1
|
Hernando-Amado S, Gomis-Font MA, Valverde JR, Oliver A, Martínez JL. Ceftazidime-avibactam use selects multidrug-resistance and prevents designing collateral sensitivity-based therapies against Pseudomonas aeruginosa. Nat Commun 2025; 16:3323. [PMID: 40204696 PMCID: PMC11982268 DOI: 10.1038/s41467-025-58597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Ceftazidime-avibactam is a β-lactam/β-lactamase inhibitor combination restricted for the treatment of multidrug-resistant infections of Pseudomonas aeruginosa non-susceptible to ceftazidime and resistant to carbapenems. Crucially, it has not been studied if its use could allow the design or application of new or stablished evolution-based strategies that exploit the increased susceptibility that emerges when resistance is acquired (collateral sensitivity, CS). Works in the field have focused on the study of CS in model strains, but to be exploited it must robustly emerge in pre-existing resistant mutants that can coexist in a patient. This is the first analysis of CS robustness on this last-resort drug. We evolved 15 clinical isolates on ceftazidime-avibactam and in absence of inhibitor, and here we show that we found no robust -exploitable- pattern of CS. This, together with the selection of cross-resistance and the impossibility of using previously described CS-based strategies, supports that avibactam should be restricted for the treatment of particular genotypes.
Collapse
Affiliation(s)
| | - María A Gomis-Font
- Servicio de Microbiología, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC., Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | | | - Antonio Oliver
- Servicio de Microbiología, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC., Hospital Universitario Son Espases, Palma de Mallorca, Spain.
| | | |
Collapse
|
2
|
Yu F, Wang D, Zhang H, Wang Z, Liu Y. Evolutionary trajectory of bacterial resistance to antibiotics and antimicrobial peptides in Escherichia coli. mSystems 2025; 10:e0170024. [PMID: 40013796 PMCID: PMC11915801 DOI: 10.1128/msystems.01700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
The global crisis of antimicrobial resistance poses a major threat to human health, underscoring the urgency of developing new antibacterial strategies. Antimicrobial peptides (AMPs) are promising alternatives to antibiotic therapy, yet potential microbial resistance is of great concern. Resistance is often accompanied by fitness costs, which may in turn influence the spread of drug-resistant bacteria and their susceptibility to other antimicrobial agents. Herein, we investigate the evolutionary trajectory of bacterial resistance to antibiotics and AMPs in Escherichia coli, and evaluate the fitness costs and collateral sensitivity of drug-resistant strains. We reveal that E. coli develops resistance to antibiotics, particularly ciprofloxacin and kanamycin, at a notably faster rate than to AMPs. Moreover, antibiotic-evolved strains exhibit slightly higher fitness costs than AMP-evolved bacteria, primarily manifested in reduced bacterial growth and swimming motility. Notably, we demonstrate that trimethoprim-resistant E. coli, with mutations in thyA gene, displays enhanced susceptibility to pexiganan, as evidenced by both in vitro and in vivo studies. Overall, our findings shed new insights for the clinical deployment of AMPs and propose innovative therapeutic strategies for combating antibiotic-resistant bacterial infections.IMPORTANCEThe global spread of antimicrobial resistance necessitates the development of innovative anti-infective strategies. Antimicrobial peptides (AMPs) represent promising alternatives in the post-antibiotic era. By monitoring the evolutionary trajectory of bacterial resistance to eight antibiotics and ten AMPs in Escherichia coli, we demonstrate that E. coli exhibits slower emergence of resistance against AMPs compared with antibiotics. Additionally, these antibiotic-resistant strains incur significant fitness costs, particularly in bacterial growth and motility. Most importantly, we find that some antibiotic-resistant strains show collateral sensitivity to specific AMPs in both in vitro and animal infection models, which is conducive to accelerating the development of AMP-based antibacterial treatment.
