. Using atomic force microscopy (AFM) and AlphaFold, we show that RCD-1-1 and RCD-1-2 form heterodimers that further self-assemble into ~14.5 nm-wide transmembrane pores (~10 heterodimers). Moreover, through AFM force spectroscopy and micropipette aspiration, we reveal that RCD-1 proteins bend membranes with low bending moduli. This combined action of pore formation and membrane deformation may constitute a conserved mechanism within the broader GSDM family.
Collapse
Affiliation(s)
- Keli Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - James Daniel Farrell
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, PR China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, PR China
| | - Yueyue Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
- University of Chinese Academy of Sciences, 101408, Beijing, PR China
| | - Xinrui Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, PR China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
- University of Chinese Academy of Sciences, 101408, Beijing, PR China
| | - Fang Jiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, PR China.
| |
Collapse
|
5
|
Snoj T, Lukan T, Gruden K, Anderluh G. Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes. J Membr Biol 2024:10.1007/s00232-024-00330-3. [PMID: 39692881 DOI: 10.1007/s00232-024-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.
Collapse
Affiliation(s)
- Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Graduate School of Biosciences, Biotehnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Chen Y, Yuan Z, Sun L. The evolutionary diversification and antimicrobial potential of MPEG1 in Metazoa. Comput Struct Biotechnol J 2023; 21:5818-5828. [PMID: 38213882 PMCID: PMC10781884 DOI: 10.1016/j.csbj.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Macrophage-expressed gene 1 (MPEG1) is an ancient immune effector known to exist in Cnidaria, Mollusca, Actinopterygii, and Mammalia. In this study, we examined the evolution and antibacterial potential of MPEG1 across Metazoa. By unbiased data-mining, MPEG1 orthologs were found in 11 of 34 screened phyla. In invertebrates, MPEG1 is present in the major phyla and exhibits intensive duplication. In vertebrates, class-based clades were formed by the major, generic MPEG1 (gMPEG1) in each class. However, there is a minority of unique MPEG1 (uMPEG1) from 71 species of 4 classes that clustered into a separate clade detached from all major class-based clades. gMPEG1 and uMPEG1 exhibit strong genomic collinearity and are surrounded by high-density transposons. gMPEG1 and uMPEG1 transcript expressions were most abundant in immune organs, but differed markedly in tissue specificity. Systematic analysis identified an antimicrobial peptide (AMP)-like segment in the C-terminal (CT) tail of MPEG1. Peptides based on the AMP-like regions of 35 representative MPEG1 were synthesized. Bactericidal activities were displayed by all peptides. Together these results suggest transposon-propelled evolutionary diversification of MPEG1 in Metazoa that has likely led to functional specialisation. This study also reveals a possible antimicrobial mechanism mediated directly and solely by the CT tail of MPEG1.
Collapse
Affiliation(s)
- Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang Z, Zhao Z, Huang K, Liang Z. Acid-resistant enzymes: the acquisition strategies and applications. Appl Microbiol Biotechnol 2023; 107:6163-6178. [PMID: 37615723 DOI: 10.1007/s00253-023-12702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Enzymes have promising applications in chemicals, food, pharmaceuticals, and other variety products because of their high efficiency, specificity, and environmentally friendly properties. However, due to the complexity of raw materials, pH, temperature, solvents, etc., the application range of enzymes is greatly limited in the industry. Protein engineering and enzyme immobilization are classical strategies to overcome the limitations of industrial applications. Although the pH tendency of enzymes has been extensively researched, the mechanism underlying enzyme acid resistance is unclear, and a less practical strategy for altering the pH propensity of enzymes has been suggested. This review proposes that the optimum pH of enzyme is determined by the pKa values of active center ionizable amino acid residues. Three levels of acquiring acid-resistant enzymes are summarized: mining from extreme environments and enzyme databases, modification with protein engineering and enzyme microenvironment engineering, and de novo synthesis. The industrial applications of acid-resistant enzymes in chemicals, food, and pharmaceuticals are also summarized. KEY POINTS: • The mechanism of enzyme acid resistance is fundamentally determined. • The three aspects of the method for acquiring acid-resistant enzymes are summarized. • Computer-aided strategies and artificial intelligence are used to obtain acid-resistant enzymes.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China.
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Marini G, Poland B, Leininger C, Lukoyanova N, Spielbauer D, Barry JK, Altier D, Lum A, Scolaro E, Ortega CP, Yalpani N, Sandahl G, Mabry T, Klever J, Nowatzki T, Zhao JZ, Sethi A, Kassa A, Crane V, Lu AL, Nelson ME, Eswar N, Topf M, Saibil HR. Structural journey of an insecticidal protein against western corn rootworm. Nat Commun 2023; 14:4171. [PMID: 37443175 PMCID: PMC10344926 DOI: 10.1038/s41467-023-39891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.
