1
|
Beisenova A, Adi W, Kang S, Germanson KB, Nam S, Rosas S, Biswas SK, Patankar MS, Jeon SJ, Yesilkoy F. High-Precision Biochemical Sensing with Resonant Monocrystalline Plasmonic Ag Microcubes in the Mid-Infrared Spectrum. ACS NANO 2025; 19:13273-13286. [PMID: 40145795 PMCID: PMC12009538 DOI: 10.1021/acsnano.5c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light-matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.
Collapse
Affiliation(s)
- Aidana Beisenova
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wihan Adi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shinwon Kang
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongbuk 39177, Republic of Korea
| | - Kenzie B. Germanson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Simon Nam
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samir Rosas
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shovasis Kumar Biswas
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Seog-Jin Jeon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongbuk 39177, Republic of Korea
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Dai Q, Du C, Huang W, Wang X. Regulation of Liquid Self-Transport Through Architectural-Thermal Coupling: Transitioning From Free Surfaces to Open Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412483. [PMID: 39888291 PMCID: PMC12005752 DOI: 10.1002/advs.202412483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/15/2024] [Indexed: 02/01/2025]
Abstract
In this work, the regulation of liquid self-transport is achieved through architectural and thermal coupling, transitioning from free surfaces to open channels. Hierarchical structures inspired by the skin of a Texas horned lizard are designed, with the primary structure of wedged grooves and the secondary structure of capillary crura. This design enables advantages including long-distance self-transport, liquid storage and active reflux management on free surfaces, directional transportation, synthesis and detection of reagents in confined spaces, as well as controllable motion and enhanced heat dissipation in open channels. The regulation capacity can be precisely controlled by adjusting the secondary capillary crura and external thermal gradients. The regulation mechanism is further elucidated through microscopic flow observation and a deduced theoretical model. The proposed structures are expected to introduce a new concept for designing lubrication systems, microfluidic chips, methods for chemical synthesis, and heat transfer in the future.
Collapse
Affiliation(s)
- Qingwen Dai
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Chengxuan Du
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Wei Huang
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Xiaolei Wang
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| |
Collapse
|
3
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Robertson T, Li J, Bennin D, Juang T, Ahmed A, Li C, Huttenlocher A, Beebe DJ. Confinement by Liquid-Liquid Interface Replicates In Vivo Neutrophil Deformations and Elicits Bleb-Based Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414024. [PMID: 40151891 DOI: 10.1002/advs.202414024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Leukocytes forge paths through interstitial spaces by exerting forces to overcome confining mechanical pressures provided by surrounding cells. While such mechanical cues regulate leukocyte motility, engineering an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, microchannels are constructed with a liquid-liquid interface that exerts confining pressures similar to cells in tissues, and thus, is deformable by cell-generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. It is discovered that neutrophils employ a bleb-based mechanism of force generation to deform a soft barrier exerting cell-scale confining pressures. In all, this work introduces a tunable in vitro material interface that replicates confining pressures applied by soft tissue environments.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kaitlyn Lazorchak
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Clyde W Tinnen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jack J Stevens
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mehtab Farooqui
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tanner Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David Bennin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adeel Ahmed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Li C, Li J, Argall‐Knapp Z, Hendrikse NW, Farooqui MA, Raykowski B, King A, Nong S, Liu Y. Combining Top-Down and Bottom-Up: An Open Microfluidic Microtumor Model for Investigating Tumor Cell-ECM Interaction and Anti-Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402499. [PMID: 39811947 PMCID: PMC11878254 DOI: 10.1002/smll.202402499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/19/2024] [Indexed: 01/16/2025]
Abstract
