1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Buja LM, Zhao B, Vela D, Segura A, Narula N. Pathobiology of Aortic Aneurysms and Dissections: Synthesis of Recent Investigations and Evolving Insights. JACC. ADVANCES 2025; 4:101682. [PMID: 40286354 DOI: 10.1016/j.jacadv.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/29/2025]
Abstract
The pathobiology of aortic disease is linked to aortic region: atherosclerosis for abdominal aorta, primary medial degeneration or aortitis for ascending thoracic aorta, and all causes for descending thoracic aorta and thoracoabdominal lesions. The pathogenesis of aortic dissection involves damage of the outer media from impaired perfusion from dysfunctional vasa vasorum, formation of discrete foci of disrupted vascular smooth muscle cell-elastic fiber extension-contractile units, and imbalance of radial sheer stress across the aortic wall, thereby creating an intimal tear and linear dissection. Thoracic aortic aneurysms develop from the chronic progression of medial degeneration coupled with the weakening of the remodeled adventitia, allowing for aortic dilatation. Precipitating factors include hypertension and mutations of genes regulating the vascular smooth muscle cell-elastic fiber extension-contractile units. Criteria are presented for distinguishing genetic from acquired causes of thoracic aortic aneurysms and dissections, with important implications for therapeutic and surgical decisions in the care of these patients.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA; Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA.
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Ana Segura
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| |
Collapse
|
3
|
Mahutga RR, Badal RM, Barocas VH, Alford PW. A multiscale discrete fiber model of failure in heterogeneous tissues: Applications to remodeled cerebral aneurysms. J Biomech 2025; 178:112343. [PMID: 39341733 PMCID: PMC11637903 DOI: 10.1016/j.jbiomech.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Damage-accumulation failure models are broadly used to examine tissue property changes caused by mechanical loading. However, damage accumulation models are purely phenomenological. The underlying justification in using this type of model is often that damage occurs to the extracellular fibers and/or cells which changes the fundamental mechanical behavior of the system. In this work, we seek to align damage accumulation models with microstructural models to predict alterations in the mechanical behavior of biological materials that arise from structural heterogeneity associated with nonuniform remodeling of tissues. Further, we seek to extend this multiscale model toward assessing catastrophic failure events such as cerebral aneurysm rupture. First, we demonstrate that a model made up of linear elastin and actin and nonlinear collagen fibers can replicate bot the pre-failure and failure tissue-scale mechanics of uniaxially-stretched cerebral aneurysms. Next, we investigate how mechanical heterogeneities, like those observed in cerebral aneurysms, influence fiber and tissue failure. Notably, we find that failure occurs and the interface between regions of high and low material stiffness, suggesting that spatial mechanical heterogeneity influences aneurysm failure behavior. This model system is a step toward linking structural changes in growth and remodeling to failure properties.
Collapse
Affiliation(s)
- Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Ruturaj M Badal
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Petřivý Z, Horný L, Tichý P. Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta. Biomech Model Mechanobiol 2024; 23:1837-1849. [PMID: 38985231 PMCID: PMC11554823 DOI: 10.1007/s10237-024-01871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
Collapse
Affiliation(s)
- Zdeněk Petřivý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic.
| | - Petr Tichý
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
| |
Collapse
|
5
|
Pu H, Peng T, Xu Z, Sun Q, Wang Z, Ma H, Fang S, Yang Y, Wu J, Wang R, Qiu P, Zhou J, Lu X. A morphological indicator for aortic dissection: fitting circle of the thoracic aorta. BMC Cardiovasc Disord 2024; 24:461. [PMID: 39198782 PMCID: PMC11351444 DOI: 10.1186/s12872-024-04130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND This study aims to identify a morphological indicator of aortic dissection (AD) based on the geometrical characteristics of the thoracic aorta. METHODS We evaluated computed tomographic angiograms of 63 samples with AD (22 with type A AD, 41 with type B AD) and 71 healthy samples. Via centerline extraction and spatial transformation, the spatial entanglement of the aorta was minimized, and the expanded 2D aortic morphology was obtained. The 2D morphology of the thoracic aorta was fit to a circle. The applicability of the fitting circle method for identifying aortic dissection was verified by multivariable logistic regression analysis. RESULTS Via the 3D coordinate transformation algorithm, the optimal aortic view was obtained. On this view, the geometrical characteristics of the thoracic aortas of the healthy controls were similar to a portion of a circle (sum of residuals: 3502.45 ± 2566.71, variance: 86.23 ± 56.60), while that of AD samples had poorer similarity to the circle (sum of residuals: 5404.78 ± 3891.69, variance: 129.90 ± 90.09). This difference was significant (p < 0.001). A logistic regression model showed that increased deformation of the thoracic aorta was a significant indicator of aortic dissection (odds ratio: 1.35, p = 0.034). CONCLUSIONS The morphology of the healthy thoracic aorta could be fit to a circle, while that of the dissected aorta had poorer similarity to the circle. The statistics of the circle are an effective indicator of aortic deformation in AD. TRIAL REGISTRATION This study is registered in the Chinese Clinical Trial Registry (ChiCTR2000029219).