Collapse
Affiliation(s)
- Guendalina Marini
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Brad Poland
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Chris Leininger
- Corteva Agriscience, Johnston, IA, 50131, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
| | | | | | - Dan Altier
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Amy Lum
- Corteva Agriscience, Johnston, IA, 50131, USA
- Willow Biosciences, 319 N Bernardo Ave #4, Mountain View, CA, 94043, USA
| | | | - Claudia Pérez Ortega
- Corteva Agriscience, Johnston, IA, 50131, USA
- Hologic, Inc., 250 Campus Drive, Marlborough, MA, 01752, USA
| | - Nasser Yalpani
- Corteva Agriscience, Johnston, IA, 50131, USA
- Dept. of Biology, University of British Columbia Okanagan, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | - Tim Mabry
- Corteva Agriscience, Ivesdale, IL, 61851, USA
| | | | | | | | - Amit Sethi
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
| |
Collapse
|
9
|
Voisin TB, Couves EC, Tate EW, Bubeck D. Dynamics and Molecular Interactions of GPI-Anchored CD59. Toxins (Basel) 2023; 15:430. [PMID: 37505699 PMCID: PMC10467114 DOI: 10.3390/toxins15070430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
CD59 is a GPI-anchored cell surface receptor that serves as a gatekeeper to controlling pore formation. It is the only membrane-bound inhibitor of the complement membrane attack complex (MAC), an immune pore that can damage human cells. While CD59 blocks MAC pores, the receptor is co-opted by bacterial pore-forming proteins to target human cells. Recent structures of CD59 in complexes with binding partners showed dramatic differences in the orientation of its ectodomain relative to the membrane. Here, we show how GPI-anchored CD59 can satisfy this diversity in binding modes. We present a PyLipID analysis of coarse-grain molecular dynamics simulations of a CD59-inhibited MAC to reveal residues of complement proteins (C6:Y285, C6:R407 C6:K412, C7:F224, C8β:F202, C8β:K326) that likely interact with lipids. Using modules of the MDAnalysis package to investigate atomistic simulations of GPI-anchored CD59, we discover properties of CD59 that encode the flexibility necessary to bind both complement proteins and bacterial virulence factors.
Collapse
Affiliation(s)
- Tomas B. Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Emma C. Couves
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Rodríguez-Silvestre P, Laub M, Krawczyk PA, Davies AK, Schessner JP, Parveen R, Tuck BJ, McEwan WA, Borner GH, Kozik P. Perforin-2 is a pore-forming effector of endocytic escape in cross-presenting dendritic cells. Science 2023; 380:1258-1265. [PMID: 37347855 PMCID: PMC7614779 DOI: 10.1126/science.adg8802] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
During initiation of antiviral and antitumor T cell-mediated immune responses, dendritic cells (DCs) cross-present exogenous antigens on major histocompatibility complex (MHC) class I molecules. Cross-presentation relies on the unusual "leakiness" of endocytic compartments in DCs, whereby internalized proteins escape into the cytosol for proteasome-mediated generation of MHC I-binding peptides. Given that type 1 conventional DCs excel at cross-presentation, we searched for cell type-specific effectors of endocytic escape. We devised an assay suitable for genetic screening and identified a pore-forming protein, perforin-2 (Mpeg1), as a dedicated effector exclusive to cross-presenting cells. Perforin-2 was recruited to antigen-containing compartments, where it underwent maturation, releasing its pore-forming domain. Mpeg1-/- mice failed to efficiently prime CD8+ T cells to cell-associated antigens, revealing an important role for perforin-2 in cytosolic entry of antigens during cross-presentation.
Collapse
Affiliation(s)
| | - Marco Laub
- MRC Laboratory of Molecular Biology; Cambridge, UK
| | | | - Alexandra K. Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
- Current: School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Julia P. Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
| | | | - Benjamin J. Tuck
- MRC Laboratory of Molecular Biology; Cambridge, UK
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences; Cambridge, UK
| | - William A. McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences; Cambridge, UK
| | - Georg H.H. Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry; Martinsried, Germany
| | | |
Collapse
|
11
|
Ji B, Huang J, Zou K, Liu M, Pei Y, Huang J, Wang Y, Wang J, Zhou R, Xin W, Song J. Direct Visualization of the Dynamic Process of Epsilon Toxin on Hemolysis. SMALL METHODS 2023:e2300028. [PMID: 37116083 DOI: 10.1002/smtd.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Hemolysis is the process of rupturing erythrocytes (red blood cells) by forming nanopores on their membranes using hemolysins, which then impede membrane permeability. However, the self-assembly process before the state of transmembrane pores and underlying mechanisms of conformational change are not fully understood. In this work, theoretical and experimental evidence of the pre-pore morphology of Clostridium perfringens epsilon toxin (ETX), a typical hemolysin, is provided using in situ atomic force microscopy (AFM) complemented by molecular dynamics (MD) simulations to detect the conformational distribution of different states in Mica. The AFM suggests that the ETX pore is formed in two stages: ETX monomers first attach to the membrane and form a pre-pore in no special conditions required, which then undergo a conformational change to form a transmembrane pore at temperatures above the critical point in the presence of receptors. The authors' MD simulations reveal that initial nucleation occurs when specific amino acids adsorb to negatively charged mica cavities. This work fills the knowledge gap in understanding the early stage of hemolysis and the oligomerization of hemolysins. Moreover, the newly identified pre-pore of ETX holds promise as a candidate for nanopore applications.
