1
|
Dean SE, Munro J, Li N, Sharp R, Neshev DN, Sukhorukov AA. Metasurface-enabled small-satellite polarisation imaging. NANOSCALE ADVANCES 2025; 7:3579-3587. [PMID: 40342807 PMCID: PMC12056666 DOI: 10.1039/d5na00298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025]
Abstract
Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observations. The relatively low cost of small-satellites makes their use in remote sensing more accessible. However, their size and weight limitations cannot accommodate the bulky conventional optics needed for full-Stokes polarisation imaging. We present the modelling of an ultra-thin topology-optimised diffractive metasurface that encodes polarisation states in five different diffraction orders. Positioning the metasurface in a telescope's pupil plane allows the diffraction orders to be imaged onto a single detector, resulting in the capability to perform single-shot full-Stokes polarisation imaging of the Earth's surface. The five rectangular image swaths are designed to use the full width of the camera, and then each successive frame can be stitched together as the satellite moves over the Earth's surface, restoring the full field of view achievable with any chosen camera without comprising the on-ground resolution. Each set of four out of the five orders enables the reconstruction of the full polarisation state, and their simultaneous reconstructions allow for error monitoring. The lightweight design and compact footprint of the polarisation imaging optical system achievable with a metasurface is a novel approach to increase the functionality of small satellites while working within their weight and volume constraints.
Collapse
Affiliation(s)
- Sarah E Dean
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, Australian National University Canberra ACT 2600 Australia
| | - Josephine Munro
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, Australian National University Canberra ACT 2600 Australia
| | - Neuton Li
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, Australian National University Canberra ACT 2600 Australia
| | - Robert Sharp
- Research School of Astronomy and Astrophysics, Australian National University Weston Creek ACT 2611 Australia
| | - Dragomir N Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, Australian National University Canberra ACT 2600 Australia
| | - Andrey A Sukhorukov
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
2
|
Liu Q, Tian Y, Tian Z, Jia Y, Li G, Ren XF, Gong Q, Gu Y. Quantum CZ gates on a single gradient metasurface. LIGHT, SCIENCE & APPLICATIONS 2025; 14:193. [PMID: 40360462 PMCID: PMC12075864 DOI: 10.1038/s41377-025-01871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
For the requirement of quantum photonic integration in on-chip quantum information, we propose a scheme to realize quantum controlled-Z (CZ) gates through single gradient metasurface. Using its parallel beam-splitting feature, i.e., a series of connected beamsplitters with the same splitting ratio, one metasurface can support a polarization encoding CZ gate or path encoding CZ gate, several independent CZ gates, and cascade CZ gates. Taking advantage that the path of output state is locked by the polarization of input state, path encoding CZ gates can efficiently filter out bit-flip errors coming from beam-splitting processes. These CZ gates also have the potential to detect quantum errors and generate high-dimensional entanglement through multi-degree-of-freedom correlation on metasurfaces. By integrating quantum CZ gates into a single metasurface, our results open an avenue for high-density and multifunctional integration of quantum devices.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Yu Tian
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Zhaohua Tian
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Yali Jia
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Guixin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xi-Feng Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Qihuang Gong
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
- Hefei National Laboratory, Hefei, 230088, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Ying Gu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China.
- Hefei National Laboratory, Hefei, 230088, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
| |
Collapse
|
3
|
Dorrah AH, Park JS, Palmieri A, Capasso F. Free-standing bilayer metasurfaces in the visible. Nat Commun 2025; 16:3126. [PMID: 40169577 PMCID: PMC11961684 DOI: 10.1038/s41467-025-58205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Multi-layered meta-optics have enabled complex wavefront shaping beyond their single layer counterpart owing to the additional design variables afforded by each plane. For instance, lossless complex amplitude modulation, generalized polarization transformations, and wide field of view are key attributes that fundamentally require multi-plane wavefront matching. Nevertheless, existing embodiments of bilayer metasurfaces have relied on configurations which suffer from Fresnel reflections, low mode confinement, or undesired resonances which compromise the intended response. Here, we introduce bilayer metasurfaces made of free-standing meta-atoms working in the visible spectrum. We demonstrate their use in wavefront shaping of linearly polarized light using pure geometric phase with diffraction efficiency of 80% - expanding previous literature on Pancharatnam-Berry phase metasurfaces which rely on circularly or elliptically polarized illumination. The fabrication relies on a two-step lithography and selective development processes which yield free standing, bilayer stacked metasurfaces, of 1200 nm total thickness. The metasurfaces comprise TiO2 nanofins with vertical sidewalls. Our work advances the nanofabrication of compound meta-optics and inspires new directions in wavefront shaping, metasurface integration, and polarization control.
Collapse
Affiliation(s)
- Ahmed H Dorrah
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joon-Suh Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alfonso Palmieri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Federico Capasso
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Li Z, Liu W, Zhang Y, Tang F, Yang L, Ye X. Compact Near-Infrared Imaging Device Based on a Large-Aperture All-Si Metalens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:453. [PMID: 40137626 PMCID: PMC11945997 DOI: 10.3390/nano15060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Near-infrared imaging devices are extensively used in medical diagnosis, night vision, and security monitoring. However, existing traditional imaging devices rely on a bunch of refracting lenses, resulting in large, bulky imaging systems that restrict their broader utility. The emergence of flat meta-optics offers a potential solution to these limitations, but existing research on compact integrated devices based on near-infrared meta-optics is insufficient. In this study, we propose an integrated NIR imaging camera that utilizes large-size metalens with a silicon nanostructure with high transmission efficiency. Through the detection of target and animal and plant tissue samples, the ability to capture biological structures and their imaging performance was verified. Through further integration of the NIR imaging device, the device significantly reduces the size and weight of the system and optimizes the aperture to achieve excellent image brightness and contrast. Additionally, venous imaging of human skin shows the potential of the device for biomedical applications. This research has an important role in promoting the miniaturization and lightweight of near-infrared optical imaging devices, which is expected to be applied to medical testing and night vision imaging.
Collapse
Affiliation(s)
| | | | | | - Feng Tang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | - Liming Yang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
| | | |
Collapse
|
5
|
Wu T, Zhang X, Xu Q, Wang L, Li Y, Jiang X, Wang Q, Zhang W, Han J. Heterogeneous-Gradient Supercell Metasurfaces for Independent Complex Amplitude Control over Multiple Diffraction Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407303. [PMID: 39529540 DOI: 10.1002/smll.202407303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The ability to achieve independent complex amplitude control across multiple channels can significantly increase the information capacity of photonic devices. Diffraction inherently holds numerous channels, which are good candidates for dense light manipulation in angular space. However, no convenient method is currently available for attaining this. Here, a flexible interference approach utilizing silicon-based transmission-type heterogeneous-gradient supercell metasurfaces is proposed. By simply designing the phases of the meta-atoms' radiations within a supercell, the complex amplitude of each diffraction channel can be individually and analytically controlled. Crucially, the complex amplitudes of multiple diffraction channels can be simultaneously controlled in a non-interleaved manner, where the number of channels is determined by the number of effective adjusting degrees of freedom (DoF). As a proof-of-concept validation, several meta-devices are experimentally demonstrated in the terahertz regime, which can generate multiple vortex beams, focal points, and splitting beams in different desired diffraction angles. This advancement heralds a new pathway for the development of multifunctional photonic devices with enhanced channel capacity, offering significant potential for both research and practical applications in photonics.