Collapse
Affiliation(s)
- Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tao Peng
- School of Biomedical Engineering, Anhui Medical University, Meishan Road, Shushan District, Hefei, 230032, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Sun
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zixin Wang
- School of Biomedical Engineering, Anhui Medical University, Meishan Road, Shushan District, Hefei, 230032, China
| | - Hui Ma
- School of Biomedical Engineering, Anhui Medical University, Meishan Road, Shushan District, Hefei, 230032, China
| | - Shu Fang
- School of Biomedical Engineering, Anhui Medical University, Meishan Road, Shushan District, Hefei, 230032, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wu
- Department of Vascular Surgery, Affiliated Hospital of Guizhou Medicine University, Guizhou, 550000, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Meishan Road, Shushan District, Hefei, 230032, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Shen X, Li J, Yan H, Zhou S, Yang S, Li W. Combined blood pressure and heart rate trajectories are associated with prognosis in critically ill patients with acute aortic dissection: A group-based multi-trajectory analysis. Heliyon 2024; 10:e29934. [PMID: 38707356 PMCID: PMC11066306 DOI: 10.1016/j.heliyon.2024.e29934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Background Managing systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) is pivotal in acute aortic dissection (AAD) care. However, no prior studies have jointly analyzed the trajectories of these parameters. This research aimed to characterize their joint longitudinal trajectories and investigate the influence on AAD prognosis. Methods We included AAD patients from the Medical Information Mart for Intensive Care (MIMIC)-IV database. Using group-based multi-trajectory modeling (GBMTM), we identified combined trajectories of SBP, DBP, and HR within the initial 24 h of intensive care unit (ICU) admission. Cox proportional hazard regression, log-binomial regression, and logistic regression were employed to assess the association between trajectory groups and mortality outcomes. Results Data from 337 patients were analyzed. GBMTM identified five combined trajectory groups. Group 1 featured rapidly declining SBP and DBP with high pulse pressure and low HR; Group 2 showed high to moderate SBP with slight rebound and persistently low HR; Group 3 displayed persistently moderate BP and HR; Group 4 was characterized by moderate blood pressure with persistently high HR; and Group 5 had high to moderate SBP with slight rebound, high but gradually declining DBP, and slightly high HR. Group 3 demonstrated a lower risk of mortality, with an adjusted hazard ratio of 0.32 (95 % CI, 0.14-0.74), and the adjusted relative risks for in-hospital, 30-day, and 1-year mortalities were 0.37 (95 % CI, 0.15-0.87), 0.25 (95 % CI, 0.10-0.62), and 0.41 (95 % CI, 0.22-0.79), respectively. The time-independent C-index curve demonstrated that the multi-trajectory groups had higher C-index values than any univariate trajectory groups or admission values of SBP, DBP, and HR. Conclusions Utilization of GBMTM can yield data-driven insights to identify distinct subphenotypes in AAD patients. The combined trajectories of SBP, DBP, and HR within 24 h of ICU admission significantly influenced the mortality rate.
Collapse
Affiliation(s)
- Xuejun Shen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jufang Li
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, China
| | - Hongle Yan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuyi Zhou
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shengli Yang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Weiping Li
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
7
|
Wang X, Ma J, Lin D, Bai Y, Zhang D, Jia X, Gao J. MiR-145-5p reduced ANG II-induced ACE2 shedding and the inflammatory response in alveolar epithelial cells by targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway. Eur J Pharmacol 2024; 971:176392. [PMID: 38365107 DOI: 10.1016/j.ejphar.2024.176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.