Collapse
Affiliation(s)
- Bin Ji
- Department of Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Kexuan Zou
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meijun Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yufeng Pei
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yong Wang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
12
|
Jukic N, Perrino AP, Redondo-Morata L, Scheuring S. Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy. J Biol Chem 2023; 299:104575. [PMID: 36870686 PMCID: PMC10074808 DOI: 10.1016/j.jbc.2023.104575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Endosomal Sorting Complex Required for Transport (ESCRT) proteins assemble on the cytoplasmic leaflet of membranes and remodel them. ESCRT is involved in biological processes where membranes are bent away from the cytosol, constricted, and finally severed, such as in multi-vesicular body formation (in the endosomal pathway for protein sorting) or abscission during cell division. The ESCRT system is hijacked by enveloped viruses to allow buds of nascent virions to be constricted, severed and released. ESCRT-III proteins, the most downstream components of the ESCRT system, are monomeric and cytosolic in their autoinhibited conformation. They share a common architecture, a four-helix bundle with a fifth helix that interacts with this bundle to prevent polymerizing. Upon binding to negatively charged membranes, the ESCRT-III components adopt an activated state that allows them to polymerize into filaments and spirals, and to interact with the AAA-ATPase Vps4 for polymer remodeling. ESCRT-III has been studied with electron microscopy (EM) and fluorescence microscopy (FM); these methods provided invaluable information about ESCRT assembly structures or their dynamics, respectively, but neither approach provides detailed insights into both aspects simultaneously. High-speed atomic force microscopy (HS-AFM) has overcome this shortcoming, providing movies at high spatio-temporal resolution of biomolecular processes, significantly increasing our understanding of ESCRT-III structure and dynamics. Here, we review the contributions of HS-AFM in the analysis of ESCRT-III, focusing on recent developments of non-planar and deformable HS-AFM supports. We divide the HS-AFM observations into four sequential steps in the ESCRT-III lifecycle: 1) polymerization, 2) morphology, 3) dynamics, and 4) depolymerization.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Weill Cornell Medicine, Physiology, Biophysics and Systems Biology Graduate Program, New York, NY 10065, USA
| | - Alma P Perrino
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY 14853, USA.
| |
Collapse
|
13
|
Yu X, Ni T, Munson G, Zhang P, Gilbert RJC. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. EMBO J 2022; 41:e111857. [PMID: 36245269 PMCID: PMC9713709 DOI: 10.15252/embj.2022111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/15/2023] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.
Collapse
Affiliation(s)
- Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - George Munson
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUK
- Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Jia X, Knyazeva A, Zhang Y, Castro-Gonzalez S, Nakamura S, Carlson LA, Yoshimori T, Corkery DP, Wu YW. V. cholerae MakA is a cholesterol-binding pore-forming toxin that induces non-canonical autophagy. J Cell Biol 2022; 221:213518. [PMID: 36194176 PMCID: PMC9536202 DOI: 10.1083/jcb.202206040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Pore-forming toxins (PFTs) are important virulence factors produced by many pathogenic bacteria. Here, we show that the Vibrio cholerae toxin MakA is a novel cholesterol-binding PFT that induces non-canonical autophagy in a pH-dependent manner. MakA specifically binds to cholesterol on the membrane at pH < 7. Cholesterol-binding leads to oligomerization of MakA on the membrane and pore formation at pH 5.5. Unlike other cholesterol-dependent cytolysins (CDCs) which bind cholesterol through a conserved cholesterol-binding motif (Thr-Leu pair), MakA contains an Ile-Ile pair that is essential for MakA-cholesterol interaction. Following internalization, endosomal acidification triggers MakA pore-assembly followed by ESCRT-mediated membrane repair and V-ATPase-dependent unconventional LC3 lipidation on the damaged endolysosomal membranes. These findings characterize a new cholesterol-binding toxin that forms pores in a pH-dependent manner and reveals the molecular mechanism of host autophagy manipulation.
Collapse
Affiliation(s)
- Xiaotong Jia
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anastasia Knyazeva
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sergio Castro-Gonzalez
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lars-Anders Carlson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dale P. Corkery
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Dale P. Corkery:
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Correspondence to Yao-Wen Wu:
| |
Collapse
|
15
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
16
|
Jiao F, Dehez F, Ni T, Yu X, Dittman JS, Gilbert R, Chipot C, Scheuring S. Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism. Nat Commun 2022; 13:5039. [PMID: 36028507 PMCID: PMC9418332 DOI: 10.1038/s41467-022-32757-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a pore-forming protein that acts as a first line of defense in the mammalian immune system, rapidly killing engulfed microbes within the phagolysosome in macrophages. PFN2 self-assembles into hexadecameric pre-pore rings that transition upon acidification into pores damaging target cell membranes. Here, using high-speed atomic force microscopy (HS-AFM) imaging and line-scanning and molecular dynamics simulation, we elucidate PFN2 pre-pore to pore transition pathways and dynamics. Upon acidification, the pre-pore rings (pre-pore-I) display frequent, 1.8 s-1, ring-opening dynamics that eventually, 0.2 s-1, initiate transition into an intermediate, short-lived, ~75 ms, pre-pore-II state, inducing a clockwise pre-pore-I to pre-pore-II propagation. Concomitantly, the first pre-pore-II subunit, undergoes a major conformational change to the pore state that propagates also clockwise at a rate ~15 s-1. Thus, the pre-pore to pore transition is a clockwise hand-over-hand mechanism that is accomplished within ~1.3 s. Our findings suggest a clockwise mechanism of membrane insertion that with variations may be general for the MACPF/CDC superfamily.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, USA.