Using a combined top-down (i.e., operator-directed) and bottom-up (i.e., cell-directed) strategy, an Under-oil Open Microfluidic System (UOMS)-based microtumor model is presented for investigating tumor cell migration and anti-metastasis drug test. Compared to the mainstream closed microfluidics-based microtumor models, the UOMS microtumor model features: i) micrometer-scale lateral resolution of surface patterning with open microfluidic design for flexible spatiotemporal sample manipulation (i.e., top-down); ii) self-organized extracellular matrix (ECM) structures and tumor cell-ECM spontaneous remodeling (i.e., bottom-up); and iii) free physical access to the samples on a device with minimized system disturbance. The UOMS microtumor model - allowing a controlled but also self-organized, cell-directed tumor-ECM microenvironment in an open microfluidic configuration - is used to test an anti-metastasis drug (incyclinide, aka CMT-3) with a triple-negative breast cancer cell line (MDA-MB-231). The in vitro results show a suppression of tumor cell migration and ECM remodeling echoing the in vivo mice metastasis results.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonMadisonWI53792USA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Jiayi Li
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Zach Argall‐Knapp
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan W. Hendrikse
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Mehtab A. Farooqui
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bella Raykowski
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Anna King
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Serratt Nong
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Yingguang Liu
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| |
Collapse
|
5
|
Magesh S, Schrope JH, Soto NM, Li C, Hurley AI, Huttenlocher A, Beebe DJ, Handelsman J. Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species. Proc Natl Acad Sci U S A 2025; 122:e2417327122. [PMID: 39899715 PMCID: PMC11831133 DOI: 10.1073/pnas.2417327122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report the formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a different type of bacterial movement in vivo. This finding opens different avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI53715
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53705
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Nayanna Mercado Soto
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI53715
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53792
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
- Avantiqor, Washington, DC20024
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI53706
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI53705
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI53705
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53792
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53715
| |
Collapse
|
6
|
O’Brien M, Spirrison AN, Abdul Halim MS, Li Y, Neild A, Gemrich C, Nosrati R, Solorio L, Gong MM. Open Microfluidic Cell Culture in Hydrogels Enabled by 3D-Printed Molds. Bioengineering (Basel) 2025; 12:102. [PMID: 40001622 PMCID: PMC11851523 DOI: 10.3390/bioengineering12020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Cell culture models with tissue-mimicking architecture enable thein vitro investigation of cellular behavior and cell-cell interactions. These models can recapitulate the structure and function of physiological systems and can be leveraged to elucidate mechanisms of disease. In this work, we developed a method to create open microfluidic cell cultures in vitro using 3D-printed molds. The method improves sample accessibility, is simpler to manufacture than traditional closed microfluidic cell culture systems and requires minimal specialized equipment, making it an attractive method for cell culture applications. Further, these molds can generate multiple tissue-mimicking structures in various hydrogels, including blood vessel mimics using endothelial cells (HUVECs). Various geometries were patterned into agarose, gelatin, and collagen type I hydrogels, including star-shaped wells, square wells, round wells, and open channels, to demonstrate the versatility of the approach. Open channels were created in collagen with diameters ranging from 400 µm to 4 mm and in multiple collagen densities ranging from 2 mg/mL to 4 mg/mL. To demonstrate the applicability of our approach for tissue modeling, blood vessel mimics were generated in open channels with diameters of 800 µm and 2 mm, with high cell viability (>89%) for both dimensions. The vessel mimics were used to study the effects of hypoxia on cell viability and CD31 expression by subjecting them to a reduced-O2 environment (∼16% O2). As compared to normoxia conditions, vessel mimics under hypoxia had a reduction in cell viability by 8.3% and CD31 surface expression by 7.4%. Overall, our method enables the generation of different geometries in hydrogels and the development of in vitro tissue mimics for biological applications.
Collapse
Affiliation(s)
- Madison O’Brien
- Jim and Joan Bock Department of Biomedical Engineering, Trine University, Angola, IN 46703, USA; (M.O.); (A.N.S.)
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; (C.G.); (L.S.)
| | - Ashley N. Spirrison
- Jim and Joan Bock Department of Biomedical Engineering, Trine University, Angola, IN 46703, USA; (M.O.); (A.N.S.)
| | - Melati S. Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3168, Australia; (M.S.A.H.); (Y.L.); (A.N.); (R.N.)
| | - Yulai Li
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3168, Australia; (M.S.A.H.); (Y.L.); (A.N.); (R.N.)
