1
|
Schuette G, Lao Z, Zhang B. ChromoGen: Diffusion model predicts single-cell chromatin conformations. SCIENCE ADVANCES 2025; 11:eadr8265. [PMID: 39888999 PMCID: PMC11784829 DOI: 10.1126/sciadv.adr8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025]
Abstract
Breakthroughs in high-throughput sequencing and microscopic imaging technologies have revealed that chromatin structures vary considerably between cells of the same type. However, a thorough characterization of this heterogeneity remains elusive due to the labor-intensive and time-consuming nature of these experiments. To address these challenges, we introduce ChromoGen, a generative model based on state-of-the-art artificial intelligence techniques that efficiently predicts three-dimensional, single-cell chromatin conformations de novo with both region and cell type specificity. These generated conformations accurately reproduce experimental results at both the single-cell and population levels. Moreover, ChromoGen successfully transfers to cell types excluded from the training data using just DNA sequence and widely available DNase-seq data, thus providing access to chromatin structures in myriad cell types. These achievements come at a remarkably low computational cost. Therefore, ChromoGen enables the systematic investigation of single-cell chromatin organization, its heterogeneity, and its relationship to sequencing data, all while remaining economical.
Collapse
Affiliation(s)
| | | | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Almassalha LM, Carignano M, Liwag EP, Li WS, Gong R, Acosta N, Dunton CL, Gonzalez PC, Carter LM, Kakkaramadam R, Kröger M, MacQuarrie KL, Frederick J, Ye IC, Su P, Kuo T, Medina KI, Pritchard JA, Skol A, Nap R, Kanemaki M, Dravid V, Szleifer I, Backman V. Chromatin conformation, gene transcription, and nucleosome remodeling as an emergent system. SCIENCE ADVANCES 2025; 11:eadq6652. [PMID: 39792661 PMCID: PMC11721585 DOI: 10.1126/sciadv.adq6652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion. We show that packing domains are not topologically associated domains. Instead, packing domains exist across a structure-function life cycle that couples heterochromatin and transcription in situ, explaining how heterochromatin enzyme inhibition can produce a paradoxical decrease in transcription by destabilizing domain cores. Applied to development and aging, we show the pairing of heterochromatin and transcription at myogenic genes that could be disrupted by nuclear swelling. In sum, packing domains represent a foundation to explore the interactions of chromatin and transcription at the single-cell level in human health.
Collapse
Affiliation(s)
- Luay M. Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Marcelo Carignano
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Emily Pujadas Liwag
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - Ruyi Gong
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Acosta
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cody L. Dunton
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Paola Carrillo Gonzalez
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lucas M. Carter
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Rivaan Kakkaramadam
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Martin Kröger
- Magnetism and Interface Physics and Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Kyle L. MacQuarrie
- Stanley Manne Children’s Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane Frederick
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - I Chae Ye
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Patrick Su
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tiffany Kuo
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Karla I. Medina
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Josh A Pritchard
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Andrew Skol
- Stanley Manne Children’s Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Rikkert Nap
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Masato Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Vinayak Dravid
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology (IIN), Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Amrutkar RD, Amesar MV, Chavan LB, Baviskar NS, Bhamare VG. Precision Targeting of BET Proteins - Navigating Disease Pathways, Inhibitor Insights, and Shaping Therapeutic Frontiers: A Comprehensive Review. Curr Drug Targets 2025; 26:147-166. [PMID: 39385413 DOI: 10.2174/0113894501304747240823111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
The family of proteins known as Bromodomain and Extra-Terminal (BET) proteins has become a key participant in the control of gene expression, having a significant impact on numerous physiological and pathological mechanisms. This review offers a thorough investigation of the BET protein family, clarifying its various roles in essential cellular processes and its connection to a variety of illnesses, from inflammatory disorders to cancer. The article explores the structural and functional features of BET proteins, emphasizing their special bromodomain modules that control chromatin dynamics by identifying acetylated histones. BET proteins' complex roles in the development of cardiovascular, neurodegenerative, and cancer diseases are carefully investigated, providing insight into possible treatment avenues. In addition, the review carefully examines the history and relevance of BET inhibitors, demonstrating their capacity to modify gene expression profiles and specifically target BET proteins. The encouraging outcomes of preclinical and clinical research highlight BET inhibitors' therapeutic potential across a range of disease contexts. The article summarizes the state of BET inhibitors today and makes predictions about the challenges and future directions of the field. This article provides insights into the changing field of BET protein-targeted interventions by discussing the potential of personalized medicine and combination therapies involving BET inhibitors. This thorough analysis combines many aspects of BET proteins, such as their physiological roles and their roles in pathophysiological conditions. As such, it is an invaluable tool for scientists and medical professionals who are trying to figure out how to treat patients by using this fascinating protein family.