Collapse
Affiliation(s)
- Tong Wu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Xueqian Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Quan Xu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Lehui Wang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Yao Li
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Xiaohan Jiang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Qingwei Wang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
- Guangxi Key Laboratory of Optoelectronic Information Processing School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
6
|
Khalid R, Kim J, Mahmood N, Cabrera H, Mehmood MQ, Danner A, Zubair M, Rho J. Fluid-Infiltrated Metalens-Driven Reconfigurable Intelligent Surfaces for Optical Wireless Communications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406690. [PMID: 39340831 DOI: 10.1002/advs.202406690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Indexed: 09/30/2024]
Abstract
A reconfigurable intelligent surface (RIS), a leading-edge technology, represents a new paradigm for adaptive control of electromagnetic waves between a source and a user. While RIS technology has proven effective in manipulating radio frequency waves using passive elements such as diodes and MEMS, its application in the optical domain is challenging. The main difficulty lies in meeting key performance indicators, with the most critical being accurate and self-adjusting positioning. This work presents an alternative RIS design methodology driven by an all-silicon structure and fluid infiltration, to achieve real-time control of focal length toward a designated user, thereby enabling secure data transmission. To validate the concept, both numerical simulations and experimental investigations of the RIS design methodology are conducted to demonstrate the performance of fluid-infiltrated metalens-driven RIS for this application. When combined with different fluids, the resulting ultra-compact RIS exhibits exceptional varifocal abilities, ranging from 0.4 to 0.5 mm, thereby confirming the adaptive tuning capabilities of the design. This may significantly enhance the modulation of optical waves and promote the development of RIS-based applications in wireless communications and secure data-transmission integrated photonic devices.
Collapse
Affiliation(s)
- Ramna Khalid
- MicroNano Lab, Department of Electrical Engineering, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
- SZCU-ITU Joint International MetaCenter for Advanced Photonics and Electronics, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Nasir Mahmood
- SZCU-ITU Joint International MetaCenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Humberto Cabrera
- MLab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, Trieste, 34151, Italy
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
- SZCU-ITU Joint International MetaCenter for Advanced Photonics and Electronics, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
| | - Aaron Danner
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Muhammad Zubair
- MicroNano Lab, Department of Electrical Engineering, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
- SZCU-ITU Joint International MetaCenter for Advanced Photonics and Electronics, Information Technology University of the Punjab (ITU), Lahore, 54000, Pakistan
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Xu H, Han L, Huang J, Du B, Zhan D. Scanning Electrochemical Probe Lithography for Ultra-Precision Machining of Micro-Optical Elements with Freeform Curved Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402743. [PMID: 38940401 DOI: 10.1002/smll.202402743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Two challenges should be overcome for the ultra-precision machining of micro-optical element with freeform curved surface: one is the intricate geometry, the other is the hard-to-machining optical materials due to their hardness, brittleness or flexibility. Here scanning electrochemical probe lithography (SECPL) is developed, not only to meet the machining need of intricate geometry by 3D direct writing, but also to overcome the above mentioned mechanical properties by an electrochemical material removal mode. Through the electrochemical probe a localized anodic voltage is applied to drive the localized corrosion of GaAs. The material removal rate is obtained as a function of applied voltage, motion rate, scan segment, etc. Based on the material removal function, an arbitrary geometry can be converted to a spatially distributed voltage. Thus, a series of micro-optical element are fabricated with a machining accuracy in the scale of 100 s of nanometers. Notably, the spiral phase plate shows an excellent performance to transfer parallel light to vortex beam. SECPL demonstrates its excellent controllability and accuracy for the ultra-precision machining of micro-optical devices with freeform curved surface, providing an alternative chemical approach besides the physical and mechanical techniques.
Collapse
Affiliation(s)
- Hantao Xu
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lianhuan Han
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianan Huang
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bingqian Du
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongping Zhan
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Wu Q, Xu Y, Zhao J, Liu Y, Liu Z. Localized Plasmonic Structured Illumination Microscopy Using Hybrid Inverse Design. NANO LETTERS 2024; 24:11581-11589. [PMID: 39234957 PMCID: PMC11421084 DOI: 10.1021/acs.nanolett.4c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Super-resolution fluorescence imaging has offered unprecedented insights and revolutionized our understanding of biology. In particular, localized plasmonic structured illumination microscopy (LPSIM) achieves video-rate super-resolution imaging with ∼50 nm spatial resolution by leveraging subdiffraction-limited nearfield patterns generated by plasmonic nanoantenna arrays. However, the conventional trial-and-error design process for LPSIM arrays is time-consuming and computationally intensive, limiting the exploration of optimal designs. Here, we propose a hybrid inverse design framework combining deep learning and genetic algorithms to refine LPSIM arrays. A population of designs is evaluated using a trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution. Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging applications.
Collapse
Affiliation(s)
- Qianyi Wu
- Department
of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yihao Xu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Junxiang Zhao
- Department
of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yongmin Liu
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaowei Liu
- Department
of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Su HT, Wang LY, Hsu CY, Wu YC, Lin CY, Chang SM, Huang YW. Topology Optimization Enables High- Q Metasurface for Color Selectivity. NANO LETTERS 2024; 24:10055-10061. [PMID: 39047260 PMCID: PMC11342354 DOI: 10.1021/acs.nanolett.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nonlocal metasurfaces, exemplified by resonant waveguide gratings (RWGs), spatially and angularly configure optical wavefronts through narrow-band resonant modes, unlike the broad-band and broad-angle responses of local metasurfaces. However, forward design techniques for RWGs remain constrained at lower efficiency. Here, we present a topology-optimized metasurface resonant waveguide grating (MRWG) composed of titanium dioxide on a glass substrate capable of operating simultaneously at red, yellow, green, and blue wavelengths. Through adjoint-based topology optimization, while considering nonlocal effects, we significantly enhance its diffraction efficiency, achieving numerical efficiencies up to 78% and Q-factors as high as 1362. Experimentally, we demonstrated efficiencies of up to 59% with a Q-factor of 93. Additionally, we applied our topology-optimized metasurface to color selectivity, producing vivid colors at 4 narrow-band wavelengths. Our investigation represents a significant advancement in metasurface technology, with potential applications in see-through optical combiners and augmented reality platforms.
Collapse
Affiliation(s)
- Huan-Teng Su
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Lu-Yun Wang
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chih-Yao Hsu
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yun-Chien Wu
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chang-Yi Lin
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shu-Ming Chang
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yao-Wei Huang
- Department of Photonics,
College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
10
|
Wang S, Han X, Li K. Snapshot Multi-Wavelength Birefringence Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:5174. [PMID: 39204868 PMCID: PMC11359313 DOI: 10.3390/s24165174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
A snapshot multi-wavelength birefringence imaging measurement method was proposed in this study. The RGB-LEDs at wavelengths 463 nm, 533 nm, and 629 nm were illuminated with circularly polarized light after passing through a circular polarizer. The transmitted light through the birefringent sample was captured by a color polarization camera. A single imaging process captured light intensity in four polarization directions (0°, 45°, 90°, and 135°) for each of the three RGB spectral wavelength channels, and subsequently measured the first three elements of Stokes vectors (S0, S1, and S2) after the sample. The birefringence retardance and fast-axis azimuthal angle were determined simultaneously. An experimental setup was constructed, and polarization response matrices were calibrated for each spectral wavelength channel to ensure the accurate detection of Stokes vectors. A polymer true zero-order quarter-wave plate was employed to validate measurement accuracy and repeatability. Additionally, stress-induced birefringence in a PMMA arch-shaped workpiece was measured both before and after the application of force. Experimental results revealed that the repeatability of birefringence retardance and fast-axis azimuthal angle was better than 0.67 nm and 0.08°, respectively. This approach enables multispectral wavelength, high-speed, high-precision, and high-repeatability birefringence imaging measurements through a single imaging session.
Collapse
Affiliation(s)
- Shuang Wang
- School of Data Science and Technology, North University of China, Taiyuan 030051, China; (S.W.); (X.H.)