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3168, Australia; (M.S.A.H.); (Y.L.); (A.N.); (R.N.)
| | - Catherine Gemrich
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; (C.G.); (L.S.)
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3168, Australia; (M.S.A.H.); (Y.L.); (A.N.); (R.N.)
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; (C.G.); (L.S.)
| | - Max M. Gong
- Jim and Joan Bock Department of Biomedical Engineering, Trine University, Angola, IN 46703, USA; (M.O.); (A.N.S.)
| |
Collapse
|
7
|
Liu H, Pang X, Duan M, Yang Z, Russell TP, Li X. A Simple Route for Open Fluidic Devices with Particle Walls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413862. [PMID: 39538996 DOI: 10.1002/adma.202413862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Open fluidics, allowing liquid in a flow channel to interact with the external environment, is a revolutionary concept. However, fabricating a highly stable open fluidic device of arbitrary complexity, while maintaining reconfigurability, is still a challenge. This is achieved by the use of a patterned substrate and liquids that are covered with functional, readily available hydrophobic particles, providing great flexibility in the construction and use of open fluidic structures. Decorated with a coating of modified carbon nanotubes (CNTs) to encapsulate the fluids, the study capitalizes on the photothermal characteristics of CNTs to fabricate a device to probe the effects of temperature on tumor chemotherapy. The strategy substantially increases the availability and potential use of open fluidic devices.
Collapse
Affiliation(s)
- Heng Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Xianglong Pang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Mei Duan
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Zhujun Yang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
8
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
9
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter Whole Blood Neutrophil Assay Preserving Physiological Lifespan and Functional Heterogeneity. SMALL METHODS 2024; 8:e2400373. [PMID: 38984758 PMCID: PMC11499044 DOI: 10.1002/smtd.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophils' inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here, a method - named "µ-Blood" - is presented that enables functional neutrophil assays using a microliter of unprocessed whole blood. µ-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In µ-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, µ-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan W Hendrikse
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Makenna Mai
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehtab A Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zach Argall-Knapp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Sung Kim
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily A Wheat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Magesh S, Schrope JH, Soto NM, Li C, Hurley AI, Huttenlocher A, Beebe DJ, Handelsman J. Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.607786. [PMID: 39257784 PMCID: PMC11383685 DOI: 10.1101/2024.08.29.607786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a new type of bacterial movement in vivo. This discovery opens new avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments.
Collapse
Affiliation(s)
- Shruthi Magesh
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Nayanna Mercado Soto
- Microbiology Doctoral Training Program, University of Wisconsin-Madison; Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Amanda I. Hurley
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
- Avantiqor, 800 Wharf St SW, Washington, DC 20024
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison; Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison; Madison, WI, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison; Madison, WI, USA
| |
Collapse
|
11
|
Giese MA, Bennin DA, Schoen TJ, Peterson AN, Schrope JH, Brand J, Jung HS, Keller NP, Beebe DJ, Dinh HQ, Slukvin II, Huttenlocher A. PTP1B phosphatase dampens iPSC-derived neutrophil motility and antimicrobial function. J Leukoc Biol 2024; 116:118-131. [PMID: 38417030 PMCID: PMC11212797 DOI: 10.1093/jleuko/qiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.