Collapse
Affiliation(s)
- Rakesh D Amrutkar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Mehul V Amesar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Lokesh B Chavan
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Nilesh S Baviskar
- Department of Pharmaceutical Chemistry, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| | - Vaibhav G Bhamare
- Department of Pharmaceutics, K. K. Wagh College of Pharmacy, Panchavati Nasik, India
| |
Collapse
|
4
|
Carignano MA, Kroeger M, Almassalha LM, Agrawal V, Li WS, Pujadas-Liwag EM, Nap RJ, Backman V, Szleifer I. Local volume concentration, packing domains, and scaling properties of chromatin. eLife 2024; 13:RP97604. [PMID: 39331520 PMCID: PMC11434620 DOI: 10.7554/elife.97604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally defined domains observed by single-cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as RAD21 degradation.
Collapse
Affiliation(s)
- Marcelo A Carignano
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Martin Kroeger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH ZurichZurichSwitzerland
| | - Luay M Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial HospitalEvanstonUnited States
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Wing Shun Li
- Applied Physics Program, Northwestern UniversityChicagoUnited States
| | | | - Rikkert J Nap
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
- Department of Chemistry, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
5
|
Carignano M, Kröger M, Almassalha LM, Agrawal V, Li WS, Pujadas-Liwag EM, Nap RJ, Backman V, Szleifer I. Local Volume Concentration, Packing Domains and Scaling Properties of Chromatin. ARXIV 2024:arXiv:2310.02257v3. [PMID: 38495560 PMCID: PMC10942481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally-defined domains observed by single cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as Rad21 degradation.
Collapse
Affiliation(s)
- Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Luay Matthew Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago IL 60611, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern, University, Evanston, IL 60208, USA
| | | | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Shim AR, Frederick J, Pujadas EM, Kuo T, Ye IC, Pritchard JA, Dunton CL, Gonzalez PC, Acosta N, Jain S, Anthony NM, Almassalha LM, Szleifer I, Backman V. Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure. PLoS One 2024; 19:e0301000. [PMID: 38805476 PMCID: PMC11132451 DOI: 10.1371/journal.pone.0301000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/10/2024] [Indexed: 05/30/2024] Open
Abstract
As imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA sequences within chromatin using the gold standard technique of three-dimensional fluorescence in situ hybridization (3D FISH). The chemical reagents involved in the 3D FISH protocol, specifically formamide, cause significant alterations to the sub-200 nm (sub-Mbp) chromatin structure. Alternatively, two labeling methods that do not rely on formamide denaturation, resolution after single-strand exonuclease resection (RASER)-FISH and clustered regularly interspaced short palindromic repeats (CRISPR)-Sirius, had minimal impact on the three-dimensional organization of chromatin. We present a polymer physics-based analysis of these protocols with guidelines for their interpretation when assessing chromatin structure using currently available techniques.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Emily M. Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Tiffany Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - I. Chae Ye
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Joshua A. Pritchard
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Cody L. Dunton
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Paola Carrillo Gonzalez
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Nicholas M. Anthony
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
7
|
Wu ZP, Bloom KS, Forest MG, Cao XZ. Transient crosslinking controls the condensate formation pathway within chromatin networks. Phys Rev E 2024; 109:L042401. [PMID: 38755828 PMCID: PMC11137846 DOI: 10.1103/physreve.109.l042401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
The network structure of densely packed chromatin within the nucleus of eukaryotic cells acts in concert with nonequilibrium processes. Using statistical physics simulations, we explore the control provided by transient crosslinking of the chromatin network by structural-maintenance-of-chromosome (SMC) proteins over (i) the physical properties of the chromatin network and (ii) condensate formation of embedded molecular species. We find that the density and lifetime of transient SMC crosslinks regulate structural relaxation modes and tune the sol-vs-gel state of the chromatin network, which imparts control over the kinetic pathway to condensate formation. Specifically, lower density, shorter-lived crosslinks induce sollike networks and a droplet-fusion pathway, whereas higher density, longer-lived crosslinks induce gellike networks and an Ostwald-ripening pathway.
Collapse
Affiliation(s)
- Zong-Pei Wu
- Department of Physics at Xiamen University, Xiamen 361005, P.R. China
| | - Kerry S. Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - M. Gregory Forest
- Departments of Mathematics, Applied Physical Sciences and Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xue-Zheng Cao
- Department of Physics at Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
8
|
Wei J, Xue Y, Liu Y, Tian H, Shao Y, Gao YQ. Steric repulsion introduced by loop constraints modulates the microphase separation of chromatins. J Chem Phys 2024; 160:054904. [PMID: 38341710 DOI: 10.1063/5.0189692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.