- Engineering and Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, North University of China, Taiyuan 030051, China
| | - Xie Han
- School of Data Science and Technology, North University of China, Taiyuan 030051, China; (S.W.); (X.H.)
| | - Kewu Li
- Engineering and Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, North University of China, Taiyuan 030051, China
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
11
|
Yuan Y, Zhang K, Wu Q, Burokur SN, Genevet P. Reaching the efficiency limit of arbitrary polarization transformation with non-orthogonal metasurfaces. Nat Commun 2024; 15:6682. [PMID: 39107269 PMCID: PMC11303807 DOI: 10.1038/s41467-024-50560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 08/09/2024] Open
Abstract
Polarization transformation is at the foundation of modern applications in photonics and quantum optics. Notwithstanding their applicative interests, basic theoretical and experimental efforts are still needed to exploit the full potential of polarization optics. Here, we reveal that the coherent superposition of two non-orthogonal eigen-states of Jones matrix can improve drastically the efficiency of arbitrary polarization transformation with respect to classical orthogonal polarization optics. By exploiting metasurface with stacking and twisted configuration, we have implemented a powerful configuration, termed "non-orthogonal metasurfaces", and have experimentally demonstrated arbitrary input-output polarization modulation reaching nearly 100% transmission efficiency in a broadband and angle-insensitive manner. Additionally, we have proposed a routing methodology to project independent phase holograms with quadruplex circular polarization components. Our results outline a powerful paradigm to achieve extremely efficient polarization optics, and polarization multiplexing for communication and information encryption at microwave and optical frequencies.
Collapse
Affiliation(s)
- Yueyi Yuan
- Department of Microwave Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Kuang Zhang
- Department of Microwave Engineering, Harbin Institute of Technology, 150001, Harbin, China.
| | - Qun Wu
- Department of Microwave Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | | | - Patrice Genevet
- Physics department, Colorado School of Mines, 1523 Illinois, St, Golden, CO, 80401, USA.
| |
Collapse
|
12
|
Liu W, Wang SR, Dai JY, Zhang L, Chen Q, Cheng Q, Cui TJ. Arbitrarily rotating polarization direction and manipulating phases in linear and nonlinear ways using programmable metasurface. LIGHT, SCIENCE & APPLICATIONS 2024; 13:172. [PMID: 39025829 PMCID: PMC11258343 DOI: 10.1038/s41377-024-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Independent controls of various properties of electromagnetic (EM) waves are crucially required in a wide range of applications. Programmable metasurface is a promising candidate to provide an advanced platform for manipulating EM waves. Here, we propose an approach that can arbitrarily control the polarization direction and phases of reflected waves in linear and nonlinear ways using a stacked programmable metasurface. Further, we extend the space-time-coding theory to incorporate the dimension of polarization, which provides an extra degree of freedom for manipulating EM waves. As proof-of-principle application examples, we consider polarization rotation, phase manipulation, and beam steering at linear and nonlinear frequencies. For validation, we design, fabricate, and measure a metasurface sample. The experimental results show good agreement with theoretical predictions and simulations. The proposed approach has a wide range of applications in various areas, such as imaging, data storage, and wireless communication.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China
| | - Si Ran Wang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China
| | - Jun Yan Dai
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China.
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China.
- Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China.
| | - Lei Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China
| | - Qiao Chen
- Electrical Engineering Department, Chalmers University of Technology, Gothenburg, 41258, Sweden.
| | - Qiang Cheng
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China.
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China.
- Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China.
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China.
- Institute of Electromagnetic Space, Southeast University, Nanjing, 210096, China.
- Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
13
|
Liang C, Huang T, Li Z, Guan Z, Li G, Zhang S, Zheng G. Minimalist design of multifunctional metasurfaces for helicity multiplexed holography and nanoprinting. OPTICS EXPRESS 2024; 32:26359-26373. [PMID: 39538504 DOI: 10.1364/oe.530173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024]
Abstract
Recently, polarization multiplexing has become a common strategy to enhance the information capacity of metasurfaces. Nevertheless, the intricate design of anisotropic nanostructures forming a polarization multiplexed metasurface poses a significant challenge, increasing the requirements for manufacturing processes and diminishing overall robustness. Herein, we present a minimalist metasurface comprised of only two kinds of nanostructures to achieve the integration of continuous-amplitude modulated nanoprinting and eight-step phase-only helicity-multiplexed holography. Specifically, the nanoprinting image governed by Malus's law can be observed in the orthogonally polarized light path, while holographic images can be switched by changing the chirality of the incident circularly polarized light. More importantly, the geometric phase and the propagation phase of the metasurface are optimized simultaneously according to the target images. Thus, the metasurface does not require optimizing many kinds of nanostructures to achieve the phase but only needs two kinds of nanostructures, forming a minimalist metasurface that significantly relieves the design and fabrication burden. Moreover, the proposed methodology is universal and applicable not only in polarization multiplexing but also in other multi-channel multiplexing technologies. Consequently, the proposed scheme holds promising applications in image display, information encryption, data storage, anti-counterfeiting, and more.
Collapse
|
14
|
Liang C, Wang J, Huang T, Dai Q, Li Z, Yu S, Li G, Zheng G. Structural-color meta-nanoprinting embedding multi-domain spatial light field information. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1665-1675. [PMID: 39678179 PMCID: PMC11636407 DOI: 10.1515/nanoph-2024-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 12/17/2024]
Abstract
Recently, multifunctional metasurface has showcased its powerful functionality to integrate nanoprinting and holography, and display ultracompact meta-images in near- and far-field simultaneously. Herein, we propose a tri-channel metasurface which can further extend the meta-imaging ranges, with three independent images located at the interface, Fresnel and Fourier domains, respectively. Specifically, a structural-color nanoprinting image is decoded right at the interface of the metasurface, enabled by varying the dimensions of nanostructures; a Fresnel holographic image and another Fourier holographic image are present at the Fresnel and Fourier (far-field) domains, respectively, enabled by geometric phase. The spectral and phase manipulation capabilities of nanostructures have been maximized, and the spatial multiplexing capabilities for diffraction in metasurfaces have also been fully exploited. By leveraging the design freedom enabled through the tuning of the geometric size and orientation of nanostructures, as well as optimizing the diffraction spatial light wave transformation, the encoding of multiple images on the single-celled metasurface is achieved. More interestingly, due to the spatial separation of images across different channels, crosstalk is virtually eliminated, effectively enhancing imaging quality. The proposed metasurface offers several advantages, including a compact design, easiness of fabrication, minimal crosstalk, and high storage density. Consequently, it holds promising applications in image display, data storage, information encryption, anti-counterfeiting, and various other fields.
Collapse
Affiliation(s)
- Congling Liang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Jiahao Wang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Tian Huang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Qi Dai
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Suzhou Institute of Wuhan University, Suzhou, 215123, China
| | - Zile Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Shaohua Yu
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Gongfa Li
- Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Guoxing Zheng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
15
|
Lin R, Valuckas V, Do TTH, Nemati A, Kuznetsov AI, Teng J, Ha ST. Schrödinger's Red Beyond 65,000 Pixel-Per-Inch by Multipolar Interaction in Freeform Meta-Atom through Efficient Neural Optimizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303929. [PMID: 38093513 PMCID: PMC10987134 DOI: 10.1002/advs.202303929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Indexed: 04/04/2024]
Abstract
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Collapse
Affiliation(s)
- Ronghui Lin
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Vytautas Valuckas
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Thi Thu Ha Do
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arash Nemati
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arseniy I. Kuznetsov
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Jinghua Teng
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Son Tung Ha
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| |
Collapse
|
16
|
Yang C, Cai W, Zhang ZM. Tailoring full-Stokes thermal emission from twisted-gratings structures. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:803-811. [PMID: 39635099 PMCID: PMC11501260 DOI: 10.1515/nanoph-2023-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2024]
Abstract
Polarized thermal emission finds extensive applications in remote sensing, landmine detection, and target detection. In applications such as ellipsometry and biomedical analysis, the generation of emission with controllable polarization is preferred. It is desired to manipulate the polarization state over the full Stokes parameters. While numerous studies have demonstrated either linear or circular polarization control using metamaterials, full-Stokes thermal emission has not been explored. Here, a microstructure based on two layers of silicon carbide gratings is proposed to tailor the polarization state of thermal emission, covering the full-Stokes parameter range. The bilayer twisted-gratings structure breaks mirror symmetry. Wave interference at the interfaces and diffraction by the gratings enhance the emission dichroism, resulting in almost completely polarized emission. By adjusting the twist angle between the gratings, the polarization state can be continuously tuned from linear to circular, nearly covering the entire surface of Poincaré sphere. This study provides a design for tailoring full-Stokes emission with notable advantages over other plasmonic metasurfaces.