Collapse
Affiliation(s)
- Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Junwei Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
8
|
Ge X, Cai Q, Cai Y, Mou C, Fu J, Lin F. Roles of pyroptosis and immune infiltration in aortic dissection. Front Mol Biosci 2024; 11:1277818. [PMID: 38567101 PMCID: PMC10985243 DOI: 10.3389/fmolb.2024.1277818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Aortic dissection (AD) is often fatal, and its pathogenesis involves immune infiltration and pyroptosis, though the molecular pathways connecting these processes remain unclear. This study aimed to investigate the role of immune infiltration and pyroptosis in AD pathogenesis using bioinformatics analysis. Methods: Two Gene Expression Omnibus datasets and a Gene Cards dataset of pyroptosis-related genes (PRGs) were utilized. Immunological infiltration was assessed using CIBERSORT, and AD diagnostic markers were identified through univariate logistic regression and least absolute shrinkage and selection operator regression. Interaction networks were constructed using STRING, and weighted gene correlation network analysis (WGCNA) was employed to identify important modules and essential genes. Single-sample gene set enrichment analysis determined immune infiltration, and Pearson correlation analysis assessed the association of key genes with infiltrating immune cells. Results: Thirty-one PRGs associated with inflammatory response, vascular epidermal growth factor receptor, and Rap1 signaling pathways were identified. WGCNA revealed seven important genes within a critical module. CIBERSORT detected immune cell infiltration, indicating significant changes in immune cell infiltration and pyroptosis genes in AD and their connections. Discussion: Our findings suggest that key PRGs may serve as indicators for AD or high-risk individuals. Understanding the role of pyroptosis and immune cell infiltration in AD pathogenesis may lead to the development of novel molecular-targeted therapies for AD. Conclusion: This study provides insights into the molecular mechanisms underlying AD pathogenesis, highlighting the importance of immune infiltration and pyroptosis. Identification of diagnostic markers and potential therapeutic targets may improve the management of AD and reduce associated morbidity and mortality.
Collapse
Affiliation(s)
- Xiaogang Ge
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yangyang Cai
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Caiguo Mou
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Junhui Fu
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Feng Lin
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Gang Q, Lun Y, Pang L, Li X, Hou B, Xin S, Zhang J. Traumatic Aortic Dissection as a Unique Clinical Entity: A Single-Center Retrospective Study. J Clin Med 2023; 12:7535. [PMID: 38137605 PMCID: PMC10744057 DOI: 10.3390/jcm12247535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND This study aimed to compare the clinical characteristics, treatment approaches, and outcomes of the Stanford Type B traumatic aortic dissection (TAD) with non-traumatic aortic dissection (NTAD), and assess better management for TAD. METHODS We retrospectively analyzed patients who underwent thoracic endovascular aortic repair for Stanford type B aortic dissection at The First Hospital of China Medical University between 2014 and 2022. The patients were divided into TAD and NTAD groups based on whether they had a history of acute trauma. This study ultimately included 65 patients with TAD and 288 with NTAD. We assessed and compared the baseline characteristics, laboratory indicators, imaging features, surgical procedures, and follow-up results between the groups. RESULTS The TAD group was younger compared to the NTAD group (50.00 [IQR40.00-59.00] vs. 55.00 [IQR 47.00-61.00] years, p = 0.020). A lower percentage of the TAD group had a history of hypertension (20% vs. 71.18%, p < 0.001). The length of aortic dissection was shorter in the TAD group compared to the NTAD group (30.00 [IQR 22.00-40.00] vs. 344.00 [IQR 237.25-400.00] mm, p < 0.001). All patients with TAD underwent TEVAR following the same strategy as NTAD. The mean preoperative duration was 7.00 (IQR 2.00-14.00) days in the TAD group and 11.00 (IQR 8.00-15.00) days in the NTAD group (p < 0.001). TAD showed fewer complications after TEVAR in mid-to-long-term follow-up. CONCLUSIONS TAD is distinct from NTAD. TAD typically presents with more localized lesions than NTAD, and the patients experience a shorter preoperative duration and a better mid-to-long-term outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (Q.G.); (Y.L.); (L.P.); (X.L.); (B.H.); (S.X.)