Collapse
Affiliation(s)
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Qin Gao
- Changping Laboratory, Beijing 102206, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, 5F, No. 9 Duxue Rd., Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
9
|
Rothörl J, Brems MA, Stevens TJ, Virnau P. Reconstructing diploid 3D chromatin structures from single cell Hi-C data with a polymer-based approach. FRONTIERS IN BIOINFORMATICS 2023; 3:1284484. [PMID: 38148761 PMCID: PMC10750380 DOI: 10.3389/fbinf.2023.1284484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Detailed understanding of the 3D structure of chromatin is a key ingredient to investigate a variety of processes inside the cell. Since direct methods to experimentally ascertain these structures lack the desired spatial fidelity, computational inference methods based on single cell Hi-C data have gained significant interest. Here, we develop a progressive simulation protocol to iteratively improve the resolution of predicted interphase structures by maximum-likelihood association of ambiguous Hi-C contacts using lower-resolution predictions. Compared to state-of-the-art methods, our procedure is not limited to haploid cell data and allows us to reach a resolution of up to 5,000 base pairs per bead. High resolution chromatin models grant access to a multitude of structural phenomena. Exemplarily, we verify the formation of chromosome territories and holes near aggregated chromocenters as well as the inversion of the CpG content for rod photoreceptor cells.
Collapse
Affiliation(s)
- Jan Rothörl
- Institute of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Maarten A. Brems
- Institute of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Tim J. Stevens
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Peter Virnau
- Institute of Physics, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
10
|
Carignano M, Kröger M, Almassalha L, Agrawal V, Li WS, Pujadas EM, Nap RJ, Backman V, Szleifer I. Local Volume Concentration, Packing Domains and Scaling Properties of Chromatin. RESEARCH SQUARE 2023:rs.3.rs-3399177. [PMID: 37886531 PMCID: PMC10602155 DOI: 10.21203/rs.3.rs-3399177/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that is able to capture the observed behavior across imaging and sequencing based measures of chromatin organization. The SR-EV model takes the return rules of the Self Returning Random Walk, incorporates excluded volume interactions, chain connectivity and expands the length scales range from 10 nm to over 1 micron. The model is computationally fast and we created thousands of configurations that we grouped in twelve different ensembles according to the two main parameters of the model. The analysis of the configurations was done in a way completely analogous to the experimental treatments used to determine chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. We find a robust agreement between the theoretical and experimental results. The overall organization of the model chromatin is corrugated, with dense packing domains alternating with a very dilute regions in a manner that resembles the mixing of two disordered bi-continuous phases. The return rules combined with excluded volume interactions lead to the formation of packing domains. We observed a transition from a short scale regime to a long scale regime occurring at genomic separations of ~ 4 × 104 base pairs or ~ 100 nm in distance. The contact probability reflects this transition with a change in the scaling exponent from larger than -1 to approximately -1. The analysis of the pair correlation function reveals that chromatin organizes following a power law scaling with exponent D ∈ { 2 , 3 } in the transition region between the short and long distance regimes.
Collapse
Affiliation(s)
- Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago IL 60611, USA
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily M. Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Cosma MP, Neguembor MV. The magic of unraveling genome architecture and function. Cell Rep 2023; 42:112361. [PMID: 37059093 DOI: 10.1016/j.celrep.2023.112361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Over the last decades, technological breakthroughs in super-resolution microscopy have allowed us to reach molecular resolution and design experiments of unprecedented complexity. Investigating how chromatin is folded in 3D, from the nucleosome level up to the entire genome, is becoming possible by "magic" (imaging genomic), i.e., the combination of imaging and genomic approaches. This offers endless opportunities to delve into the relationship between genome structure and function. Here, we review recently achieved objectives and the conceptual and technical challenges the field of genome architecture is currently undertaking. We discuss what we have learned so far and where we are heading. We elucidate how the different super-resolution microscopy approaches and, more specifically, live-cell imaging have contributed to the understanding of genome folding. Moreover, we discuss how future technical developments could address remaining open questions.