Collapse
Affiliation(s)
- Chiyu Yang
- George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Wenshan Cai
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Zhuomin M. Zhang
- George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA30332, USA
| |
Collapse
|
17
|
Palmieri A, Dorrah AH, Yang J, Oh J, Dainese P, Capasso F. Do dielectric bilayer metasurfaces behave as a stack of decoupled single-layer metasurfaces? OPTICS EXPRESS 2024; 32:8146-8159. [PMID: 38439479 DOI: 10.1364/oe.505401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 03/06/2024]
Abstract
Flat optics or metasurfaces have opened new frontiers in wavefront shaping and its applications. Polarization optics is one prominent area which has greatly benefited from the shape-birefringence of metasurfaces. However, flat optics comprising a single layer of meta-atoms can only perform a subset of polarization transformations, constrained by a symmetric Jones matrix. This limitation can be tackled using metasurfaces composed of bilayer meta-atoms but exhausting all possible combinations of geometries to build a bilayer metasurface library is a very daunting task. Consequently, bilayer metasurfaces have been widely treated as a cascade (product) of two decoupled single-layer metasurfaces. Here, we test the validity of this assumption for dielectric metasurfaces by considering a metasurface made of titanium dioxide on fused silica substrate at a design wavelength of 532 nm. We explore regions in the design space where the coupling between the top and bottom layers can be neglected, i.e., producing a far-field response which approximates that of two decoupled single-layer metasurfaces. We complement this picture with the near-field analysis to explore the underlying physics in regions where both layers are strongly coupled. We also show the generality of our analysis by applying it to silicon metasurfaces at telecom wavelengths. Our unified approach allows the designer to efficiently build a multi-layer dielectric metasurface, either in transmission or reflection, by only running one full-wave simulation for a single-layer metasurface.
Collapse
|
18
|
Wang YH, Li FY, Jiao DX, Wei Q, Wei L, Yang GY. Optically Anisotropic Mixed-Metal Fluoroiodate Ba 2[GaF 5(IO 3F)] with a Wide Optical Transparent Window and a Moderate Birefringence. Inorg Chem 2023; 62:17691-17696. [PMID: 37847177 DOI: 10.1021/acs.inorgchem.3c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An optically anisotropic alkali-earth-metal gallium fluoroiodate, Ba2[GaF5(IO3F)] (1), was ingeniously obtained by integrating fluoride and fluoroiodate functional units under moderate hydrothermal conditions. It features a three-dimensional (3D) structure constructed by the highly polarizable fluoroiodate unit [IO3F] and the fluoride groups [GaOF5] and [BaO3Fx] (x = 6, 7). The compound is stable at temperatures up to 500 °C. With the synergistic interaction between [IO3F] and the fluoride groups, the mixed-metal fluoroiodate induces a short ultraviolet cutoff edge at about 230 nm, a medium measured birefringence of 0.068 @ 550 nm, and a wide optical transparent window (0.34-11.9 μm), indicating that 1 has potential applications as a birefringent material from near-UV to mid-infrared. Theoretical calculations prove that the optical characteristics of the compound are mainly attributed to [IO3F] and the fluoride functional groups. This work demonstrates that the presence of various specific functional groups in compounds will help to develop promising inorganic functional materials possessing good optical performance.
Collapse
Affiliation(s)
- Yu-Hang Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Fu-Ying Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Dong-Xue Jiao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
19
|
Feng Y, Chen R, He J, Qi L, Zhang Y, Sun T, Zhu X, Liu W, Ma W, Shen W, Hu C, Sun X, Li D, Zhang R, Li P, Li S. Visible to mid-infrared giant in-plane optical anisotropy in ternary van der Waals crystals. Nat Commun 2023; 14:6739. [PMID: 37875483 PMCID: PMC10598000 DOI: 10.1038/s41467-023-42567-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Birefringence is at the heart of photonic applications. Layered van der Waals materials inherently support considerable out-of-plane birefringence. However, funnelling light into their small nanoscale area parallel to its out-of-plane optical axis remains challenging. Thus far, the lack of large in-plane birefringence has been a major roadblock hindering their applications. Here, we introduce the presence of broadband, low-loss, giant birefringence in a biaxial van der Waals materials Ta2NiS5, spanning an ultrawide-band from visible to mid-infrared wavelengths of 0.3-16 μm. The in-plane birefringence Δn ≈ 2 and 0.5 in the visible and mid-infrared ranges is one of the highest among van der Waals materials known to date. Meanwhile, the real-space propagating waveguide modes in Ta2NiS5 show strong in-plane anisotropy with a long propagation length (>20 μm) in the mid-infrared range. Our work may promote next-generation broadband and ultracompact integrated photonics based on van der Waals materials.
Collapse
Affiliation(s)
- Yanze Feng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Runkun Chen
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Junbo He
- Department of Optical Science and Engineering, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Proception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Liujian Qi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Tian Sun
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudan Zhu
- Department of Optical Science and Engineering, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Proception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Weiming Liu
- Department of Optical Science and Engineering, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Proception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Weiliang Ma
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Weijin Road 92, Nankai District, Tianjin, 300072, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Rongjun Zhang
- Department of Optical Science and Engineering, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Proception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shaojuan Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| |
Collapse
|
20
|
So S, Mun J, Park J, Rho J. Revisiting the Design Strategies for Metasurfaces: Fundamental Physics, Optimization, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206399. [PMID: 36153791 DOI: 10.1002/adma.202206399] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the capabilities of metasurfaces in light modulation with subwavelength thickness have been proven, and metasurfaces are expected to miniaturize conventional optical components and add various functionalities. Herein, various metasurface design strategies are reviewed thoroughly. First, the scalar diffraction theory is revisited to provide the basic principle of light propagation. Then, widely used design methods based on the unit-cell approach are discussed. The methods include a set of simplified steps, including the phase-map retrieval and meta-atom unit-cell design. Then, recently emerging metasurfaces that may not be accurately designed using unit-cell approach are introduced. Unconventional metasurfaces are examined where the conventional design methods fail and finally potential design methods for such metasurfaces are discussed.
Collapse
Affiliation(s)
- Sunae So
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junghyun Park
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 16678, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Cai Z, Ding Y, Chen Z, Zheng Z, Ding F. Dynamic dual-functional optical wave plate based on phase-change meta-molecules. OPTICS LETTERS 2023; 48:3685-3688. [PMID: 37450725 DOI: 10.1364/ol.495812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Optical metasurfaces have shown great potential for revolutionizing wave plates by enabling compact footprints and diversified functionalities. However, most metasurface wave plates (meta-WPs) are typically passive, featuring defined responses after fabrication, whereas dynamic meta-WPs have so far often been limited to ON and OFF states. Here, we design a dynamic dual-functional meta-WP based on judiciously designed low-loss Sb2Se3 meta-molecules at the telecom wavelength of 1.55 µm which enables reconfigurable linear-to-circular and linear-to-linear polarization conversion for orthogonal linear polarizations when Sb2Se3 transits between amorphous and crystalline states. In addition, a comprehensive electro-thermal simulation is carried out to verify the phase change process for realistic implementation. The designed dynamic dual-functional wave plate may open new avenues for developing integrated adaptive photonics with dynamic and multiplexed functionalities.
Collapse
|
22
|
Spaegele CM, Tamagnone M, Lim SWD, Ossiander M, Meretska ML, Capasso F. Topologically protected optical polarization singularities in four-dimensional space. SCIENCE ADVANCES 2023; 9:eadh0369. [PMID: 37327327 DOI: 10.1126/sciadv.adh0369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Optical singularities play a major role in modern optics and are frequently deployed in structured light, super-resolution microscopy, and holography. While phase singularities are uniquely defined as locations of undefined phase, polarization singularities studied thus far are either partial, i.e., bright points of well-defined polarization, or are unstable for small field perturbations. We demonstrate a complete, topologically protected polarization singularity; it is located in the four-dimensional space spanned by the three spatial dimensions and the wavelength and is created in the focus of a cascaded metasurface-lens system. The field Jacobian plays a key role in the design of such higher-dimensional singularities, which can be extended to multidimensional wave phenomena, and pave the way for unconventional applications in topological photonics and precision sensing.