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - François Dehez
- Laboratoire International Associé, Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Robert Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Christophe Chipot
- Laboratoire International Associé, Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
17
|
Ebrahimnezhaddarzi S, Bird CH, Allison CC, Tuipulotu DE, Kostoulias X, Macri C, Stutz MD, Abraham G, Kaiserman D, Pang SS, Man SM, Mintern JD, Naderer T, Peleg AY, Pellegrini M, Whisstock JC, Bird PI. Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation. Immunol Cell Biol 2022; 100:529-546. [PMID: 35471730 PMCID: PMC9545170 DOI: 10.1111/imcb.12554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
To control infections phagocytes can directly kill invading microbes. Macrophage‐expressed gene 1 (Mpeg1), a pore‐forming protein sometimes known as perforin‐2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68‐positive endolysosomal compartment, and that it exists predominantly as a processed, two‐chain disulfide‐linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.
Collapse
Affiliation(s)
- Salimeh Ebrahimnezhaddarzi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Catherina H Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Xenia Kostoulias
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Siew Siew Pang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research The Australian National University Canberra ACT Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville VIC Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Anton Y Peleg
- Department of Microbiology, Monash Biomedicine Discovery Institute Monash University Clayton VIC Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School Monash University Prahran VIC Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
18
|
Couves EC, Bubeck D. Capturing pore-forming intermediates of MACPF and binary toxin assemblies by cryoEM. Curr Opin Struct Biol 2022; 75:102401. [PMID: 35700576 DOI: 10.1016/j.sbi.2022.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
Deployed by both pathogenic bacteria and host immune systems, pore-forming proteins rupture target membranes and can serve as conduits for effector proteins. Understanding how these proteins work relies on capturing assembly intermediates. Advances in cryoEM allowing in silico purification of heterogeneous assemblies has led to new insights into two main classes of pore-forming proteins: membrane attack complex perforin (MACPF) proteins and binary toxins. The structure of an immune activation complex, sMAC, shows how pores form by sequential templating and insertion of β-hairpins. CryoEM structures of bacterial binary toxins present a series of transitions along the pore formation pathway and reveal a general mechanism of effector protein translocation. Future developments in time-resolved cryoEM could capture and place short-lived states along the trajectory of pore-formation.
Collapse
Affiliation(s)
- Emma C Couves
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom. https://twitter.com/@EmmaCouves
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
19
|
Williams SI, Yu X, Ni T, Gilbert RJ, Stansfeld PJ. Structural, functional and computational studies of membrane recognition by Plasmodium Perforin-Like Proteins 1 and 2. J Mol Biol 2022; 434:167642. [DOI: 10.1016/j.jmb.2022.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
20
|
Pirc K, Clifton LA, Yilmaz N, Saltalamacchia A, Mally M, Snoj T, Žnidaršič N, Srnko M, Borišek J, Parkkila P, Albert I, Podobnik M, Numata K, Nürnberger T, Viitala T, Derganc J, Magistrato A, Lakey JH, Anderluh G. An oomycete NLP cytolysin forms transient small pores in lipid membranes. SCIENCE ADVANCES 2022; 8:eabj9406. [PMID: 35275729 PMCID: PMC8916740 DOI: 10.1126/sciadv.abj9406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, Oxford OX11 OQX, UK
| | - Neval Yilmaz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | | | - Mojca Mally
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Srnko
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Molecular Plant Physiology, FAU Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology—COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alessandra Magistrato
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
- National Research Council Institute of Material (CNR-IOM), 34136 Trieste, Italy
| | - Jeremy H. Lakey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Kikuchi K, Fukuyama T, Uchihashi T, Furuta T, Maeda YT, Ueno T. Protein Needles Designed to Self-Assemble through Needle Tip Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106401. [PMID: 34989115 DOI: 10.1002/smll.202106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The dynamic process of formation of protein assemblies is essential to form highly ordered structures in biological systems. Advances in structural and synthetic biology have led to the construction of artificial protein assemblies. However, development of design strategies exploiting the anisotropic shape of building blocks of protein assemblies has not yet been achieved. Here, the 2D assembly pattern of protein needles (PNs) is controlled by regulating their tip-to-tip interactions. The PN is an anisotropic needle-shaped protein composed of β-helix, foldon, and His-tag. Three different types of tip-modified PNs are designed by deleting the His-tag and foldon to change the protein-protein interactions. Observing their assembly by high-speed atomic force microscopy (HS-AFM) reveals that PN, His-tag deleted PN, and His-tag and foldon deleted PN form triangular lattices, the monomeric state with nematic order, and fiber assemblies, respectively, on a mica surface. Their assembly dynamics are observed by HS-AFM and analyzed by the theoretical models. Monte Carlo (MC) simulations indicate that the mica-PN interactions and the flexible and multipoint His-tag interactions cooperatively guide the formation of the triangular lattice. This work is expected to provide a new strategy for constructing supramolecular protein architectures by controlling directional interactions of anisotropic shaped proteins.
Collapse
Affiliation(s)
- Kosuke Kikuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Tatsuya Fukuyama
- Department of Physics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-0864, Japan
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
22
|
Ivanova ME, Lukoyanova N, Malhotra S, Topf M, Trapani JA, Voskoboinik I, Saibil HR. The pore conformation of lymphocyte perforin. SCIENCE ADVANCES 2022; 8:eabk3147. [PMID: 35148176 PMCID: PMC8836823 DOI: 10.1126/sciadv.abk3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central β sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.