Collapse
Affiliation(s)
- Maria Pia Cosma
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, 510080 Guangzhou, China; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.
| |
Collapse
|
12
|
Kamat K, Lao Z, Qi Y, Wang Y, Ma J, Zhang B. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization. Biophys J 2023; 122:1376-1389. [PMID: 36871158 PMCID: PMC10111368 DOI: 10.1016/j.bpj.2023.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The 3D organization of eukaryotic genomes plays an important role in genome function. While significant progress has been made in deciphering the folding mechanisms of individual chromosomes, the principles of the dynamic large-scale spatial arrangement of all chromosomes inside the nucleus are poorly understood. We use polymer simulations to model the diploid human genome compartmentalization relative to nuclear bodies such as nuclear lamina, nucleoli, and speckles. We show that a self-organization process based on a cophase separation between chromosomes and nuclear bodies can capture various features of genome organization, including the formation of chromosome territories, phase separation of A/B compartments, and the liquid property of nuclear bodies. The simulated 3D structures quantitatively reproduce both sequencing-based genomic mapping and imaging assays that probe chromatin interaction with nuclear bodies. Importantly, our model captures the heterogeneous distribution of chromosome positioning across cells while simultaneously producing well-defined distances between active chromatin and nuclear speckles. Such heterogeneity and preciseness of genome organization can coexist due to the nonspecificity of phase separation and the slow chromosome dynamics. Together, our work reveals that the cophase separation provides a robust mechanism for us to produce functionally important 3D contacts without requiring thermodynamic equilibration that can be difficult to achieve.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
13
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Rauscher PM, de Pablo JJ. Random Knotting in Fractal Ring Polymers. Macromolecules 2022; 55:8409-8417. [PMID: 36186575 PMCID: PMC9520986 DOI: 10.1021/acs.macromol.2c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Indexed: 11/28/2022]
Abstract
![]()
Many ring polymer
systems of physical and biological
interest exhibit
both pronounced topological effects and nontrivial self-similarity,
but the relationship between these two phenomena has not yet been
clearly established. Here, we use theory and simulation to formulate
such a connection by studying a fundamental topological property—the
random knotting probability—for ring polymers with varying
fractal dimension, df. Using straightforward scaling arguments, we generalize a classic
mathematical result, showing that the probability of a trivial knot
decays exponentially with chain size, N, for all
fractal dimensions: P0(N) ∝ exp(−N/N0). However, no such simple considerations can account for
the dependence of the knotting length, N0, on df, necessitating
a more involved analytical calculation. This analysis reveals a complicated
double-exponential dependence, which is well supported by numerical
data. By contrast, functional forms typical of simple scaling theories
fail to adequately describe the observations. These findings are equally
valid for two-dimensional ring polymer systems, where “knotting”
is defined as the intersection of any two segments.
Collapse
Affiliation(s)
- Phillip M. Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division (MSD) and Center for Molecular Engineering (CME), Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Wang X, Yan J, Ye Z, Zhang Z, Wang S, Hao S, Shen B, Wei G. Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells. Front Cell Dev Biol 2022; 10:974750. [PMID: 36003143 PMCID: PMC9393755 DOI: 10.3389/fcell.2022.974750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Doxorubicin resistance remains a major therapeutic challenge leading to poor survival prognosis and treatment failure in breast cancer. Although doxorubicin induces massive changes in the transcriptional landscape are well known, potential diagnostic or therapeutic targets associated with the reorganization of three-dimensional (3D) chromatin architecture have not yet been systematically investigated. Methods: Here we performed in situ high-throughput chromosome conformation capture (Hi-C) on parental and doxorubicin-resistant MCF7 (MCF7-DR) human breast cancer cells, followed by integrative analysis of HiC, ATAC-seq, RNA-seq and TCGA data. Results: It revealed that A/B compartment switching was positively correlated to genome-wide differential gene expression. The genome of MCF7-DR cells was spatially reorganized into smaller topologically associating domains (TADs) and chromatin loops. We also revealed the contribution of increased chromatin accessibility and potential transcription factor families, including CTCF, AP-1 and bHLH, to gained TADs or loops. Intriguingly, we observed two condensed genomic regions (∼20 kb) with decreased chromatin accessibility flanking TAD boundaries, which might play a critical role in the formation or maintenance of TADs. Finally, combining data from TCGA, we identified a number of gained and lost enhancer-promoter interactions and their corresponding differentially expressed genes involved in chromatin organization and breast cancer signaling pathways, including FA2H, FOXA1 and JRKL, which might serve as potential treatment targets for breast cancer. Conclusion: These data uncovered a close connection between 3D genome reorganization, chromatin accessibility as well as gene transcription and provide novel insights into the epigenomic mechanisms involving doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jizhou Yan