Collapse
Affiliation(s)
- Christina M Spaegele
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Michele Tamagnone
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Soon Wei Daniel Lim
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Marcus Ossiander
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Maryna L Meretska
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Yuan Q, Ge Q, Chen L, Zhang Y, Yang Y, Cao X, Wang S, Zhu S, Wang Z. Recent advanced applications of metasurfaces in multi-dimensions. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2295-2315. [PMID: 39633760 PMCID: PMC11501205 DOI: 10.1515/nanoph-2022-0803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/12/2023] [Indexed: 12/07/2024]
Abstract
Unlike traditional optical components, which rely on the gradual accumulation of light along the optical path over a distance much larger than the wavelength to form a wavefront, metasurfaces manipulate light field properties on the wavelength thickness by specially arranging various meta-atoms. Due to the ease of integration and compact planar structure, metasurfaces play a key role in the light field manipulations. Here, we review the recent advances of metasurfaces in multi-dimensions, including light wavelength, polarization, orbital angular momentum(OAM), and angular response. Progress in these fields has brought new applications in areas such as imaging, display, communication, and information encryption, etc. Finally, we also discuss the challenges and prospects of metasurfaces applications.
Collapse
Affiliation(s)
- Quan Yuan
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Qin Ge
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Linsen Chen
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Yi Zhang
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Yuhang Yang
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Xun Cao
- National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, Nanjing University, Nanjing210093, China
| | - Shuming Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing210093, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing210093, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing210093, China
| |
Collapse
|
24
|
Chen J, Yu F, Liu X, Bao Y, Chen R, Zhao Z, Wang J, Wang X, Liu W, Shi Y, Qiu CW, Chen X, Lu W, Li G. Polychromatic full-polarization control in mid-infrared light. LIGHT, SCIENCE & APPLICATIONS 2023; 12:105. [PMID: 37142624 PMCID: PMC10160079 DOI: 10.1038/s41377-023-01140-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Objects with different shapes, materials and temperatures can emit distinct polarizations and spectral information in mid-infrared band, which provides a unique signature in the transparent window for object identification. However, the crosstalk among various polarization and wavelength channels prevents from accurate mid-infrared detections at high signal-to-noise ratio. Here, we report full-polarization metasurfaces to break the inherent eigen-polarization constraint over the wavelengths in mid-infrared. This recipe enables to select arbitrary orthogonal polarization basis at individual wavelength independently, therefore alleviating the crosstalk and efficiency degradation. A six-channel all-silicon metasurface is specifically presented to project focused mid-infrared light to distinct positions at three wavelengths, each with a pair of arbitrarily chosen orthogonal polarizations. An isolation ratio of 117 between neighboring polarization channels is experimentally recorded, exhibiting detection sensitivity one order of magnitude higher than existing infrared detectors. Remarkably, the high aspect ratio ~30 of our meta-structures manufactured by deep silicon etching technology at temperature -150 °C guarantees the large and precise phase dispersion control over a broadband from 3 to 4.5 μm. We believe our results would benefit the noise-immune mid-infrared detections in remote sensing and space-to-ground communications.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Feilong Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yanjun Bao
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Rongsheng Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Zengyue Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Jiuxu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiuxia Wang
- Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
| | - Wen Liu
- Center for Micro-and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
- National University of Singapore Suzhou Research Institute, No. 377 Linquan Street, Suzhou, Jiangsu, 215123, China.
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 SubLane Xiangshan, Hangzhou, 310024, China.
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China.
- University of Chinese Academy of Science, No. 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
25
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
26
|
Wang S, Wen S, Deng ZL, Li X, Yang Y. Metasurface-Based Solid Poincaré Sphere Polarizer. PHYSICAL REVIEW LETTERS 2023; 130:123801. [PMID: 37027878 DOI: 10.1103/physrevlett.130.123801] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The combination of conventional polarization optical elements, such as linear polarizers and waveplates, is widely adopted to tailor light's state of polarization (SOP). Meanwhile, less attention has been given to the manipulation of light's degree of polarization (DOP). Here, we propose metasurface-based polarizers that can filter unpolarized incident light to light with any prescribed SOP and DOP, corresponding to arbitrary points located both at the surface and within the solid Poincaré sphere. The Jones matrix elements of the metasurface are inverse-designed via the adjoint method. As prototypes, we experimentally demonstrated metasurface-based polarizers in near-infrared frequencies that can convert unpolarized light into linear, elliptical, or circular polarizations with varying DOPs of 1, 0.7, and 0.4, respectively. Our Letter unlocks a new degree of freedom for metasurface polarization optics and may break new ground for a variety of DOP-related applications, such as polarization calibration and quantum state tomography.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zi-Lan Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yuanmu Yang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Liu J, Zhu X, Zhou Y, Zou X, Qin Z, Wang S, Zhu S, Wang Z. Metasurfaces enabled polarization-multiplexing heralded single photon imaging. OPTICS EXPRESS 2023; 31:6217-6227. [PMID: 36823883 DOI: 10.1364/oe.482426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Quantum imaging has non-negligible advantages in terms of sensitivity, signal-to-noise ratio, and novel imaging schemes. Based on metasurfaces, the information density and stability of the quantum imaging system can be further improved. Here we experimentally demonstrate that two patterns, simultaneously and independently superimposed on a high-efficiency dielectric metasurface, can be remotely switched via polarization-entangled photon pairs. Furthermore, using the time-correlated property of entangled photon pairs, the information carried by quantum light can be remarkably discriminated from background noise. This work confirms that the phase manipulation of quantum light with metasurfaces has a huge potential in the field of quantum imaging, quantum state tomography, and also promises real-world quantum metasurface devices.
Collapse
|
28
|
Song T, Wu X, Xu J, Ye H, Shi W. Two-Level Optical Birefringence Created by Evaporation-Induced Polymer Crystallization in Sessile Droplets. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haimu Ye
- Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
29
|
Xu G, Kang Q, Fan X, Yang G, Guo K, Guo Z. Influencing Effects of Fabrication Errors on Performances of the Dielectric Metalens. MICROMACHINES 2022; 13:2098. [PMID: 36557397 PMCID: PMC9787511 DOI: 10.3390/mi13122098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Despite continuous developments of manufacturing technology for micro-devices and nano-devices, fabrication errors still exist during the manufacturing process. To reduce manufacturing costs and save time, it is necessary to analyze the effects of fabrication errors on the performances of micro-/nano-devices, such as the dielectric metasurface-based metalens. Here, we mainly analyzed the influences of fabrication errors in dielectric metasurface-based metalens, including geometric size and shape of the unit element, on the focusing efficiency and the full width at half maximum (FWHM) values. Simulation results demonstrated that the performance of the metasurface was robust to fabrication errors within a certain range, which provides a theoretical guide for the concrete fabrication processes of dielectric metasurfaces.
Collapse
|
30
|
Qin Z, Li Y, Wang H, Li C, Wan W, Li S, Wang J, Qu S. Tailorable Switching of Transmission Modes between Waveguide and Spoof Surface Plasmon Polariton for Flexible and Dynamic Control of Phase Shift. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51510-51518. [PMID: 36332191 DOI: 10.1021/acsami.2c14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Programmable metamaterials are suitable for their dynamic and real-time control capabilities of electromagnetic (EM) functions in radars and antenna communications, but it remains a challenge to achieve dynamic modulation of arbitrary transmission phase with high transmission efficiency. Here, we propose a paradigm to tailor transmission phase shift in real time by switching modes between waveguide and SSPP based on the voltage-driven PIN diodes. Step-like phase shift is achieved by the "ON" and "OFF" states of PIN diodes, while continuous phase regulation is by the characteristic of the nonlinear region between those two states. As validations, three systems with programmable functionalities are implemented, including the multibeam generator, the dual-beam scanner, and the active phased-array antenna. The experimental results are consistent with simulation, which verify the feasibility of the proposed approach. Our work offers an alternative route for transmission full-phase modulation and provides unprecedented potential for high-gain, real-time, and multidimensional EM capabilities in applications such as active phased array radars, self-adaption radomes, smart beam shaping.