Collapse
Affiliation(s)
- Marina E. Ivanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Fermi Ave, Harwell, Didcot OX11 0QX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joseph A. Trapani
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ilia Voskoboinik
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London WC1E 7HX, UK
| |
Collapse
|
23
|
Nadeem A, Berg A, Pace H, Alam A, Toh E, Ådén J, Zlatkov N, Myint SL, Persson K, Gröbner G, Sjöstedt A, Bally M, Barandun J, Uhlin BE, Wai SN. Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae. eLife 2022; 11:73439. [PMID: 35131030 PMCID: PMC8824476 DOI: 10.7554/elife.73439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
Collapse
Affiliation(s)
- Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hudson Pace
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Athar Alam
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Eric Toh
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Ådén
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Gerhard Gröbner
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Marta Bally
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Benton JT, Bayly-Jones C. Challenges and approaches to studying pore-forming proteins. Biochem Soc Trans 2021; 49:2749-2765. [PMID: 34747994 PMCID: PMC8892993 DOI: 10.1042/bst20210706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pore-forming proteins (PFPs) are a broad class of molecules that comprise various families, structural folds, and assembly pathways. In nature, PFPs are most often deployed by their host organisms to defend against other organisms. In humans, this is apparent in the immune system, where several immune effectors possess pore-forming activity. Furthermore, applications of PFPs are found in next-generation low-cost DNA sequencing, agricultural crop protection, pest control, and biosensing. The advent of cryoEM has propelled the field forward. Nevertheless, significant challenges and knowledge-gaps remain. Overcoming these challenges is particularly important for the development of custom, purpose-engineered PFPs with novel or desired properties. Emerging single-molecule techniques and methods are helping to address these unanswered questions. Here we review the current challenges, problems, and approaches to studying PFPs.
Collapse
Affiliation(s)
- Joshua T. Benton
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Kraševec N, Panevska A, Lemež Š, Razinger J, Sepčić K, Anderluh G, Podobnik M. Lipid-Binding Aegerolysin from Biocontrol Fungus Beauveria bassiana. Toxins (Basel) 2021; 13:820. [PMID: 34822604 PMCID: PMC8624791 DOI: 10.3390/toxins13110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Fungi are the most common pathogens of insects and thus important regulators of their populations. Lipid-binding aegerolysin proteins, which are commonly found in the fungal kingdom, may be involved in several biologically relevant processes including attack and defense against other organisms. Aegerolysins act alone or together with membrane-attack-complex/perforin (MACPF)-like proteins to form transmembrane pores that lead to cell lysis. We performed an in-depth bioinformatics analysis of aegerolysins in entomopathogenic fungi and selected a candidate aegerolysin, beauveriolysin A (BlyA) from Beauveria bassiana. BlyA was expressed as a recombinant protein in Escherichia coli, and purified to further determine its functional and structural properties, including lipid-binding ability. Aegerolysins were found to be encoded in genomes of entomopathogenic fungi, such as Beauveria, Cordyceps, Metarhizium and Ophiocordyceps. Detailed bioinformatics analysis revealed that they are linked to MACPF-like genes in most genomes. We also show that BlyA interacts with an insect-specific membrane lipid. These results were placed in the context of other fungal and bacterial aegerolysins and their partner proteins. We believe that aegerolysins play a role in promoting the entomopathogenic and antagonistic activity of B. bassiana, which is an active ingredient of bioinsecticides.
Collapse
Affiliation(s)
- Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Špela Lemež
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
- Biotechnology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, SI-1000 Ljubljana, Slovenia;
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| |
Collapse
|
26
|
Structural basis of soluble membrane attack complex packaging for clearance. Nat Commun 2021; 12:6086. [PMID: 34667172 PMCID: PMC8526713 DOI: 10.1038/s41467-021-26366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis. To prevent unregulated complement activation, extracellular chaperones capture soluble precursors to the membrane attack complex (sMAC). Here, structural analysis of sMAC reveals how clusterin recognizes heterogeneous sMAC complexes and inhibits polymerization of complement protein C9.
Collapse
|
27
|
Daskalov A, Glass NL. Gasdermin and Gasdermin-Like Pore-Forming Proteins in Invertebrates, Fungi and Bacteria. J Mol Biol 2021; 434:167273. [PMID: 34599942 DOI: 10.1016/j.jmb.2021.167273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The gasdermin family of pore-forming proteins (PFPs) has recently emerged as key molecular players controlling immune-related cell death in mammals. Characterized mammalian gasdermins are activated through proteolytic cleavage by caspases or serine proteases, which remove an inhibitory carboxy-terminal domain, allowing the pore-formation process. Processed gasdermins form transmembrane pores permeabilizing the plasma membrane, which often results in lytic and inflammatory cell death. While the gasdermin-dependent cell death (pyroptosis) has been predominantly characterized in mammals, it now has become clear that gasdermins also control cell death in early vertebrates (teleost fish) and invertebrate animals such as corals (Cnidaria). Moreover, gasdermins and gasdermin-like proteins have been identified and characterized in taxa outside of animals, notably Fungi and Bacteria. Fungal and bacterial gasdermins share many features with mammalian gasdermins including their mode of activation through proteolysis. It has been shown that in some cases the proteolytic activation is executed by evolutionarily related proteases acting downstream of proteins resembling immune receptors controlling pyroptosis in mammals. Overall, these findings establish gasdermins and gasdermin-regulated cell death as an extremely ancient mechanism of cellular suicide and build towards an understanding of the evolution of regulated cell death in the context of immunology. Here, we review the broader gasdermin family, focusing on recent discoveries in invertebrates, fungi and bacteria.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, France.