- Department of Developmental Biology, Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Zhao Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Zhang
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sheng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuang Hao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Li Y, Agrawal V, Virk RKA, Roth E, Li WS, Eshein A, Frederick J, Huang K, Almassalha L, Bleher R, Carignano MA, Szleifer I, Dravid VP, Backman V. Analysis of three-dimensional chromatin packing domains by chromatin scanning transmission electron microscopy (ChromSTEM). Sci Rep 2022; 12:12198. [PMID: 35842472 PMCID: PMC9288481 DOI: 10.1038/s41598-022-16028-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
Chromatin organization over multiple length scales plays a critical role in the regulation of transcription. Deciphering the interplay of these processes requires high-resolution, three-dimensional, quantitative imaging of chromatin structure in vitro. Herein, we introduce ChromSTEM, a method that utilizes high-angle annular dark-field imaging and tomography in scanning transmission electron microscopy combined with DNA-specific staining for electron microscopy. We utilized ChromSTEM for an in-depth quantification of 3D chromatin conformation with high spatial resolution and contrast, allowing for characterization of higher-order chromatin structure almost down to the level of the DNA base pair. Employing mass scaling analysis on ChromSTEM mass density tomograms, we observed that chromatin forms spatially well-defined higher-order domains, around 80 nm in radius. Within domains, chromatin exhibits a polymeric fractal-like behavior and a radially decreasing mass-density from the center to the periphery. Unlike other nanoimaging and analysis techniques, we demonstrate that our unique combination of this high-resolution imaging technique with polymer physics-based analysis enables us to (i) investigate the chromatin conformation within packing domains and (ii) quantify statistical descriptors of chromatin structure that are relevant to transcription. We observe that packing domains have heterogeneous morphological properties even within the same cell line, underlying the potential role of statistical chromatin packing in regulating gene expression within eukaryotic nuclei.
Collapse
Affiliation(s)
- Yue Li
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eric Roth
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kai Huang
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen, 518132, China
| | - Luay Almassalha
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60611, USA
| | - Reiner Bleher
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Marcelo A Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
17
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Shim AR, Huang K, Backman V, Szleifer I. Chromatin as self-returning walks: From population to single cell and back. BIOPHYSICAL REPORTS 2021; 2:100042. [PMID: 36425085 PMCID: PMC9680733 DOI: 10.1016/j.bpr.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap between what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromosome trajectories-determined by our Self-Returning Random Walk model-to create populations of cells. We allow single cells to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell chromatin structures underlie population-averaged behavior.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Kai Huang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, P. R. China,Corresponding author
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois,Department of Chemistry, Northwestern University, Evanston, Illinois,Corresponding author
| |
Collapse
|
19
|
Abstract
Nuclear bodies are membraneless condensates that may form via liquid-liquid phase separation. The viscoelastic chromatin network could impact their stability and may hold the key for understanding experimental observations that defy predictions of classical theories. However, quantitative studies on the role of the chromatin network in phase separation have remained challenging. Using a diploid human genome model parameterized with chromosome conformation capture (Hi-C) data, we study the thermodynamics and kinetics of nucleoli formation. Dynamical simulations predict the formation of multiple droplets for nucleolar particles that experience specific interactions with nucleolus-associated domains (NADs). Coarsening dynamics, surface tension, and coalescence kinetics of the simulated droplets are all in quantitative agreement with experimental measurements for nucleoli. Free energy calculations further support that a two-droplet state, often observed for nucleoli in somatic cells, is metastable and separated from the single-droplet state with an entropic barrier. Our study suggests that nucleoli-chromatin interactions facilitate droplets' nucleation but hinder their coarsening due to the coupled motion between droplets and the chromatin network: as droplets coalesce, the chromatin network becomes increasingly constrained. Therefore, the chromatin network supports a nucleation and arrest mechanism to stabilize the multi-droplet state for nucleoli and possibly for other nuclear bodies.