Collapse
Affiliation(s)
- Zhe Qin
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - Yongfeng Li
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - He Wang
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - Chenchen Li
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - Weipeng Wan
- College of Electronic Science, National University of Defense Technology, Changsha410073, China
| | - SongYan Li
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - Jiafu Wang
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| | - Shaobo Qu
- Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi710051, China
| |
Collapse
|
31
|
Singh S, Bhardwaj S, Verma C, Chhajed M, Balayan K, Ghosh K, Maji PK. Elliptically birefringent chemically tuned liquid crystalline nanocellulose composites for photonic applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Wang C, Chen Y, Meng X, Meng Y, Gong S, Ren M, Xu J. Error analysis of a rotating-metasurface polarimeter. APPLIED OPTICS 2022; 61:9163-9167. [PMID: 36607049 DOI: 10.1364/ao.471787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/01/2022] [Indexed: 06/17/2023]
Abstract
Polarimeters, which measure the polarization states of light directly, are essentially desired in many areas of science and technology. In our previous work, we have constructed a polarimeter based on a rotating-metasurface, and the polarization Stokes parameters of the light were measured with the known Mueller elements of the metasurface. Here, we further perform the error analysis of the metasurface polarimeter. The errors in the measured Stokes parameters have been formulated for the errors in Mueller elements of the metasurface. This analysis can be used to evaluate and minimize the errors of the metasurface polarimeter.
Collapse
|
33
|
Chang T, Jung J, Nam SH, Kim H, Kim JU, Kim N, Jeon S, Heo M, Shin J. Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204085. [PMID: 36063536 DOI: 10.1002/adma.202204085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in metasurfaces and optical nanostructures have enabled complex control of incident light with optically thin devices. However, it has thus far been unclear whether it is possible to achieve complete linear control of coherent light transmission, that is, independent control of polarization, amplitude, and phase for both input polarization states, with just a single, thin nanostructure array. Here, it is proved possible, and a universal metasurface is proposed, a bilayer array of high-index elliptic cylinders that possesses a complete degree of optical freedom with fully designable chirality and anisotropy. The completeness of achievable light control is mathematically shown with corresponding Jones matrices, new types of 3D holographic schemes that were formerly impossible are experimentally demonstrated, and a systematic way of realizing any input-state-sensitive vector linear optical device is presented. The results unlock previously inaccessible degrees of freedom in light transmission control.
Collapse
Affiliation(s)
- Taeyong Chang
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Joonkyo Jung
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang-Hyeon Nam
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonhee Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Uk Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Nayoung Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Suwan Jeon
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minsung Heo
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
34
|
Shah YD, Dada AC, Grant JP, Cumming DRS, Altuzarra C, Nowack TS, Lyons A, Clerici M, Faccio D. An All-Dielectric Metasurface Polarimeter. ACS PHOTONICS 2022; 9:3245-3252. [PMID: 36281330 PMCID: PMC9585641 DOI: 10.1021/acsphotonics.2c00395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/16/2023]
Abstract
The polarization state of light is a key parameter in many imaging systems. For example, it can image mechanical stress and other physical properties that are not seen with conventional imaging and can also play a central role in quantum sensing. However, polarization is more difficult to image, and polarimetry typically involves several independent measurements with moving parts in the measurement device. Metasurfaces with interleaved designs have demonstrated sensitivity to either linear or circular/elliptical polarization states. Here, we present an all-dielectric meta-polarimeter for direct measurement of any arbitrary polarization state from a single-unit-cell design. By engineering a completely asymmetric design, we obtained a metasurface that can excite eigenmodes of the nanoresonators, thus displaying a unique diffraction pattern for not only any linear polarization state but all elliptical polarization states (and handedness) as well. The unique diffraction patterns are quantified into Stokes parameters with a resolution of 5° and with a polarization state fidelity of up to 99 ± 1%. This holds promise for applications in polarization imaging and quantum state tomography.
Collapse
Affiliation(s)
- Yash D. Shah
- School
of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Adetunmise C. Dada
- School
of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - James P. Grant
- Microsystems
Technology Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - David R. S. Cumming
- Microsystems
Technology Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Charles Altuzarra
- School
of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Thomas S. Nowack
- Microsystems
Technology Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ashley Lyons
- School
of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Matteo Clerici
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Daniele Faccio
- School
of Physics and Astronomy, University of
Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
35
|
Shi Z, Rubin NA, Park JS, Capasso F. Nonseparable Polarization Wavefront Transformation. PHYSICAL REVIEW LETTERS 2022; 129:167403. [PMID: 36306749 DOI: 10.1103/physrevlett.129.167403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2022] [Indexed: 06/16/2023]
Abstract
In this Letter, we investigate a new class of polarization wave front transformations which exhibit nonconventional far field interference behavior. We show that these can be realized by double-layer metasurfaces, which overcome the intrinsic limitations of single-layer metasurfaces. Holograms that encode four or more distinct patterns in nonorthogonal polarization states are theoretically demonstrated. This Letter clarifies and expands the possibilities enabled by a broad range of technologies which can spatially modulate light's polarization state and, for metasurfaces specifically, rigorously establishes when double-layer metasurfaces are-and are not-required.
Collapse
Affiliation(s)
- Zhujun Shi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138 Massachusetts, USA
| | - Noah A Rubin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138 Massachusetts, USA
| | - Joon-Suh Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138 Massachusetts, USA
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 06600, South Korea
| | - Federico Capasso
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138 Massachusetts, USA
| |
Collapse
|
36
|
Zheng H, He M, Zhou Y, Kravchenko II, Caldwell JD, Valentine JG. Compound Meta-Optics for Complete and Loss-Less Field Control. ACS NANO 2022; 16:15100-15107. [PMID: 36018810 DOI: 10.1021/acsnano.2c06248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical metasurfaces offer a compact platform for manipulation of the amplitude, phase, and polarization state of light. Independent control over these properties, however, is hindered by the symmetric transmission matrix associated with single-layer metasurfaces. Here, we utilize multilayer birefringent meta-optics to realize high-efficiency, independent control over the amplitude, phase, and polarization state of light. High-efficiency control is enabled by redistributing the wavefront between cascaded metasurfaces, while end-to-end inverse design is used to realize independent complex-valued functions for orthogonal polarization states. Based on this platform, we demonstrate spatial mode division multiplexing, optical mode conversion, and universal vectorial holograms, all with diffraction efficiencies over 80%. This meta-optic platform expands the design space of flat optics and could lead to advances in optical communications, quantum entanglement, and information encryption.
Collapse
Affiliation(s)
- Hanyu Zheng
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - You Zhou
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ivan I Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jason G Valentine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
37
|
Li Y, Zhang X, Zhou Y, Huang W, Song Y, Wang H, Li M, Hong M, Luo J, Zhao S. An Optically Anisotropic Crystal with Large Birefringence Arising from Cooperative π Orbitals. Angew Chem Int Ed Engl 2022; 61:e202208811. [DOI: 10.1002/anie.202208811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu Zhang
- School of Science Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|
38
|
Yang W, Chen K, Dong S, Wu L, Qu K, Zhao J, Jiang T, Feng Y. Full-space dual-helicity decoupled metasurface for a high-efficiency multi-folded reflective antenna. OPTICS EXPRESS 2022; 30:33613-33626. [PMID: 36242392 DOI: 10.1364/oe.471942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The independent tailoring of electromagnetic waves with different circular-polarized (CP) wavefront in both reflection and transmission channels is of broad scientific and technical interest, offering ultimate degrees of freedom in designing advanced devices with the merits of functionality integration and spatial exploitation. However, most metasurfaces only provide dependent wavefront control of dual-helicity in a single channel, restricting their applications to limited practical scenarios. Herein, we propose a full-space dual-helicity decoupled metasurface and apply it to assemble a multi-folded reflective antenna (MFRA) in the microwave regime. A multilayered chiral meta-atom is designed and optimized to reflect a particular helical wave while allowing the orthogonal helical wave to penetrate through, with simultaneous full span of phase modulations in both channels. When a uniform reflection and a hyperbolic transmission phase profile is imposed simultaneously on the metasurface in a polarization-selective manner, it can be engineered to conduct specular reflection for one helical wave and convergent transmission of the other helical wave. Combining the proposed metasurface with a metallic plate as a bottom reflector and an integrated microstrip patch antenna in the center of metasurface as a feed, a MFRA is realized with a low profile, high efficiency, and high polarization purity in a broad frequency band. The proposed design method of the dual-helicity decoupled metasurface and its antenna application provide opportunities for high-performance functional devices, promising more potential in future communication and detection systems.