Collapse
Affiliation(s)
- Feiyu Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dejuan Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Sakenova N, Cacace E, Orakov A, Huber F, Varik V, Kritikos G, Michiels J, Bork P, Cossart P, Goemans CV, Typas A. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat Microbiol 2025; 10:202-216. [PMID: 39623067 PMCID: PMC11726442 DOI: 10.1038/s41564-024-01857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/13/2024] [Indexed: 01/12/2025]
Abstract
By acquiring or evolving resistance to one antibiotic, bacteria can become cross-resistant to a second antibiotic, which further limits therapeutic choices. In the opposite scenario, initial resistance leads to collateral sensitivity to a second antibiotic, which can inform cycling or combinatorial treatments. Despite their clinical relevance, our knowledge of both interactions is limited. We used published chemical genetics data of the Escherichia coli single-gene deletion library in 40 antibiotics and devised a metric that discriminates between known cross-resistance and collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases of cross-resistance and 267 of collateral-sensitivity, expanding the number of known interactions by over threefold. We further validated 64/70 inferred interactions using experimental evolution. By identifying mutants driving these interactions in chemical genetics, we demonstrated that a drug pair can exhibit both interactions depending on the resistance mechanism. Finally, we applied collateral-sensitive drug pairs in combination to reduce antibiotic-resistance development in vitro.
Collapse
Affiliation(s)
- Nazgul Sakenova
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Elisabetta Cacace
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Askarbek Orakov
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Florian Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vallo Varik
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - George Kritikos
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- European Food Safety Authority, Parma, Italy
| | - Jan Michiels
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
- Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Peer Bork
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Pascale Cossart
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Camille V Goemans
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Global Health Institute, School of Life Sciences, École Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Fernández-Billón M, Jordana-Lluch E, Llambías-Cabot AE, Gomis-Font MA, Fraile-Ribot P, Torrandell RI, Colman-Vega PJ, Murillo Ó, Macià MD, Oliver A. Collateral susceptibility-guided alternation of ceftolozane/tazobactam with imipenem prevents resistance development in XDR Pseudomonas aeruginosa biofilms. Biofilm 2024; 8:100231. [PMID: 39555141 PMCID: PMC11565044 DOI: 10.1016/j.bioflm.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Objectives New combinations of β-lactams and β-lactamase inhibitors, such as ceftolozane/tazobactam could be useful to combat biofilm-driven chronic infections by extensively resistant (XDR) Pseudomonas aeruginosa but resistance development by mutations in the Ω-loop of AmpC has been described. However, these mutations confer collateral susceptibility to carbapenems. Thus we aimed to evaluate the therapeutic efficacy and the prevention of resistance development of regimen alternating ceftolozane/tazobactam and imipenem. Methods A carbapenem-resistant XDR P. aeruginosa clinical strain (ST175, 104-B7) and its isogenic imipenem-susceptible ceftolozane/tazobactam-resistant mutant derivative (AmpC T96I, 104-I9) were used. Experiments of single strains and mixed (104-B7 and 104-I9, 1:0.01 ratio) biofilms were performed. 48h biofilms (flow cell system) were treated for 6 days with either ceftolozane/tazobactam, 4/4 mg/L or the alternation of ceftolozane/tazobactam (2 days)-imipenem 4 mg/L (2 days) - ceftolozane/tazobactam (2 days). After treatment, biofilms were collected and plated on Mueller-Hinton agar± ceftolozane/tazobactam 4/4 mg/L. Structural dynamics were monitored using confocal laser scanning microscopy and images were processed with IMARIS software. At least, three independent triplicate experiments per condition were performed. Emerging resistant mutants were characterized through whole genome sequencing (Illumina). Results Ceftolozane/tazobactam monotherapy failed to reduce the biofilms of the 104-B7 