Collapse
Affiliation(s)
- Morgan A Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, 1525 Linden Dr. Madison 53706, WI, United States
| | - David A Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - Taylor J Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Ashley N Peterson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Dr. Madison 53706, WI, United States
| | - Josh Brand
- Cell and Molecular Pathology Graduate Program, University of Wisconsin–Madison, 1685 Highland Ave. Madison 53705, WI, United States
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Huy Q Dinh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, 600 Highland Ave. Madison 53705, WI, United States
| |
Collapse
|
12
|
Magesh S, Hurley AI, Nepper JF, Chevrette MG, Schrope JH, Li C, Beebe DJ, Handelsman J. Surface colonization by Flavobacterium johnsoniae promotes its survival in a model microbial community. mBio 2024; 15:e0342823. [PMID: 38329367 PMCID: PMC10936215 DOI: 10.1128/mbio.03428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F. Nepper
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter whole blood neutrophil assay preserving physiological lifespan and functional heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.28.23294744. [PMID: 37693613 PMCID: PMC10491351 DOI: 10.1101/2023.08.28.23294744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophil inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here we present a method - named micro-Blood - that enables functional neutrophil assays using a microliter of unprocessed whole blood. micro-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In micro-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, micro-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
|
14
|
Chen Q, Zhai H, Beebe DJ, Li C, Wang B. Visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions. Nat Commun 2024; 15:1155. [PMID: 38326343 PMCID: PMC10850056 DOI: 10.1038/s41467-024-45076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy. The enhanced system utilizes a semi-transparent silicon (Si) nanolayer over the substrate to enhance visualization in both inverted and upright microscope setups while reducing Raman noise from the substrate. We validated the system's chemical stability and capability to monitor gas evolution and gas-liquid reactions in situ. The enhanced under-oil open microfluidic system, integrating Raman spectroscopy, offers a robust open-microfluidic platform for label-free molecular sensing and real-time chemical/biochemical process monitoring in multi-phase systems.
Collapse
Affiliation(s)
- Qiyuan Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Bu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Li C, Farooqui M, Yada RC, Cai JB, Huttenlocher A, Beebe DJ. The effect of whole blood logistics on neutrophil non-specific activation and kinetics ex vivo. Sci Rep 2024; 14:2543. [PMID: 38291060 PMCID: PMC10828393 DOI: 10.1038/s41598-023-50813-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: (i) Short-term storage (< 8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; (ii) Neutrophils from long-term storage (> 24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. (iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mehtab Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ravi Chandra Yada
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph B Cai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Li C, Hendrikse NW, Argall-Knapp Z, Mai M, Kim JS. In Vitro Neutrophil-Bacteria Assay in Whole Blood Microenvironments with Single-Cell Confinement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576723. [PMID: 38328183 PMCID: PMC10849536 DOI: 10.1101/2024.01.22.576723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Blood is a common medium through which invasive bacterial infections disseminate in the human body. In vitro neutrophil-bacteria assays allow flexible mechanistic studies and screening of interventional strategies. In standard neutrophil-bacteria assays, both the immune cells and microorganisms are typically interrogated in an exogenous, homogeneous, bulk fluid environment (e.g., culture media or bacterial broth in microtiter plates), lacking the relevant physicochemical factors in the heterogenous blood-tissue microenvironment (e.g., capillary bed) with single-cell confinement. Here we present an in vitro neutrophil-bacteria assay by leveraging an open microfluidic model known as "μ-Blood" that supports sub-microliter liquid microchannels with single-cell confinement. In this study we compare the exogenous and endogenous fluids including neutrophils in RPMI (standard suspension cell culture media) and whole blood in response to Staphylococcus aureus ( S. aureus , a gram-positive, non-motile bacterium) in phosphate buffered saline (PBS), Mueller Hinton Broth (MHB), and human serum. Our results reveal a significant disparity between the exogenous and endogenous fluid microenvironments in the growth kinetics of bacteria, the spontaneous generation of capillary (i.e., Marangoni) flow, and the outcome of neutrophil intervention on the spreading bacteria.
Collapse
|
17
|
Babatunde KA, Datta R, Hendrikse NW, Ayuso JM, Huttenlocher A, Skala MC, Beebe DJ, Kerr SC. Naive primary neutrophils play a dual role in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557892. [PMID: 37745595 PMCID: PMC10515919 DOI: 10.1101/2023.09.15.557892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.