| | - N Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, United States
| |
Collapse
|
28
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
29
|
Heath GR, Lin YC, Matin TR, Scheuring S. Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods Enzymol 2021; 652:127-159. [PMID: 34059280 DOI: 10.1016/bs.mie.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channels and transporters are vital for transmembrane transport of ions and solutes, and also of larger compounds such as lipids and macromolecules. Therefore, they are crucial in many biological processes such as sensing, signal transduction, and the regulation of the distribution of molecules. Dysfunctions of these membrane proteins are associated to numerous diseases, and their interaction with drugs is critical in medicine. Understanding the behavior of channels and transporters requires structural and dynamic information to decipher the molecular mechanisms underlying their function. High-Speed Atomic Force Microscopy (HS-AFM) now allows the study of single transmembrane channels and transporters in action under physiological conditions, i.e., at ambient temperature and pressure, in physiological buffer and in a membrane, and in a most direct, label-free manner. In this chapter, we discuss the HS-AFM sample preparation, application, and data analysis protocols to study the structural and conformational dynamics of membrane-embedded channels and transporters.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Yi-Chih Lin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Tina R Matin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States; Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, United States.
| |
Collapse
|
30
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
32
|
Gilbert RJC. Electron microscopy as a critical tool in the determination of pore forming mechanisms in proteins. Methods Enzymol 2021; 649:71-102. [PMID: 33712203 DOI: 10.1016/bs.mie.2021.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy has consistently played an important role in the description of pore-forming protein systems. The discovery of pore-forming proteins has depended on visualization of the structural pores formed by their oligomeric protein complexes, and as electron microscopy has advanced technologically so has the degree of insight it has been able to give. This review considers a large number of published studies of pore-forming complexes in prepore and pore states determined using single-particle cryo-electron microscopy. Sample isolation and preparation, imaging and image analysis, structure determination and optimization of results are all discussed alongside challenges which pore-forming proteins particularly present. The review also considers the use made of cryo-electron tomography to study pores within their membrane environment and which will prove an increasingly important approach for the future.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
33
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
34
|
Aden S, Snoj T, Anderluh G. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods Enzymol 2021; 649:219-251. [PMID: 33712188 DOI: 10.1016/bs.mie.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.
Collapse
Affiliation(s)
- Saša Aden
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Snoj
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Abstract
Pore-forming proteins (PFPs) include virulence factors that are produced by many pathogenic bacteria. However, PFPs also comprise non-virulence factors, such as apoptotic Bcl2-like proteins, and also occur in non-pathogenic bacteria and indeed in all kingdoms of life. Pore-forming proteins are an ancient class of proteins, which are tremendously powerful in damaging cell membranes. In general, upon binding to lipid membranes, they convert from the soluble monomeric form into an oligomeric state, and then undergo a dramatic conformational change to form transmembrane pores. Thus, PFPs render the plasma membrane of their target cells permeable to solutes, potentially leading to cell death, or to more subtle manipulations of cellular functions. Recent cryo-EM and X-ray crystallography studies revealed high-resolution structures of several PFPs in their pre-pore and pore states, however many aspects regarding the cues that induce pore formation, the pre-pore to pore conformational transition, the mechanism of membrane permeation and associated dynamics are still less well understood, and direct visualization of the dynamics of these transitions are missing. Using high-speed atomic force microscopy (HS-AFM), the kinetics of oligomerization and the pre-pore to pore transition dynamics of various PFPs, such as Listeriolysin O (LLO), lysenin, and Perforin-2 (PFN2), could be studied. These studies revealed that LLO does not form pores of regular shape or size, but rather forms membrane inserted arcs that propagate and damage lipid membranes as lineactants. In contrast, lysenin forms stable pre-pore and pore nonameric rings and HS-AFM allowed to study their diffusion on and the pH-dependent insertion into the membrane. Similarly, PFN2 underwent pre-pore to pore transition upon acidification. The openness of the HS-AFM system allowed the transition to be imaged in real time and revealed that all observed molecules transitioned into the pore state within 3s. In this chapter, we detail protocols to prepare lipids, form supported lipid bilayers, and provide guidelines for real-time, real-space HS-AFM observations of PFPs in action.
Collapse
|
36
|
Abstract
Pore forming proteins are released as water-soluble monomers that form-mostly oligomeric-pores in target membranes. Our understanding of such pore formation relies in part on the direct visualization of their assemblies on and in the membrane. Here, we discuss the application of atomic force microscopy (AFM) to visualize and understand membrane pore formation, illustrated specifically by studies of proteins of the MACPF/CDC superfamily on supported lipid bilayers. Besides detailed protocols, we also point out common imaging artefacts and strategies to avoid them, and briefly outline how AFM can be effectively used in conjunction with other methods.