Collapse
|
20
|
Maslova A, Krasikova A. FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains. Front Cell Dev Biol 2021; 9:753097. [PMID: 34805161 PMCID: PMC8597843 DOI: 10.3389/fcell.2021.753097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Laboratory of Nuclear Structure and Dynamics, Cytology and Histology Department, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
21
|
Mohanta TK, Mishra AK, Al-Harrasi A. The 3D Genome: From Structure to Function. Int J Mol Sci 2021; 22:11585. [PMID: 34769016 PMCID: PMC8584255 DOI: 10.3390/ijms222111585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. Topologically associated domains (TADs), lamin-associated domains, CCCTC-binding factor domains, cohesin, and chromatin structures are the prominent identified components that encode the 3D structure of the genome. Although TADs are the major contributors to 3D genome organization, they are absent in Arabidopsis. However, a few research groups have reported the presence of TAD-like structures in the plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; or
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
22
|
Four-dimensional chromosome reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. Proc Natl Acad Sci U S A 2021; 118:2107092118. [PMID: 34645712 DOI: 10.1073/pnas.2107092118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Chromosomes are segmented into domains and compartments, but how these structures are spatially related in three dimensions (3D) is unclear. Here, we developed tools that directly extract 3D information from Hi-C experiments and integrate the data across time. With our "4DHiC" method, we use X chromosome inactivation (XCI) as a model to examine the time evolution of 3D chromosome architecture during large-scale changes in gene expression. Our modeling resulted in several insights. Both A/B and S1/S2 compartments divide the X chromosome into hemisphere-like structures suggestive of a spatial phase-separation. During the XCI, the X chromosome transits through A/B, S1/S2, and megadomain structures by undergoing only partial mixing to assume new structures. Interestingly, when an active X chromosome (Xa) is reorganized into an inactive X chromosome (Xi), original underlying compartment structures are not fully eliminated within the Xi superstructure. Our study affirms slow mixing dynamics in the inner chromosome core and faster dynamics near the surface where escapees reside. Once established, the Xa and Xi resemble glassy polymers where mixing no longer occurs. Finally, Xist RNA molecules initially reside within the A compartment but transition to the interface between the A and B hemispheres and then spread between hemispheres via both surface and core to establish the Xi.
Collapse
|
23
|
Bugter O, Li Y, Wolters AH, Agrawal V, Dravid A, Chang A, Hardillo J, Giepmans BN, Baatenburg de Jong RJ, Amelink A, Backman V, Robinson DJ. Early Upper Aerodigestive Tract Cancer Detection Using Electron Microscopy to Reveal Chromatin Packing Alterations in Buccal Mucosa Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:878-888. [PMID: 34108070 PMCID: PMC8939050 DOI: 10.1017/s1431927621000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A profound characteristic of field cancerization is alterations in chromatin packing. This study aimed to quantify these alterations using electron microscopy image analysis of buccal mucosa cells of laryngeal, esophageal, and lung cancer patients. Analysis was done on normal-appearing mucosa, believed to be within the cancerization field, and not tumor itself. Large-scale electron microscopy (nanotomy) images were acquired of cancer patients and controls. Within the nuclei, the chromatin packing of euchromatin and heterochromatin was characterized. Furthermore, the chromatin organization was quantified through chromatin packing density scaling. A significant difference was found between the cancer and control groups in the chromatin packing density scaling parameter for length scales below the optical diffraction limit (200 nm) in both the euchromatin (p = 0.002) and the heterochromatin (p = 0.006). The chromatin packing scaling analysis also indicated that the chromatin organization of cancer patients deviated significantly from the control group. They might allow for novel strategies for cancer risk stratification and diagnosis with high sensitivity. This could aid clinicians in personalizing screening strategies for high-risk patients and follow-up strategies for treated cancer patients.
Collapse
Affiliation(s)
- Oisín Bugter
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
- Center for Optical Diagnostics and Therapy, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Anouk H.G. Wolters
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Amil Dravid
- Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Andrew Chang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Jose Hardillo
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Ben N.G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Robert J. Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Arjen Amelink
- Department of Optics, the Netherlands Organization for Applied Scientific Research (TNO), Stieltjesweg 1, 2628 CK Delft, the Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Dominic J. Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
- Center for Optical Diagnostics and Therapy, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
24
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Baroux C. Three-dimensional genome organization in epigenetic regulations: cause or consequence? CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102031. [PMID: 33819713 DOI: 10.1016/j.pbi.2021.102031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The evolution of the nucleus is an evolutionary milestone. By enabling genome compartmentalization, it contributes to the fine-tuning of genome functions. The genome is partitioned into functional domains differing in spatial positioning and topological folding at different scales. The rise of '3D Genomics' embracing experimental, theoretical, and modeling approaches allowed the proposal of a multiscale model of the eukaryotic genome, capturing its organizing principles and functionalities. In these efforts, resolving causality remains an important objective. Are positioning and folding the cause or consequence of functional states? This minireview presents emerging answers to this question, borrowing examples from recent studies of the three-dimensional genome in both plants and animals.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Switzerland.
| |
Collapse
|
26
|
Noa A, Kuan HS, Aschmann V, Zaburdaev V, Hilbert L. The hierarchical packing of euchromatin domains can be described as multiplicative cascades. PLoS Comput Biol 2021; 17:e1008974. [PMID: 33951053 PMCID: PMC8128263 DOI: 10.1371/journal.pcbi.1008974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/17/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin.