Collapse
|
39
|
Wang H, Shao R, Meng X, He Y, Shi Z, Guo Z, Ye C. Programmable Birefringent Patterns from Modulating the Localized Orientation of Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36277-36286. [PMID: 35916232 DOI: 10.1021/acsami.2c12205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Birefringence has been attracting broad attention due to its strong potential for applications in biomedicine and optics, such as biomedical diagnosis, colorimetric sensing, retardant, and polarization encoding. However, engineering architectures with precisely controllable birefringence remains a challenge due to the lack of effective modulation of the localized orientation. Here, by taking advantage of the inherently one-dimensional (1D) anisotropic structure of cellulose nanocrystals (CNCs), we demonstrate an approach to tune the alignment of CNCs with a well-controllable orientation at localized preciseness, which is in contrast to the previously reported unidirectional/radical orientation of CNC-based birefringent structures. The localized modulation of CNC orientation is facilitated by directing the 1D nanocrystals to align along the template periphery and the migrated three-phase contact line during the evaporation. The resultant CNC films exhibit birefringent extinction patterns under polarized light, in which versatile pattern designs can be obtained by employing templates with different shapes and template arrays with varied layouts. Due to the locally modulated orientation of CNCs, the films indicate "kaleidoscope-like" dynamically transformable designs of the birefringent patterns depending on the polarized angle, which has barely been observed previously. Furthermore, an N-nary encoding system for abundant information storage is demonstrated based on the sunlight-transparent CNC films, but with visible extinction patterns under polarized light, which is promising for encryptions, anticounterfeiting, and imaging, enriching the attractive research area of bio-based photonics.
Collapse
Affiliation(s)
- Han Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rongrong Shao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
40
|
Lin Z, Pestourie R, Roques-Carmes C, Li Z, Capasso F, Soljačić M, Johnson SG. End-to-end metasurface inverse design for single-shot multi-channel imaging. OPTICS EXPRESS 2022; 30:28358-28370. [PMID: 36299033 DOI: 10.1364/oe.449985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/20/2022] [Indexed: 06/16/2023]
Abstract
We introduce end-to-end inverse design for multi-channel imaging, in which a nanophotonic frontend is optimized in conjunction with an image-processing backend to extract depth, spectral and polarization channels from a single monochrome image. Unlike diffractive optics, we show that subwavelength-scale "metasurface" designs can easily distinguish similar wavelength and polarization inputs. The proposed technique integrates a single-layer metasurface frontend with an efficient Tikhonov reconstruction backend, without any additional optics except a grayscale sensor. Our method yields multi-channel imaging by spontaneous demultiplexing: the metaoptics front-end separates different channels into distinct spatial domains whose locations on the sensor are optimally discovered by the inverse-design algorithm. We present large-area metasurface designs, compatible with standard lithography, for multi-spectral imaging, depth-spectral imaging, and "all-in-one" spectro-polarimetric-depth imaging with robust reconstruction performance (≲ 10% error with 1% detector noise). In contrast to neural networks, our framework is physically interpretable and does not require large training sets. It can be used to reconstruct arbitrary three-dimensional scenes with full multi-wavelength spectra and polarization textures.
Collapse
|
41
|
Zheng H, Liu Q, Zhou Y, Kravchenko II, Huo Y, Valentine J. Meta-optic accelerators for object classifiers. SCIENCE ADVANCES 2022; 8:eabo6410. [PMID: 35895828 PMCID: PMC9328681 DOI: 10.1126/sciadv.abo6410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Rapid advances in deep learning have led to paradigm shifts in a number of fields, from medical image analysis to autonomous systems. These advances, however, have resulted in digital neural networks with large computational requirements, resulting in high energy consumption and limitations in real-time decision-making when computation resources are limited. Here, we demonstrate a meta-optic-based neural network accelerator that can off-load computationally expensive convolution operations into high-speed and low-power optics. In this architecture, metasurfaces enable both spatial multiplexing and additional information channels, such as polarization, in object classification. End-to-end design is used to co-optimize the optical and digital systems, resulting in a robust classifier that achieves 93.1% accurate classification of handwriting digits and 93.8% accuracy in classifying both the digit and its polarization state. This approach could enable compact, high-speed, and low-power image and information processing systems for a wide range of applications in machine vision and artificial intelligence.
Collapse
Affiliation(s)
- Hanyu Zheng
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Quan Liu
- Department of Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - You Zhou
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37212, USA
| | - Ivan I. Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Yuankai Huo
- Department of Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Jason Valentine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
42
|
Li Y, Zhang X, Zhou Y, Huang W, Song Y, Wang H, Li M, Hong M, Luo J, Zhao S. An Optically Anisotropic Crystal with Large Birefringence Arising from Cooperative π Orbitals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanqiang Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Xu Zhang
- JiangXi University of Science and Technology School of Science CHINA
| | - Yang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Weiqi Huang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Yipeng Song
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Han Wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Minjuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Junhua Luo
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Sangen Zhao
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structrual Chemistry 155 Yangqiao Road West, 350002 350002 Fuzhou CHINA
| |
Collapse
|
43
|
Naveed MA, Kim J, Ansari MA, Kim I, Massoud Y, Kim J, Oh DK, Badloe T, Lee J, Kim Y, Jeon D, Choi J, Zubair M, Mehmood MQ, Rho J. Single-Step Fabricable Flexible Metadisplays for Sensitive Chemical/Biomedical Packaging Security and Beyond. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31194-31202. [PMID: 35775833 DOI: 10.1021/acsami.2c09628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secure packaging and transportation of light-sensitive chemical and biomedical test tubes are crucial for environmental protection and public health. Benefiting from the compact form factor and high efficiency of optical metasurfaces, we propose a broad-band polarization-insensitive flexible metasurface for the security of sensitive packages in the transport industry. We employ both the propagation and the geometric phase of novel TiO2 resin-based anisotropic nanoresonators to demonstrate a flexible and broad-band polarization-insensitive metasurface in the visible domain. The ultraviolet nanoimprint lithographic technique (UV-NIL) is used to fabricate high-index TiO2 nanoparticle-embedded-resin (nano-PER) structures that are patterned on a flexible substrate. This novel approach provides swift single-step fabrication without secondary fabrication steps such as deposition and etching. Moreover, replicating and transforming patterns over flexible substrates make the proposed technique highly suitable for large-throughput commercial manufacturing. As the proposed metahologram manifests high transmission efficiency in the visible domain, such flexible metaholographic platforms could find several exciting applications in bendable/curved displays, wearable devices, and holographic labeling for interactive displays.