Collapse
|
18
|
Li X, Pang X, Jiang H, Duan M, Liu H, Yang Z, Xi Y, Russell TP. Open millifluidics based on powder-encased channels. Proc Natl Acad Sci U S A 2023; 120:e2302907120. [PMID: 37399425 PMCID: PMC10334759 DOI: 10.1073/pnas.2302907120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
Millifluidics, the manipulation of liquid flow in millimeter-sized channels, has been a revolutionary concept in chemical processing and engineering. The solid channels that contain the liquids, though, are not flexible in their design and modification, and prevent contact with the external environment. All-liquid constructs, on the other hand, while flexible and open, are imbedded in a liquid environment. Here, we provide a route to circumvent these limitations by encasing the liquids in a hydrophobic powder in air that jams on the surface, containing and isolating flowing fluids, offering flexibility and adaptability in design, as manifest in the ability to reconfigure, graft, and segment the constructs. Along with the open nature of these powder-contained channels that allow arbitrary connections/disconnections and substance addition/extraction, numerous applications can be opened in the biological, chemical, and material arenas.
Collapse
Affiliation(s)
- Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Xianglong Pang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Haohao Jiang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Mei Duan
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Heng Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Zhujun Yang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Yuhang Xi
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi710129, China
| | - Thomas P. Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Polymer Science and Engineering Department, University of Massachusetts, Conte Center for Polymer Research, Amherst, MA01003
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Advanced Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
19
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Li C, Farooqui M, Yada RC, Cai JB, Huttenlocher A, Beebe DJ. The effect of whole blood logistics on neutrophil non-specific activation and kinetics ex vivo. RESEARCH SQUARE 2023:rs.3.rs-2837704. [PMID: 37214903 PMCID: PMC10197797 DOI: 10.21203/rs.3.rs-2837704/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability. Here, we investigate how whole blood logistics (i.e., the procedure taken from whole blood collection to delivery of the samples to analytical labs and storage before neutrophil interrogation) affects neutrophil non-specific activation (i.e., baseline apoptosis and NETosis) and kinetics (i.e., activation over time). All the experiments (60+ whole blood neutrophil isolations across 36 blood donors) are performed by a single operator with optimized isolation and culture conditions, and automated image analysis, which together increase rigor and consistency. Our results reveal: i) Short-term storage (<8 h) of whole blood does not significantly affect neutrophil kinetics in subsequent two-dimensional (2D) cell culture; ii) Neutrophils from long-term storage (>24 h) in whole blood show significantly higher stability (i.e., less non-specific activation) compared to the control group with the isolated cells in 2D culture. iii) Neutrophils have greater non-specific activation and accelerated kinetic profiles when stored in whole blood beyond 48 h.
Collapse
Affiliation(s)
- Chao Li
- University of Wisconsin-Madison
| | | | | | | | | | | |
Collapse
|
21
|
Li C, McCrone S, Warrick JW, Andes DR, Hite Z, Volk CF, Rose WE, Beebe DJ. Under-oil open microfluidic systems for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2023; 23:2005-2015. [PMID: 36883560 PMCID: PMC10581760 DOI: 10.1039/d3lc00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial susceptibility testing (AST) remains the cornerstone of effective antimicrobial selection and optimization in patients. Despite recent advances in rapid pathogen identification and resistance marker detection with molecular diagnostics (e.g., qPCR, MALDI-TOF MS), phenotypic (i.e., microbial culture-based) AST methods - the gold standard in hospitals/clinics - remain relatively unchanged over the last few decades. Microfluidics-based phenotypic AST has been growing fast in recent years, aiming for rapid (i.e., turnaround time <8 h), high-throughput, and automated species identification, resistance detection, and antibiotics screening. In this pilot study, we describe the application of a multi-liquid-phase open microfluidic system, named under-oil open microfluidic systems (UOMS), to achieve a rapid phenotypic AST. UOMS provides an open microfluidics-based solution for rapid phenotypic AST (UOMS-AST) by implementing and recording a pathogen's antimicrobial activity in micro-volume testing units under an oil overlay. UOMS-AST allows free physical access (e.g., by standard pipetting) to the system and label-free, single-cell resolution optical access. UOMS-AST can accurately and rapidly determine antimicrobial activities [including susceptibility/resistance breakpoint and minimum inhibitory concentration (MIC)] from nominal sample/bacterial cells in a system aligned with clinical laboratory standards where open systems and optical microscopy are predominantly adopted. Further, we combine UOMS-AST with a cloud lab data analytic technique for real-time image analysis and report generation to provide a rapid (<4 h) sample-to-report turnaround time, shedding light on its utility as a versatile (e.g., low-resource setting and manual laboratory operation, or high-throughput automated system) phenotypic AST platform for hospital/clinic use.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue McCrone