XDR strain and led to the selection of resistant mutants that showed AmpC Ω-loop mutations (T96I, L244R or aa236Δ7). On the contrary, alternation with imipenem enhanced activity (3 Logs reduction at day 6) and prevented the emergence of ceftolozane/tazobactam-resistant mutants. Likewise, treatment with ceftolozane/tazobactam dramatically amplified the resistant strain 104-I9 in mixed biofilms (>90 % of the population), while the alternation regimen counterselected it. Conclusions Collateral susceptibility-guided alternation of ceftolozane/tazobactam with imipenem effectively prevented the selection of resistant mutants and thus could be a potential therapeutic strategy for the treatment of P. aeruginosa XDR chronic infections.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - María A. Gomis-Font
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Pablo Fraile-Ribot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Rosa I. Torrandell
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Pamela J. Colman-Vega
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Óscar Murillo
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
| |
Collapse
|
5
|
Mary AS, Kalangadan N, Prakash J, Sundaresan S, Govindarajan S, Rajaram K. Relative fitness of wild-type and phage-resistant pyomelanogenic P. aeruginosa and effects of combinatorial therapy on resistant formation. Heliyon 2024; 10:e40076. [PMID: 39559211 PMCID: PMC11570307 DOI: 10.1016/j.heliyon.2024.e40076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Bacteriophages, the natural predators of bacteria, are incredibly potent candidates to counteract antimicrobial resistance (AMR). However, the rapid development of phage-resistant mutants challenges the potential of phage therapy. Understanding the mechanisms of bacterial adaptations to phage predation is crucial for phage-based prognostic applications. Phage cocktails and combinatorial therapy, using optimized dosage patterns of antibiotics, can negate the development of phage-resistant mutations and prolong therapeutic efficacy. In this study, we describe the characterization of a novel bacteriophage and the physiology of phage-resistant mutant developed during infection. M12PA is a P. aeruginosa-infecting bacteriophage with Myoviridae morphology. We observed that prolonged exposure of P. aeruginosa to M12PA resulted in the selection of phage-resistant mutants. Among the resistant mutants, pyomelanin-producing mutants, named PA-M, were developed at a frequency of 1 in 16. Compared to the wild-type, we show that PA-M mutant is severely defective in virulence properties, with altered motility, biofilm formation, growth rate, and antibiotic resistance profile. The PA-M mutant exhibited reduced pathogenesis in an allantoic-infected chick embryo model system compared to the wild-type. Finally, we provide evidence that combinatory therapy, combining M12PA with antibiotics or other phages, significantly delayed the emergence of resistant mutants. In conclusion, our study highlights the potential of combinatory phage therapy to delay the development of phage-resistant mutants and enhance the efficacy of phage-based treatments against P. aeruginosa.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Nashath Kalangadan
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Srivignesh Sundaresan
- Department of Horticulture, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University, AP, Amaravati, 522240, Andhra Pradesh, India
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
6
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
7
|
Bognár B, Spohn R, Lázár V. Drug combinations targeting antibiotic resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:29. [PMID: 39843924 PMCID: PMC11721080 DOI: 10.1038/s44259-024-00047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 01/24/2025]
Abstract
While the rise of antibiotic resistance poses a global health challenge, the development of new antibiotics has slowed down over the past decades. This turned the attention of researchers towards the rational design of drug combination therapies to combat antibiotic resistance. In this review we discuss how drug combinations can exploit the deleterious pleiotropic effects of antibiotic resistance and conclude that each drug interaction has its prospective therapeutic application.
Collapse
Affiliation(s)
- Bence Bognár
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Viktória Lázár
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary.