Collapse
Affiliation(s)
- Adrian W Hodel
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Katharine Hammond
- National Physical Laboratory, Teddington, United Kingdom; London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Physics & Astronomy, University College London, London, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
37
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
38
|
Lausen M, Thomsen ME, Christiansen G, Karred N, Stensballe A, Bennike TB, Birkelund S. Analysis of complement deposition and processing on Chlamydia trachomatis. Med Microbiol Immunol 2020; 210:13-32. [PMID: 33206237 DOI: 10.1007/s00430-020-00695-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of sexually transmitted bacterial infections worldwide, with over 120 million annual cases. C. trachomatis infections are associated with severe reproductive complications in women such as extrauterine pregnancy and tubal infertility. The infections are often long lasting, associated with immunopathology, and fail to elicit protective immunity which makes recurrent infections common. The immunological mechanisms involved in C. trachomatis infections are only partially understood. Murine infection models suggest that the complement system plays a significant role in both protective immunity and immunopathology during primary Chlamydia infections. However, only limited structural and mechanistic evidence exists on complement-mediated immunity against C. trachomatis. To expand our current knowledge on this topic, we analyzed global complement deposition on C. trachomatis using comprehensive in-depth mass spectrometry-based proteomics. We show that factor B, properdin, and C4b bind to C. trachomatis demonstrating that C. trachomatis-induced complement activation proceeds through at least two activation pathways. Complement activation leads to cleavage and deposition of C3 and C5 activation products, causing initiation of the terminal complement pathway and deposition of C5b, C6, C7, C8, C9 on C. trachomatis. Interestingly, using immunoelectron microscopy, we show that C5b-9 deposition occurred sporadically and only in rare cases formed complete lytic terminal complexes, possibly caused by the presence of the negative regulators vitronectin and clusterin. Finally, cleavage analysis of C3 demonstrated that deposited C3b is degraded to the opsonins iC3b and C3dg and that this complement opsonization facilitates C. trachomatis binding to human B-cells.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.,Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| |
Collapse
|
39
|
Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW, Bubeck D. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nat Commun 2020; 11:5818. [PMID: 33199689 PMCID: PMC7669874 DOI: 10.1038/s41467-020-19482-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.
Collapse
Affiliation(s)
- Nita R Shah
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Courtney M Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
40
|
Huitema L, Phillips T, Alexeev V, Tomic-Canic M, Pastar I, Igoucheva O. Intracellular escape strategies of Staphylococcus aureus in persistent cutaneous infections. Exp Dermatol 2020; 30:1428-1439. [PMID: 33179358 DOI: 10.1111/exd.14235] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic invasion of Staphylococcus aureus is a major concern in patients with chronic skin diseases like atopic dermatitis (AD), epidermolysis bullosa (EB), or chronic diabetic foot and venous leg ulcers, and can result in persistent and life-threatening chronic non-healing wounds. Staphylococcus aureus is generally recognized as extracellular pathogens. However, S. aureus can also invade, hide and persist in skin cells to contribute to wound chronicity. The intracellular life cycle of S. aureus is currently incompletely understood, although published studies indicate that its intracellular escape strategies play an important role in persistent cutaneous infections. This review provides current scientific knowledge about the intracellular life cycle of S. aureus in skin cells, which can be classified into professional and non-professional antigen-presenting cells, and its strategies to escape adaptive defense mechanisms. First, we discuss phenotypic switch of S. aureus, which affects intracellular routing and degradation. This review also evaluates potential intracellular escape mechanism of S. aureus to avoid intracellular degradation and antigen presentation, preventing an immune response. Furthermore, we discuss potential drug targets that can interfere with the intracellular life cycle of S. aureus. Taken together, this review aimed to increase scientific understanding about the intracellular life cycle of S. aureus into skin cells and its strategies to evade the host immune response, information that is crucial to reduce pathogenic invasion and life-threatening persistence of S. aureus in chronic cutaneous infections.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
41
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
42
|
Merselis LC, Jiang SY, Nelson SF, Lee H, Prabaker KK, Baker JL, Munson GP, Butte MJ. MPEG1/Perforin-2 Haploinsufficiency Associated Polymicrobial Skin Infections and Considerations for Interferon-γ Therapy. Front Immunol 2020; 11:601584. [PMID: 33224153 PMCID: PMC7670069 DOI: 10.3389/fimmu.2020.601584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Macrophage expressed gene 1 (MPEG1) is highly expressed in macrophages and other phagocytes. The gene encodes a bactericidal pore-forming protein, dubbed Perforin-2. Structural-, animal-, and cell-based studies have established that perforin-2 facilitates the destruction of phagocytosed microbes upon its activation within acidic phagosomes. Relative to wild-type controls, Mpeg1 knockout mice suffer significantly higher mortality rates when challenged with gram-negative or -positive pathogens. Only four variants of MPEG1 have been functionally characterized, each in association with pulmonary infections. Here we report a new MPEG1 non-sense variant in a patient with the a newly described association with persistent polymicrobial infections of the skin and soft tissue. Case Description A young adult female patient was evaluated for recurrent abscesses and cellulitis of the breast and demonstrated a heterozygous, rare variant in MPEG1 p.Tyr430*. Multiple courses of broad-spectrum antimicrobials and surgical incision and drainage failed to resolve the infection. Functional studies revealed that the truncation variant resulted in significantly reduced capacity of the patient’s phagocytes to kill intracellular bacteria. Patient-derived macrophages responded to interferon gamma (IFN-γ) by significantly increasing the expression of MPEG1. IFN-γ treatment supported perforin-2 dependent bactericidal activity and wound healing. Conclusions This case expands the phenotype of MPEG1 deficiency to include severe skin and soft tissue infection. We showed that haploinsufficiency of perforin-2 reduced the bactericidal capacity of human phagocytes. Interferon-gamma therapy increases expression of perforin-2, which may compensate for such variants. Thus, treatment with IFN-γ could help prevent infections.