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Hite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cecilia F. Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
Khor JW, Lee UN, Berthier J, Berthier E, Theberge AB. Interfacial tension driven open droplet microfluidics. ADVANCED MATERIALS INTERFACES 2023; 10:2202234. [PMID: 39584054 PMCID: PMC11583357 DOI: 10.1002/admi.202202234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/26/2024]
Abstract
Droplet microfluidics enables compartmentalized reactions in small scales and has been utilized for a variety of applications across chemical analysis, material science, and biology. While droplet microfluidics is a successful technology, barriers include high "activation energy" to develop custom applications and complex peripheral equipment. These barriers limit the adoption of droplet microfluidics in labs or prototyping environments. We demonstrate for the first time an open channel droplet microfluidic system that autonomously generates droplets at low Capillary numbers. Hundreds of droplets are produced in a run using only an open channel, pipettes, and a commercially available carrier fluid. Conceptual applications that showcase the process of droplet generation, splitting, transport, incubation, mixing, and sorting are demonstrated. The open nature of the device enables the use of physical tools such as tweezers and styli to directly access the system; with this, a new method of droplet sorting and transfer unique to open systems is demonstrated. This platform offers enhanced usability, direct access to the droplet contents, easy manufacturability, compact footprint, and high customizability. This design is a first step in exploring the space of power-free open droplet microfluidic systems and provides design rules for similar channel designs.
Collapse
Affiliation(s)
- Jian Wei Khor
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Ulri N. Lee
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Jean Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Department of Urology, University of Washington School of Medicine, Seattle, Washington 98105, United States
| |
Collapse
|
23
|
Li C, Humayun M, Walker GM, Park KY, Connors B, Feng J, Pellitteri Hahn MC, Scarlett CO, Li J, Feng Y, Clark RL, Hefti H, Schrope J, Venturelli OS, Beebe DJ. Under-Oil Autonomously Regulated Oxygen Microenvironments: A Goldilocks Principle-Based Approach for Microscale Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104510. [PMID: 35118834 PMCID: PMC8981459 DOI: 10.1002/advs.202104510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi University, Madison, MS, 38677, USA
| | - Keon Young Park
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Feng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Molly C Pellitteri Hahn
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Cameron O Scarlett
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yanbo Feng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hunter Hefti
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan Schrope
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
24
|
Yan J, Baird MA, Popple DC, Zettl A, Russell TP, Helms BA. Structured-Liquid Batteries. J Am Chem Soc 2022; 144:3979-3988. [PMID: 35196003 DOI: 10.1021/jacs.1c12417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemical systems may be maintained far from equilibrium by sequestering otherwise reactive species into different microenvironments. It remains a significant challenge to control the amount of chemical energy stored in such systems and to utilize it on demand to perform useful work. Here, we show that redox-active molecules compartmentalized in multiphasic structured-liquid devices can be charged and discharged to power a load on an external circuit. The two liquid phases of these devices feature charge-complementary polyelectrolytes that serve a dual purpose: they generate an ionically conductive coacervate membrane at the liquid-liquid interface, providing structural support; they also mitigate active-material crossover between phases via ion pairing with the oppositely charged anolyte and catholyte active materials. Structured-liquid batteries enabled by this design were rechargeable over hundreds of hours. We envision that these devices may be integrated with soft electronics to enable functional circuits for smart textiles, medical implants, and wearables.