Collapse
Affiliation(s)
- Amra Noa
- Institute of Biological and Chemical Systems, Dept. Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hui-Shun Kuan
- Chair of Mathematics in Life Sciences, Dept. Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vera Aschmann
- Master’s Program Biology, Faculty for Chemistry and Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vasily Zaburdaev
- Chair of Mathematics in Life Sciences, Dept. Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems, Dept. Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Dept. Systems Biology and Bioinformatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
27
|
Hausmann M, Falk M, Neitzel C, Hofmann A, Biswas A, Gier T, Falkova I, Heermann DW, Hildenbrand G. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. Int J Mol Sci 2021; 22:3636. [PMID: 33807337 PMCID: PMC8037797 DOI: 10.3390/ijms22073636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (C.N.); (A.B.); (T.G.); (G.H.)
| | - Martin Falk
- Institute of Biophysics, Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Charlotte Neitzel
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (C.N.); (A.B.); (T.G.); (G.H.)
| | - Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany; (A.H.); (D.W.H.)
| | - Abin Biswas
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (C.N.); (A.B.); (T.G.); (G.H.)
| | - Theresa Gier
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (C.N.); (A.B.); (T.G.); (G.H.)
| | - Iva Falkova
- Institute of Biophysics, Czech Academy of Sciences, 612 65 Brno, Czech Republic;
| | - Dieter W. Heermann
- Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany; (A.H.); (D.W.H.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (C.N.); (A.B.); (T.G.); (G.H.)
| |
Collapse
|
28
|
Zhou R, Gao YQ. A DNA Sequence Based Polymer Model for Chromatin Folding. Int J Mol Sci 2021; 22:1328. [PMID: 33572740 PMCID: PMC7865792 DOI: 10.3390/ijms22031328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
The recent development of sequencing technology and imaging methods has provided an unprecedented understanding of the inter-phase chromatin folding in mammalian nuclei. It was found that chromatin folds into topological-associated domains (TADs) of hundreds of kilo base pairs (kbps), and is further divided into spatially segregated compartments (A and B). The compartment B tends to be located near to the periphery or the nuclear center and interacts with other domains of compartments B, while compartment A tends to be located between compartment B and interacts inside the domains. These spatial domains are found to highly correlate with the mosaic CpG island (CGI) density. High CGI density corresponds to compartments A and small TADs, and vice versa. The variation of contact probability as a function of sequential distance roughly follows a power-law decay. Different chromosomes tend to segregate to occupy different chromosome territories. A model that can integrate these properties at multiple length scales and match many aspects is highly desired. Here, we report a DNA-sequence based coarse-grained block copolymer model that considers different interactions between blocks of different CGI density, interactions of TAD formation, as well as interactions between chromatin and the nuclear envelope. This model captures the various single-chromosome properties and partially reproduces the formation of chromosome territories.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China;
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China;
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, 5F, No.9 Duxue Rd., Nanshan District, Shenzhen 518055, China
| |
Collapse
|
29
|
Li Y, Eshein A, Virk RKA, Eid A, Wu W, Frederick J, VanDerway D, Gladstein S, Huang K, Shim AR, Anthony NM, Bauer GM, Zhou X, Agrawal V, Pujadas EM, Jain S, Esteve G, Chandler JE, Nguyen TQ, Bleher R, de Pablo JJ, Szleifer I, Dravid VP, Almassalha LM, Backman V. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. SCIENCE ADVANCES 2021; 7:eabe4310. [PMID: 33523864 PMCID: PMC7775763 DOI: 10.1126/sciadv.abe4310] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.