| |
Collapse
|
10
|
Xuan X, Li Y, Cao G, Zhang R, Hu J, Jin H, Dong H. Fluoroquinolones increase susceptibility to aortic aneurysm and aortic dissection: Molecular mechanism and clinical evidence. Vasc Med 2023; 28:604-613. [PMID: 37756313 DOI: 10.1177/1358863x231198055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Aortic aneurysm (AA) and aortic dissection (AD) are prevalent severe cardiovascular diseases that result in catastrophic complications and unexpected deaths. Owing to the lack of clinically established and effective medications, the only treatment options are open surgical repair or endovascular therapy. Most researchers have focused on the development of innovative medications or therapeutic targets to slow the progression of AA/AD or lower the risk of malignant consequences. Recent studies have shown that the use of fluoroquinolones (FQs) may increase susceptibility to AA/AD to some extent, especially in patients with aortic dilatation and those at a high risk of AD. Therefore, it is crucial for doctors, particularly those in cardiovascular specialties, to recognize the dangers of FQs and adopt alternatives. In the present review, the main clinical observational studies on the correlation between FQs and AA/AD in recent years are summarized, with an emphasis on the relative physiopathological mechanism incorporating destruction of the extracellular matrix (ECM), phenotypic transformation of vascular smooth muscle cells, and local inflammation. Although additional data are required, it is anticipated that the rational use of FQs will become the standard of care for the treatment of aortic diseases.
Collapse
Affiliation(s)
- Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Haijiang Jin
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Soleimani M, Deo R, Hudobivnik B, Poyanmehr R, Haverich A, Wriggers P. Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon's view. Biomech Model Mechanobiol 2023; 22:2097-2116. [PMID: 37552344 PMCID: PMC10613153 DOI: 10.1007/s10237-023-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
This paper presents a mathematical model for arterial dissection based on a novel hypothesis proposed by a surgeon, Axel Haverich, see Haverich (Circulation 135(3):205-207, 2017. https://doi.org/10.1161/circulationaha.116.025407 ). In an attempt and based on clinical observations, he explained how three different arterial diseases, namely atherosclerosis, aneurysm and dissection have the same root in malfunctioning Vasa Vasorums (VVs) which are micro capillaries responsible for artery wall nourishment. The authors already proposed a mathematical framework for the modeling of atherosclerosis which is the thickening of the artery walls due to an inflammatory response to VVs dysfunction. A multiphysics model based on a phase-field approach coupled with mechanical deformation was proposed for this purpose. The kinematics of mechanical deformation was described using finite strain theory. The entire model is three-dimensional and fully based on a macroscopic continuum description. The objective here is to extend that model by incorporating a damage mechanism in order to capture the tearing (rupture) in the artery wall as a result of micro-injuries in VV. Unlike the existing damage-based model of the dissection in the literature, here the damage is driven by the internal bleeding (hematoma) rather than purely mechanical external loading. The numerical implementation is carried out using finite element method (FEM).
Collapse
Affiliation(s)
- Meisam Soleimani
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany.
| | - Rohan Deo
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| | - Blaz Hudobivnik
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| | - Reza Poyanmehr
- Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medical School, Hannover, Germany
| | - Axel Haverich
- Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medical School, Hannover, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| |
Collapse
|
13
|
Kurihara G, Ujihara Y, Nakamura M, Sugita S. Delamination Strength and Elastin Interlaminar Fibers Decrease with the Development of Aortic Dissection in Model Rats. Bioengineering (Basel) 2023; 10:1292. [PMID: 38002416 PMCID: PMC10669036 DOI: 10.3390/bioengineering10111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening tear of the vascular tissue with creation of a false lumen. To explore the mechanism underlying this tissue tear, this study investigated the delamination strength of AD model rats and the histological composition of the aorta at various stages of AD development. SD rats were administrated beta-amino propionitrile for 0 (Control), 3 (Pre-dissection), and 6 (Dissection) weeks. The thoracic aorta was harvested at 10-11 weeks of age. The Dissection group exclusively showed AD at the ascending aorta. The delamination strength, a force that separates the aorta in the radial direction, of the descending aorta decreased significantly in the order of the Control, Pre-dissection, and Dissection groups. A quantitative histological analysis of the aortic tissue demonstrated that, compared with the Control group, the area fraction of collagen was significantly higher in the Pre-dissection and Dissection groups and that of elastin was significantly lower in the Dissection group. The area fraction of the elastin fibers between the elastic laminas (interlaminar fibers) was significantly decreased in the order of the Control, Pre-dissection, and Dissection groups. Histological changes of the aortic tissue, perhaps a reduction in interlaminar fibers mainly aligned in the radial direction, decreased delamination strength, thereby causing AD.