Collapse
Affiliation(s)
- Jiajun Yan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Michael A Baird
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Derek C Popple
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| | - Alex Zettl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Polymer Science and Engineering Department, University of Massachusetts, Conte Center for Polymer Research, Amherst, Massachusetts 01003, United States
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Tang Q, Liu X, Cui X, Su Z, Zheng H, Tang J, Joo SW. Contactless Discharge-Driven Droplet Motion on a Nonslippery Polymer Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14697-14702. [PMID: 34894688 DOI: 10.1021/acs.langmuir.1c02462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet manipulation is the cornerstone of many modern technologies. It is still challenging to drive the droplet motion on nonslippery surfaces flexibly. We present a droplet manipulation method on nonslippery polymer surfaces based on the corona discharge. With the corona discharge of two-needle electrodes with opposite polarities, the droplet's charge polarity can be switched, which results in the directionally droplet transport on a charged polymer surface with the oscillation. Here, such droplet behaviors are presented in detail. Dependence of the motion on the critical distance and driving distance between the droplet and the needle electrode is revealed. The driving mechanism is verified by experiments and simulations. This work enriches the droplet manipulation techniques on nonslippery surfaces for various applications, such as combinatory chemistry, biochemical, and medical detection.
Collapse
Affiliation(s)
- Qiang Tang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaofeng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaxia Cui
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenpeng Su
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jau Tang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
26
|
Zhang J, Chen B, Chen X, Hou X. Liquid-Based Adaptive Structural Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005664. [PMID: 33834566 DOI: 10.1002/adma.202005664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Structural materials are used to provide stable mechanical architectures and transmit or support forces, and they play an important role in materials science and technology. During the long process of the exploitation of structural materials, the functionality of structural materials has gained prominence. Adaptive structures responding to external stimuli have come to the fore with significant advantages in structural materials. However, many solid adaptive structural materials still suffer from their single function and the lack of dynamic performance, such as issue around fouling and energy consumption, defects present everywhere in materials at the microscale, etc. To meet the increasing demands, more and more researchers have started turning their attention to liquid-based materials owing to their intrinsic spontaneous, dynamic, and functional properties. Liquid-based adaptive structural materials (LASMs) have been proposed and developed. Building upon both dynamic liquids and fixed solids, LASMs have been demonstrated to possess both dynamic adaptivity (from the active liquid part) and stable mechanical structure (from the fixed solid part), which are desired in many applications such as 3D printing, droplet manipulation, omniphobic surfaces, microfluidics, mass separation, etc. A unifying view of the recent progress of LASMs is presented, including liquid with particles, liquid with surfaces, as well as liquid with membranes. In addition, the discussion of the prospects and challenges are provided for promoting the development of LASMs.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Baiyi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials, Xiamen University, Xiamen, 361005, China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen, Fujian, 361102, China
| |
Collapse
|
27
|
Deroy C, Nebuloni F, Cook PR, Walsh EJ. Microfluidics on Standard Petri Dishes for Bioscientists. SMALL METHODS 2021; 5:e2100724. [PMID: 34927960 DOI: 10.1002/smtd.202100724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Few microfluidic devices are used in biomedical labs, despite the obvious potential; reasons given include the devices are rarely made with cell-friendly materials, and liquids are inaccessibly buried behind solid confining walls. An open microfluidic approach is reviewed in which aqueous circuits with almost any imaginable 2D shape are fabricated in minutes on standard polystyrene Petri dishes by reshaping two liquids (cell-culture media plus an immiscible and bioinert fluorocarbon, FC40). Then, the aqueous phase becomes confined by fluid FC40 walls firmly pinned to the dish by interfacial forces. Such walls can be pierced at any point with pipets and liquids added or removed through them, while flows can be driven actively using external pumps or passively by exploiting local differences in Laplace pressure. As walls are robust, permeable to O2 plus CO2 , and transparent, cells are grown in incubators and monitored microscopically as usual. It is hoped that this simple, accessible, and affordable fluid-shaping technology provides bioscientists with an easy entrée into microfluidics.