Collapse
Affiliation(s)
- Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Aya Eid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenli Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - David VanDerway
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Scott Gladstein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anne R Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas M Anthony
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Greta M Bauer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xiang Zhou
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily M Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - George Esteve
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - John E Chandler
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - The-Quyen Nguyen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Shabane PS, Onufriev AV. Significant compaction of H4 histone tail upon charge neutralization by acetylation and its mimics, possible effects on chromatin structure. J Mol Biol 2020; 433:166683. [PMID: 33096105 DOI: 10.1016/j.jmb.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
The intrinsically disordered, positively charged H4 histone tail is important for chromatin structure and function. We have explored conformational ensembles of human H4 tail in solution, with varying levels of charge neutralization via acetylation or amino-acid substitutions such as K→Q. We have employed an explicit water model shown recently to be well suited for simulations of intrinsically disordered proteins. Upon progressive neutralization of the H4, its radius of gyration decreases linearly with the tail charge q, the trend is explained using a simple polymer model. While the wild type state (q=+8) is essentially a random coil, hyper-acetylated H4 (q=+3) is virtually as compact and stable as a globular protein of the same number of amino-acids. Conformational ensembles of acetylated H4 match the corresponding K→X substitutions only approximately: based on the ensemble similarity, we propose K→M as a possible alternative to the commonly used K→Q. Possible effects of the H4 tail compaction on chromatin structure are discussed within a qualitative model in which the chromatin is highly heterogeneous, easily inter-converting between various structural forms. We predict that upon progressive charge neutralization of the H4 tail, the least compact sub-states of chromatin de-condense first, followed by de-condensation of more compact structures, e.g. those that harbor a high fraction of stacked di-nucleosomes. The predicted hierarchy of DNA accessibility increase upon progressive acetylation of H4 might be utilized by the cell for selective DNA accessibility control.
Collapse
Affiliation(s)
| | - Alexey V Onufriev
- Departments of Computer Science, Virginia Tech, Blacksburg, VA 24060, United States; Department of Physics, Virginia Tech, Blacksburg, VA 24060, United States; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
31
|
Modeling the nucleoporins that form the hairy pores. Biochem Soc Trans 2020; 48:1447-1461. [DOI: 10.1042/bst20190941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022]
Abstract
Sitting on the nuclear envelope, nuclear pore complexes (NPCs) control the molecular transport between the nucleus and the cytoplasm. Without definite open or close states, the NPC uses a family of intrinsically disordered nucleoporins called FG-Nups to construct a selective permeability barrier whose functional structure is unclear. Experimental advances have offered high-resolution molecular knowledge of the NPC scaffold and docking of the unfolded FG-Nups, however, the ‘hairy’ barrier structure still appears as blurred lobes even under the state-of-the-art microscopy. Without accurate experimental visualization, the molecular mechanism for the NPC-mediated transport remains a matter of debate. Modeling provides an alternative way to resolve this long-standing mystery. Here, we briefly review different methods employed in modeling the FG-Nups, arranging from all-atom molecular dynamics to mean-field theories. We discuss the advantage and limit of each modeling technique, and summarize the theoretical insights that, despite certain controversy, deepened our understanding of the hairy pore.
Collapse
|
32
|
Moller J, de Pablo JJ. Bottom-Up Meets Top-Down: The Crossroads of Multiscale Chromatin Modeling. Biophys J 2020; 118:2057-2065. [PMID: 32320675 DOI: 10.1016/j.bpj.2020.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023] Open
Abstract
Chromatin can be viewed as a hierarchically structured fiber that regulates gene expression. It consists of a complex network of DNA and proteins whose characteristic dynamical modes facilitate compaction and rearrangement in the cell nucleus. These modes stem from chromatin's fundamental unit, the nucleosome, and their effects are propagated across length scales. Understanding the effects of nucleosome dynamics on the chromatin fiber, primarily through post-translational modifications that occur on the histones, is of central importance to epigenetics. Within the last decade, imaging and chromosome conformation capture techniques have revealed a number of structural and statistical features of the packaged chromatin fiber at a hitherto unavailable level of resolution. Such experiments have led to increased efforts to develop polymer models that aim to reproduce, explain, and predict the contact probability scaling and density heterogeneity. At nanometer scales, available models have focused on the role of the nucleosome and epigenetic marks on local chromatin structure. At micrometer scales, existing models have sought to explain scaling laws and density heterogeneity. Less work, however, has been done to reconcile these two approaches: bottom-up and top-down models of chromatin. In this perspective, we highlight the multiscale simulation models that are driving toward an understanding of chromatin structure and function, from the nanometer to the micron scale, and we highlight areas of opportunity and some of the prospects for new frameworks that bridge these two scales. Taken together, experimental and modeling advances over the last few years have established a robust platform for the study of chromatin fiber structure and dynamics, which will be of considerable use to the chromatin community in developing an understanding of the interplay between epigenomic regulation and molecular structure.
Collapse
Affiliation(s)
- Joshua Moller
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Material Science Division, Argonne National Laboratory, Lemont, Illinois.
| |
Collapse
|
33
|
Zhou R, Gao YQ. Polymer models for the mechanisms of chromatin 3D folding: review and perspective. Phys Chem Chem Phys 2020; 22:20189-20201. [DOI: 10.1039/d0cp01877e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this perspective paper, classical physical models for mammalian interphase chromatin folding are reviewed.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
- Beijing Advanced Innovation Center for Genomics
| |
Collapse
|