Collapse
Affiliation(s)
- Genki Kurihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
14
|
Giovanniello F, Asgari M, Breslavsky ID, Franchini G, Holzapfel GA, Tabrizian M, Amabili M. Development and mechanical characterization of decellularized scaffolds for an active aortic graft. Acta Biomater 2023; 160:59-72. [PMID: 36792047 DOI: 10.1016/j.actbio.2023.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Decellularized porcine aortas are proposed as scaffolds for revolutionary active aortic grafts. A change in the static and dynamic mechanical properties, associated with the microstructure of elastin and collagen fibers, corresponds to alteration in the cyclic expansion and perfusion, in addition to possible graft damage. Therefore, the present study thoroughly investigates the mechanical response of the decellularized scaffolds of human and porcine origin to static and dynamic mechanical loads. The responses of the native human and porcine aortas are also compared; this is unavailable in the literature. Because the aorta is subjected to pulsatile blood pressure, dynamical responses to cyclic loads and their associated viscoelastic properties are particularly relevant for advanced graft design. In parallel, this study examines the microstructure of the decellularized aorta. The resulting data are compared to the analogous data obtained for the native human and porcine tissues. The results indicate that by using an optimized decellularization protocol - based on sodium dodecyl sulfate (SDS) and DNase - that minimizes mechanical and structural changes of the tissue, layered scaffolds with static and dynamic properties very similar to natural human aortas are obtained. In particular, a decellularized porcine aorta is non-inferior to a decellularized human aorta. STATEMENT OF SIGNIFICANCE: About 55,000 patients undergo abdominal aortic aneurysm repair annually in the USA. The currently implanted grafts present a large mechanical mismatch with the native tissue. This increases the pulsatile nature of the blood flow with negative consequences to the organ perfusion. For this reason, biomimetic and mechanically compatible grafts for aortic repair are urgently needed and they can be obtained through tissue engineering. In this study, scaffolds from porcine and human aortas are obtained from an optimized decellularization protocol. They are accurately compared to the native tissue and present the ideal static and dynamic mechanical properties for developing innovative aortic grafts.
Collapse
Affiliation(s)
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Ivan D Breslavsky
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Giulio Franchini
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal, Canada; Advanced Materials Research Center, Technology Innovation Institute (TII), Abu Dhabi, UAE.
| |
Collapse
|
15
|
Brunet J, Pierrat B, Adrien J, Maire E, Lane BA, Curt N, Bravin A, Laroche N, Badel P. In situ visualization of aortic dissection propagation in notched rabbit aorta using synchrotron X-ray tomography. Acta Biomater 2023; 155:449-460. [PMID: 36343907 DOI: 10.1016/j.actbio.2022.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Aortic dissection is a complex, intramural, and dynamic condition involving multiple mechanisms, hence, difficult to observe. In the present study, a controlled in vitro aortic dissection was performed using tension-inflation tests on notched rabbit aortic segments. The mechanical test was combined with conventional (cCT) and synchrotron (sCT) computed tomography for in situ imaging of the macro- and micro-structural morphological changes of the aortic wall during dissection. We demonstrate that the morphology of the notch and the aorta can be quantified in situ at different steps of the aortic dissection, and that the notch geometry correlates with the critical pressure. The phenomena prior to propagation of the notch are also described, for instance the presence of a bulge at the tip of the notch is identified, deforming the remaining wall. Finally, our method allows us to visualize for the first time the propagation of an aortic dissection in real-time with a resolution that has never previously been reached. STATEMENT OF SIGNIFICANCE: With the present study, we investigated the factors leading to the propagation of aortic dissection by reproducing this mechanical process in notched rabbit aortas. Synchrotron CT provided the first visualisation in real-time of an aortic dissection propagation with a resolution that has never previously been reached. The morphology of the intimal tear and aorta was quantified at different steps of the aortic dissection, demonstrating that the early notch geometry correlates with the critical pressure. This quantification is crucial for the development of better criteria identifying patients at risk. Phenomena prior to tear propagation were also described, such as the presence of a bulge at the tip of the notch, deforming the remaining wall.