Collapse
Affiliation(s)
- Cyril Deroy
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| | - Federico Nebuloni
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- iotaSciences Ltd., Begbroke Science Park, Begbroke, Oxford, Oxfordshire, OX5 1PF, UK
| | - Edmond J Walsh
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| |
Collapse
|
28
|
Sun G, Manning C, Lee GH, Majeed M, Lu H. Microswimmer Combing: Controlling Interfacial Dynamics for Open-Surface Multifunctional Screening of Small Animals. Adv Healthc Mater 2021; 10:e2001887. [PMID: 33890423 DOI: 10.1002/adhm.202001887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/13/2021] [Indexed: 12/31/2022]
Abstract
Image-based screening of multicellular model organisms is critical for both investigating fundamental biology and drug development. Current microfluidic techniques for high-throughput manipulation of small model organisms, although useful, are generally complicated to operate, which impedes their widespread adoption by biology laboratories. To address this challenge, this paper presents an ultrasimple and yet effective approach, "microswimmer combing," to rapidly isolate live small animals on an open-surface array. This approach exploits a dynamic contact line-combing mechanism designed to handle highly active microswimmers. The isolation method is robust, and the device operation is simple for users without a priori experience. The versatile open-surface device enables multiple screening applications, including high-resolution imaging of multicellular organisms, on-demand mutant selection, and multiplexed chemical screening. The simplicity and versatility of this method provide broad access to high-throughput experimentation for biologists and open up new opportunities to study active microswimmers by different scientific communities.
Collapse
Affiliation(s)
- Gongchen Sun
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Petit Institute of Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Cassidy‐Arielle Manning
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Ga Hyun Lee
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Maryam Majeed
- Department of Biological Sciences Columbia University New York NY 10027 USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Petit Institute of Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
29
|
Zhang Q, Feng S, Lin L, Mao S, Lin JM. Emerging open microfluidics for cell manipulation. Chem Soc Rev 2021; 50:5333-5348. [PMID: 33972984 DOI: 10.1039/d0cs01516d] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell manipulation is the foundation of biochemical studies, which demands user-friendly, multifunctional and precise tools. Based on flow confinement principles, open microfluidics can control the movement of microscale liquid in open space. Every position of the circuit is accessible to external instruments, making it possible to perform precise treatment and analysis of cells at arbitrary target positions especially at the single-cell/sub-cell level. Benefiting from its unique superiority, various manipulations including patterned cell culture, 3D tissue modelling, localized chemical stimulation, online cellular factor analysis, single cell sampling, partial cell treatment, and subcellular free radical attack can be easily realized. In this tutorial review, we summarize two basic ideas to design open microfluidics: open microfluidic networks and probes. The principles of mainstream open microfluidic methods are explained, and their recent important applications are introduced. Challenges and developing trends of open microfluidics are also discussed.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Deroy C, Stovall-Kurtz N, Nebuloni F, Soitu C, Cook PR, Walsh EJ. Predicting flows through microfluidic circuits with fluid walls. MICROSYSTEMS & NANOENGINEERING 2021; 7:93. [PMID: 34804587 PMCID: PMC8599700 DOI: 10.1038/s41378-021-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 05/13/2023]
Abstract
The aqueous phase in traditional microfluidics is usually confined by solid walls; flows through such systems are often predicted accurately. As solid walls limit access, open systems are being developed in which the aqueous phase is partly bounded by fluid walls (interfaces with air or immiscible liquids). Such fluid walls morph during flow due to pressure gradients, so predicting flow fields remains challenging. We recently developed a version of open microfluidics suitable for live-cell biology in which the aqueous phase is confined by an interface with an immiscible and bioinert fluorocarbon (FC40). Here, we find that common medium additives (fetal bovine serum, serum replacement) induce elastic no-slip boundaries at this interface and develop a semi-analytical model to predict flow fields. We experimentally validate the model's accuracy for single conduits and fractal vascular trees and demonstrate how flow fields and shear stresses can be controlled to suit individual applications in cell biology.
Collapse
Affiliation(s)
- Cyril Deroy
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Nicholas Stovall-Kurtz
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
| | - Federico Nebuloni
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Cristian Soitu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Edmond J. Walsh
- Department of Engineering Science, Osney Thermo-Fluids Laboratory, University of Oxford, Oxford, OX2 0ES UK
| |
Collapse
|