Collapse
Affiliation(s)
- Leidy C Merselis
- University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, United States
| | - Shirley Y Jiang
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California Los Angeles, Los Angeles CA, United States.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States.,California Center for Rare Diseases, Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Hane Lee
- Department of Human Genetics, University of California Los Angeles, Los Angeles CA, United States.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kavitha K Prabaker
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer L Baker
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - George P Munson
- University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, United States
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States.,California Center for Rare Diseases, Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
43
|
Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Front Immunol 2020; 11:581906. [PMID: 33178209 PMCID: PMC7593815 DOI: 10.3389/fimmu.2020.581906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Siew Siew Pang
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michelle A Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
O'Neill K, Pastar I, Tomic-Canic M, Strbo N. Perforins Expression by Cutaneous Gamma Delta T Cells. Front Immunol 2020; 11:1839. [PMID: 32922397 PMCID: PMC7456908 DOI: 10.3389/fimmu.2020.01839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Gamma delta (GD) T cells are an unconventional T cell type present in both the epidermis and the dermis of human skin. They are critical to regulating skin inflammation, wound healing, and anti-microbial defense. Similar to CD8+ cytotoxic T cells expressing an alpha beta (AB) TCR, GD T cells have cytolytic capabilities. They play an important role in elimination of cutaneous tumors and virally infected cells and have also been implicated in pathogenicity of several autoimmune diseases. T cell cytotoxicity is associated with the expression of the pore forming protein Perforin. Perforin is an innate immune protein containing a membrane attack complex perforin-like (MACPF) domain and functions by forming pores in the membranes of target cells, which allow granzymes and reactive oxygen species to enter the cells and destroy them. Perforin-2, encoded by the gene MPEG1, is a newly discovered member of this protein family that is critical for clearance of intracellular bacteria. Cutaneous GD T cells express both Perforin and Perforin-2, but many questions remain regarding the role that these proteins play in GD T cell mediated cytotoxicity against tumors and bacterial pathogens. Here, we review what is known about Perforin expression by skin GD T cells and the mechanisms that contribute to Perforin activation.
Collapse
Affiliation(s)
- Katelyn O'Neill
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
45
|
Abstract
The skin microbiota is intimately coupled with cutaneous health and disease. Interactions between commensal microbiota and the multiple cell types involved in cutaneous wound healing regulate the immune response and promote barrier restoration. This dialog between host cells and the microbiome is dysregulated in chronic wounds. In this review, we first describe how advances in sequencing approaches and analysis have been used to study the chronic wound microbiota, and how these findings underscored the complexity of microbial communities and their association with clinical outcomes in patients with chronic wound disorders. We also discuss the mechanistic insights gathered from multiple animal models of polymicrobial wound infections. In addition to the well-described role of bacteria residing in polymicrobial biofilms, we also discuss the role of the intracellular bacterial niche in wound healing. We describe how, in contrast to pathogenic species capable of subverting skin immunity, commensals are essential for the regulation of the cutaneous immune system and provide protection from intracellular pathogens through modulation of the antimicrobial molecule, Perforin-2. Despite recent advances, more research is needed to shed light on host-microbiome crosstalk in both healing and nonhealing chronic wounds to appropriately guide therapeutic developments.
Collapse
Affiliation(s)
- Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Jamie L Burgess
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA
| | - Katelyn E O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami, Miller School of Medicine, 1600 NW 10th Ave RMSB R-6056, Miami, FL, 33136, USA.
| |
Collapse
|
46
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Keb G, Fields KA. An Ancient Molecular Arms Race: Chlamydia vs. Membrane Attack Complex/Perforin (MACPF) Domain Proteins. Front Immunol 2020; 11:1490. [PMID: 32760406 PMCID: PMC7371996 DOI: 10.3389/fimmu.2020.01490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Dynamic interactions that govern the balance between host and pathogen determine the outcome of infection and are shaped by evolutionary pressures. Eukaryotic hosts have evolved elaborate and formidable defense mechanisms that provide the basis for innate and adaptive immunity. Proteins containing a membrane attack complex/Perforin (MACPF) domain represent an important class of immune effectors. These pore-forming proteins induce cell killing by targeting microbial or host membranes. Intracellular bacteria can be shielded from MACPF-mediated killing, and Chlamydia spp. represent a successful paradigm of obligate intracellular parasitism. Ancestors of present-day Chlamydia likely originated at evolutionary times that correlated with or preceded many host defense pathways. We discuss the current knowledge regarding how chlamydiae interact with the MACPF proteins Complement C9, Perforin-1, and Perforin-2. Current evidence indicates a degree of resistance by Chlamydia to MACPF effector mechanisms. In fact, chlamydiae have acquired and adapted their own MACPF-domain protein to facilitate infection.
Collapse
Affiliation(s)
- Gabrielle Keb
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kenneth A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
48
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|