Collapse
Affiliation(s)
- J Brunet
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France; European Synchrotron Radiation Facility (ESRF), Grenoble, France; Department of Mechanical Engineering, University College London, London, UK.
| | - B Pierrat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| | - J Adrien
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - E Maire
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - B A Lane
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - N Curt
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - A Bravin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - N Laroche
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - P Badel
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| |
Collapse
|
16
|
Li GY, Jiang Y, Zheng Y, Xu W, Zhang Z, Cao Y. Arterial Stiffness Probed by Dynamic Ultrasound Elastography Characterizes Waveform of Blood Pressure. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1510-1519. [PMID: 34995186 DOI: 10.1109/tmi.2022.3141613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical and economic burdens of cardiovascular diseases pose a global challenge. Growing evidence suggests an early assessment of arterial stiffness can provide insights into the pathogenesis of cardiovascular diseases. However, it remains difficult to quantitatively characterize local arterial stiffness in vivo. Here we utilize guided axial waves continuously excited and detected by ultrasound to probe local blood pressures and mechanical properties of common carotid arteries simultaneously. In a pilot study of 17 healthy volunteers, we observe a ∼ 20 % variation in the group velocities of the guided axial waves (5.16 ± 0.55 m/s in systole and 4.31 ± 0.49 m/s in diastole) induced by the variation of the blood pressures. A linear relationship between the square of group velocity and blood pressure is revealed by the experiments and finite element analysis, which enables us to measure the waveform of the blood pressures by the group velocities. Furthermore, we propose a wavelet analysis-based method to extract the dispersion relations of the guided axial waves. We then determined the shear modulus by fitting the dispersion relations in diastole with the leaky Lamb wave model. The average shear modulus of all the volunteers is 166.3 ± 32.8 kPa. No gender differences are found. This study shows the group velocity and dispersion relation of the guided axial waves can be utilized to probe blood pressure and arterial stiffness locally in a noninvasive manner and thus promising for early diagnosis of cardiovascular diseases.
Collapse
|
17
|
Mechanistic insight into lysyl oxidase in vascular remodeling and angiogenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Critical Pressure of Intramural Delamination in Aortic Dissection. Ann Biomed Eng 2022; 50:183-194. [PMID: 35044571 PMCID: PMC8957392 DOI: 10.1007/s10439-022-02906-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/01/2022] [Indexed: 02/03/2023]
Abstract
Computational models of aortic dissection can examine mechanisms by which this potentially lethal condition develops and propagates. We present results from phase-field finite element simulations that are motivated by a classical but seldom repeated experiment. Initial simulations agreed qualitatively and quantitatively with data, yet because of the complexity of the problem it was difficult to discern trends. Simplified analytical models were used to gain further insight. Together, simplified and phase-field models reveal power-law-based relationships between the pressure that initiates an intramural tear and key geometric and mechanical factors-insult surface area, wall stiffness, and tearing energy. The degree of axial stretch and luminal pressure similarly influence the pressure of tearing, which was ~88 kPa for healthy and diseased human aortas having sub-millimeter-sized initial insults, but lower for larger tear sizes. Finally, simulations show that the direction a tear propagates is influenced by focal regions of weakening or strengthening, which can drive the tear towards the lumen (dissection) or adventitia (rupture). Additional data on human aortas having different predisposing disease conditions will be needed to extend these results further, but the present findings show that physiologic pressures can propagate initial medial defects into delaminations that can serve as precursors to dissection.