Collapse
Affiliation(s)
- Muhammad Ashar Naveed
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
- Department of Electrical Engineering, Faculty of Engineering and Computer Sciences, National University of Modern Languages (NUML), Islamabad 44000, Pakistan
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dongmin Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jonghyun Choi
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton 3230, New Zealand
| | - Muhammad Zubair
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
44
|
Sun Z, Yang K, Mao R, Lin Y, An Q, Fu Y. Constant polarization generation metasurface for arbitrarily polarized light. NANOSCALE 2022; 14:9061-9067. [PMID: 35707975 DOI: 10.1039/d2nr00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
State of polarization (SoP) of light is one of the fundamental characteristics of light and has great significance to optical communication, imaging, quantum optics and medical facilities. The generation and maintenance of polarized light have always been research concerns in polarization optics. Polarization-maintaining fibers are frequently used to transmit polarized light without changing its polarization in optical systems, but the high cost and coupling efficiency problems hinder their usage in large-scale light paths. Polarization controllers, which operate arbitrary polarization generation and conversion at the expense of utilizing at least two optical elements such as a half-wave plate and quarter-wave plate, are too bulky for some special applications. Meanwhile, they can only generate desired output polarization of light by transcendentally determining the input polarization, which means that the existing polarization controllers cannot respond in real time. Metasurfaces composed of subwavelength nanoscatterers offer fruitful functionalities to manipulate the amplitude, phase and polarization of light. Here, we propose and experimentally demonstrate a real-time polarization controller realized by combining a depolarizer and polarizer into one monolithic metasurface. Arbitrary polarization states can be transferred to the required polarization with no requirement to determine the incident polarization in advance. Through combining with ordinary optical fibers, the proposed metasurface may also replace polarization-maintaining fibers and optical fiber polarizers in some polarization-dependent applications. This versatile concept may settle the problems of arbitrary polarization conversion once and for all.
Collapse
Affiliation(s)
- Zhanshan Sun
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| | - Kai Yang
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| | - Ruiqi Mao
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| | - Yi Lin
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| | - Qiang An
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| | - Yunqi Fu
- College of Electronic Science and Technology, National University of Defense Technology, Changsha, 410072, China.
| |
Collapse
|
45
|
Pan M, Fu Y, Zheng M, Chen H, Zang Y, Duan H, Li Q, Qiu M, Hu Y. Dielectric metalens for miniaturized imaging systems: progress and challenges. LIGHT, SCIENCE & APPLICATIONS 2022; 11:195. [PMID: 35764608 PMCID: PMC9240015 DOI: 10.1038/s41377-022-00885-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 05/25/2023]
Abstract
Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens, composed of subwavelength nanostructures that locally control light waves, offers a disruptive path for small-scale imaging systems. Recent advances in the design and nanofabrication of dielectric metalenses have led to some high-performance practical optical systems. This review outlines the exciting developments in the aforementioned area whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems. After a brief introduction to the fundamental physics of dielectric metalenses, the progress and challenges in terms of the typical performances are introduced. The supplementary discussion on the common challenges hindering further development is also presented, including the limitations of the conventional design methods, difficulties in scaling up, and device integration. Furthermore, the potential approaches to address the existing challenges are also deliberated.
Collapse
Affiliation(s)
- Meiyan Pan
- Jihua Laboratory, Foshan, 528200, China.
| | - Yifei Fu
- Jihua Laboratory, Foshan, 528200, China
| | | | - Hao Chen
- Jihua Laboratory, Foshan, 528200, China
| | | | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Yueqiang Hu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
46
|
Qin Z, Li Y, Wang H, Wan W, Li C, Zhu Z, Cheng Y, Li S, Chen H, Wang J, Qu S. Polarization meta-converter for dynamic polarization states shifting with broadband characteristic. OPTICS EXPRESS 2022; 30:20014-20025. [PMID: 36221762 DOI: 10.1364/oe.453691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 06/16/2023]
Abstract
Polarization, as an important property of light, has been widely discussed in modern detecting and radar systems. A polarization converter that can be used to achieve dynamic control is regarded as an excellent alternative for implementing the integrated functionalities of communication and stealth. In this work, we propose a paradigm of meta-converter for dynamic polarization states shifting from linear-to-linear (LTL) to linear-to-circular (LTC) polarization. The strategy is achieved by loading voltage-controlled PIN diodes on the double-arrows metallic meta-resonators. The operation modes can be switched by changing the bias voltage. When the PIN diodes are turned on, the polarization meta-converter (PMC) will reflect and convert a linearly polarized electromagnetic (EM) wave into a circularly polarized one in 5.6-15.5 GHz with an axial ratio (AR) below 3dB. When the PIN diodes are turned off, the PMC will reflect and convert a linearly polarized EM wave into the orthogonal counterpart in 7.6-15.5 GHz with a polarization conversion ratio (PCR) over 88%. Simulations and experimental results show a good agreement, which manifests the feasibility of our proposed meta-converter. Moreover, the proposed PMC has great potential for polarization-dependent communication and stealth systems.
Collapse
|
47
|
Panda SS, Choudhary S, Joshi S, Sharma SK, Hegde RS. Deep learning approach for inverse design of metasurfaces with a wider shape gamut. OPTICS LETTERS 2022; 47:2586-2589. [PMID: 35561407 DOI: 10.1364/ol.458746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
While the large design degrees of freedom (DOFs) give metasurfaces a tremendous versatility, they make the inverse design challenging. Metasurface designers mostly rely on simple shapes and ordered placements, which restricts the achievable performance. We report a deep learning based inverse design flow that enables a fuller exploitation of the meta-atom shape. Using a polygonal shape encoding that covers a broad gamut of lithographically realizable resonators, we demonstrate the inverse design of color filters in an amorphous silicon material platform. The inverse-designed transmission-mode color filter metasurfaces are experimentally realized and exhibit enhancement in the color gamut.
Collapse
|
48
|
Khaliji K, Martín-Moreno L, Avouris P, Oh SH, Low T. Twisted Two-Dimensional Material Stacks for Polarization Optics. PHYSICAL REVIEW LETTERS 2022; 128:193902. [PMID: 35622026 DOI: 10.1103/physrevlett.128.193902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover, we discuss an electrostatic-reconfigurable stack which can be tuned to operate as four different polarizers and be used for Stokes polarimetry.
Collapse
Affiliation(s)
- Kaveh Khaliji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Luis Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Phaedon Avouris
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
49
|
Deng Y, Cai Z, Ding Y, Bozhevolnyi SI, Ding F. Recent progress in metasurface-enabled optical waveplates. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2219-2244. [PMID: 39678086 PMCID: PMC11636399 DOI: 10.1515/nanoph-2022-0030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2024]
Abstract
The polarization of light is crucial for numerous optical applications ranging from quantum information processing to biomedical sensing due to the fundamental role of polarization as another intrinsic characteristic of optical waves, which is uncorrelated with the amplitude, phase, and frequency. However, conventional optical waveplates that enable polarization control are based on the accumulated retardation between two orthogonally polarized electric fields when light propagates a distance much larger than its wavelength in birefringent materials, resulting in bulky configurations and limited functionalities. Optical metasurfaces, ultrathin arrays of engineered meta-atoms, have attracted increasing attention owing to their unprecedented capabilities of manipulating light with surface-confined configurations and subwavelength spatial resolutions, thereby opening up new possibilities for revolutionizing bulky optical waveplates with ultrathin planar elements that feature compactness, integration compatibility, broadband operation bandwidths, and multiple functionalities. Herein, we review the recent progress in metasurface-enabled optical waveplates, which covers both basic principles and emerging applications. We provide an overview of metasurface-based conventional half- and quarter-waveplates as well as their use in wavefront shaping applications, followed by a discussion of advanced waveplates, including multifunctional waveplates and all-polarization generators. We also discuss dynamic waveplates based on active metasurfaces. Finally, we conclude by providing our outlook in this emerging and fast-growing research field.
Collapse
Affiliation(s)
- Yadong Deng
- SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Ziru Cai
- SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yingtao Ding
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sergey I. Bozhevolnyi
- SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Fei Ding
- SDU Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
50
|
Abstract
Flat optics has emerged as a key player in the area of structured light and its applications, owing to its subwavelength resolution, ease of integration, and compact footprint. Although its first generation has revolutionized conventional lenses and enabled anomalous refraction, new classes of meta-optics can now shape light and dark features of an optical field with an unprecedented level of complexity and multifunctionality. Here, we review these efforts with a focus on metasurfaces that use different properties of input light-angle of incidence and direction, polarization, phase distribution, wavelength, and nonlinear behavior-as optical knobs for tuning the output response. We discuss ongoing advances in this area as well as future challenges and prospects. These recent developments indicate that optically tunable flat optics is poised to advance adaptive camera systems, microscopes, holograms, and portable and wearable devices and may suggest new possibilities in optical communications and sensing.
Collapse
Affiliation(s)
- Ahmed H Dorrah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|