Collapse
|
19
|
Yin M, Ban E, Rego BV, Zhang E, Cavinato C, Humphrey JD, Em Karniadakis G. Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network. J R Soc Interface 2022; 19:20210670. [PMID: 35135299 PMCID: PMC8826120 DOI: 10.1098/rsif.2021.0670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aortic dissection progresses mainly via delamination of the medial layer of the wall. Notwithstanding the complexity of this process, insight has been gleaned by studying in vitro and in silico the progression of dissection driven by quasi-static pressurization of the intramural space by fluid injection, which demonstrates that the differential propensity of dissection along the aorta can be affected by spatial distributions of structurally significant interlamellar struts that connect adjacent elastic lamellae. In particular, diverse histological microstructures may lead to differential mechanical behaviour during dissection, including the pressure-volume relationship of the injected fluid and the displacement field between adjacent lamellae. In this study, we develop a data-driven surrogate model of the delamination process for differential strut distributions using DeepONet, a new operator-regression neural network. This surrogate model is trained to predict the pressure-volume curve of the injected fluid and the damage progression within the wall given a spatial distribution of struts, with in silico data generated using a phase-field finite-element model. The results show that DeepONet can provide accurate predictions for diverse strut distributions, indicating that this composite branch-trunk neural network can effectively extract the underlying functional relationship between distinctive microstructures and their mechanical properties. More broadly, DeepONet can facilitate surrogate model-based analyses to quantify biological variability, improve inverse design and predict mechanical properties based on multi-modality experimental data.
Collapse
Affiliation(s)
- Minglang Yin
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Enrui Zhang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, RI 02912, USA
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
20
|
5'-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:295-306. [PMID: 34513311 PMCID: PMC8413832 DOI: 10.1016/j.omtn.2021.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that tRNA-derived fragments are a novel class of functional small non-coding RNA; however, their roles in aortic dissection (AD) are still unknown. In this study, we found that 5'-tiRNA-Cys-GCA was significantly downregulated in human and mouse models of aortic dissection. The abnormal proliferation, migration, and phenotypic transition of vascular smooth muscle cells (VSMCs) played a crucial role in the initiation and progression of aortic dissection, with 5'-tiRNA-Cys-GCA as a potential phenotypic switching regulator, because its overexpression inhibited the proliferation and migration of VSMCs and increased the expression of contractile markers. In addition, we verified that signal transducer and activator of transcription 4 (STAT4) was a direct downstream target of 5'-tiRNA-Cys-GCA. We found that the STAT4 upregulation in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs, which promoted cell proliferation, migration, and phenotypic transformation, was reversed by 5'-tiRNA-Cys-GCA. Furthermore, 5'-tiRNA-Cys-GCA treatment reduced the incidence and prevented the malignant process of angiotensin II- and β-aminopropionitrile-induced AD in mice. In conclusion, our findings reveal that 5'-tiRNA-Cys-GCA is a potential regulator of the AD pathological process via the STAT4 signaling pathway, providing a novel clinical target for the development of future treatment strategies for aortic dissection.
Collapse
|
21
|
Ban E, Cavinato C, Humphrey JD. Differential propensity of dissection along the aorta. Biomech Model Mechanobiol 2021; 20:895-907. [PMID: 33464476 PMCID: PMC8159901 DOI: 10.1007/s10237-021-01418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Aortic dissections progress, in part, by delamination of the wall. Previous experiments on cut-open segments of aorta demonstrated that fluid injected within the wall delaminates the aorta in two distinct modes: stepwise progressive tearing in the abdominal aorta and a more prevalent sudden mode of tearing in the thoracic aorta that can also manifest in other regions. A microstructural understanding that delineates these two modes of tearing has remained wanting. We implemented a phase-field finite-element model of the aortic wall, motivated in part by two-photon imaging, and found correlative relations for the maximum pressure prior to tearing as a function of local geometry and material properties. Specifically, the square of the pressure of tearing relates directly to both tissue stiffness and the critical energy of tearing and inversely to the square root of the torn area; this correlation explains the sudden mode of tearing and, with the microscopy, suggests a mechanism for progressive tearing. Microscopy also confirmed that thick interlamellar radial struts are more abundant in the abdominal region of the aorta, where progressive tearing was observed previously. The computational results suggest that structurally significant radial struts increase tearing pressure by two mechanisms: confining the fluid by acting as barriers to flow and increasing tissue stiffness by holding the adjacent lamellae together. Collectively, these two phase-field models provide new insights into the mechanical factors that can influence intramural delaminations that promote aortic dissection.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Subramaniam DR, Gutmark E, Andersen N, Nielsen D, Mortensen K, Gravholt C, Backeljauw P, Gutmark-Little I. Influence of Material Model and Aortic Root Motion in Finite Element Analysis of Two Exemplary Cases of Proximal Aortic Dissection. J Biomech Eng 2021; 143:014504. [PMID: 32793953 DOI: 10.1115/1.4048084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 01/25/2023]
Abstract
The risk of type-A dissection is increased in subjects with connective tissue disorders and dilatation of the proximal aorta. The location and extents of vessel wall tears in these patients could be potentially missed during prospective imaging studies. The objective of this study is to estimate the distribution of systolic wall stress in two exemplary cases of proximal dissection using finite element analysis (FEA) and evaluate the sensitivity of the distribution to the choice of anisotropic material model and root motion. FEA was performed for predissection aortas, without prior knowledge of the origin and extents of vessel wall tear. The stress distribution was evaluated along the wall tear in the postdissection aortas. The stress distribution was compared for the Fung and Holzapfel models with and without root motion. For the subject with spiral dissection, peak stress coincided with the origin of the tear in the sinotubular junction. For the case with root dissection, maximum stress was obtained at the distal end of the tear. The FEA predicted tear pressure was 20% higher for the subject with root dissection as compared to the case with spiral dissection. The predicted tear pressure was higher (9-11%) for root motions up to 10 mm. The Holzapfel model predicted a tear pressure that was lower (8-15%) than the Fung model. The FEA results showed that both material response and root motion could potentially influence the predicted dissection pressure of the proximal aorta at least for conditions tested in this study.
Collapse
Affiliation(s)
| | - Ephraim Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221-0070
| | - Niels Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9100, Denmark
| | - Dorte Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kristian Mortensen
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Claus Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Iris Gutmark-Little
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
23
|
Wang R, Yu X, Gkousioudi A, Zhang Y. Effect of Glycation on Interlamellar Bonding of Arterial Elastin. EXPERIMENTAL MECHANICS 2021; 61:81-94. [PMID: 33583947 PMCID: PMC7880226 DOI: 10.1007/s11340-020-00644-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Interlamellar bonding in the arterial wall is often compromised by cardiovascular diseases. However, several recent nationwide and hospital-based studies have uniformly reported reduced risk of thoracic aortic dissection in patients with diabetes. As one of the primary structural constituents in the arterial wall, elastin plays an important role in providing its interlamellar structural integrity. OBJECTIVE The purpose of this study is to examine the effects of glycation on the interlamellar bonding properties of arterial elastin. METHODS Purified elastin network was isolated from porcine descending thoracic aorta and incubated in 2 M glucose solution for 7, 14 or 21 days at 37 °C. Peeling and direct tension tests were performed to provide complimentary information on understanding the interlamellar layer separation properties of elastin network with glycation effect. Peeling tests were simulated using a cohesive zone model (CZM). Multiphoton imaging was used to visualize the interlamellar elastin fibers in samples subjected to peeling and direct tension. RESULTS Peeling and direct tension tests show that interlamellar energy release rate and strength both increases with the duration of glucose treatment. The traction at damage initiation estimated for the CZM agrees well with the interlamellar strength measurements from direct tension tests. Glycation was also found to increase the interlamellar failure strain of arterial elastin. Multiphoton imaging confirmed the contribution of radially running elastin fibers to resisting dissection. CONCLUSIONS Nonenzymatic glycation reduces the propensity of arterial elastin to dissection. This study also suggests that the CZM effectively describes the interlamellar bonding properties of arterial elastin.
Collapse
Affiliation(s)
- R Wang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - X Yu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - A Gkousioudi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Y Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Divison of Materials Science & Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
24
|
Wang R, Yu X, Zhang Y. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech Model Mechanobiol 2020; 20:93-106. [PMID: 32705413 DOI: 10.1007/s10237-020-01370-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 μm for aortic media and 40 μm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Divison of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|