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
8
|
Laborda P, Gil‐Gil T, Martínez JL, Hernando‐Amado S. Preserving the efficacy of antibiotics to tackle antibiotic resistance. Microb Biotechnol 2024; 17:e14528. [PMID: 39016996 PMCID: PMC11253305 DOI: 10.1111/1751-7915.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Different international agencies recognize that antibiotic resistance is one of the most severe human health problems that humankind is facing. Traditionally, the introduction of new antibiotics solved this problem but various scientific and economic reasons have led to a shortage of novel antibiotics at the pipeline. This situation makes mandatory the implementation of approaches to preserve the efficacy of current antibiotics. The concept is not novel, but the only action taken for such preservation had been the 'prudent' use of antibiotics, trying to reduce the selection pressure by reducing the amount of antibiotics. However, even if antibiotics are used only when needed, this will be insufficient because resistance is the inescapable outcome of antibiotics' use. A deeper understanding of the alterations in the bacterial physiology upon acquisition of resistance and during infection will help to design improved strategies to treat bacterial infections. In this article, we discuss the interconnection between antibiotic resistance (and antibiotic activity) and bacterial metabolism, particularly in vivo, when bacteria are causing infection. We discuss as well how understanding evolutionary trade-offs, as collateral sensitivity, associated with the acquisition of resistance may help to define evolution-based therapeutic strategies to fight antibiotic resistance and to preserve currently used antibiotics.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | | | | | | |
Collapse
|
9
|
Chebotar I, Savinova T, Bocharova J, Korostin D, Evseev P, Mayanskiy N. Genetic Alternatives for Experimental Adaptation to Colistin in Three Pseudomonas aeruginosa Lineages. Antibiotics (Basel) 2024; 13:452. [PMID: 38786180 PMCID: PMC11117860 DOI: 10.3390/antibiotics13050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa ATCC-27833 reference strain (Pa_ATCC), an environmental P. aeruginosa isolate (Pa_Environment), and a clinical isolate with multiple drug resistance (Pa_MDR) were grown over an increasing 5-step colistin concentration gradient from 0 to 400 mg/L. Pa_Environment demonstrated the highest growth pace, achieving the 400 mg/L band in 15 days, whereas it took 37 and 60 days for Pa_MDR and Pa_ATCC, respectively. To identify the genome changes that occurred during adaptation to colistin, the isolates selected during the growth of the bacteria (n = 185) were subjected to whole genome sequencing. In total, 17 mutation variants in eight lipopolysaccharide-synthesis-associated genes were detected. phoQ and lpxL/PA0011 were affected in all three lineages, whereas changes in pmrB were found in Pa_Environment and Pa_MDR but not in Pa_ATCC. In addition, mutations were detected in 34 general metabolism genes, and each lineage developed mutations in a unique set of such genes. Thus, the three examined distinct P. aeruginosa strains demonstrated different capabilities and genetic pathways of colistin adaptation.
Collapse
Affiliation(s)
- Igor Chebotar
- Laboratory of Molecular Microbiology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia (J.B.); (D.K.); (N.M.)
| | | | | | | | - Peter Evseev
- Laboratory of Molecular Microbiology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia (J.B.); (D.K.); (N.M.)
| | | |
Collapse
|
10
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Sanz-García F, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview. Methods Mol Biol 2024; 2721:85-102. [PMID: 37819517 DOI: 10.1007/978-1-0716-3473-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
One of the most concerning characteristics of Pseudomonas aeruginosa is its low susceptibility to several antibiotics of common use in clinics, as well as its facility to acquire increased resistance levels. Consequently, the study of the antibiotic resistance mechanisms of this bacterium is of relevance for human health. For such a study, different types of resistance should be distinguished. The intrinsic resistome is composed of a set of genes, present in the core genome of P. aeruginosa, which contributes to its characteristic, species-specific, phenotype of susceptibility to antibiotics. Acquired resistance refers to those genetic events, such as the acquisition of mutations or antibiotic resistance genes that reduce antibiotic susceptibility. Finally, antibiotic resistance can be transiently acquired in the presence of specific compounds or under some growing conditions. The current article provides information on methods currently used to analyze intrinsic, mutation-driven, and transient antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
13
|
Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci 2023; 24:15628. [PMID: 37958612 PMCID: PMC10650657 DOI: 10.3390/ijms242115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keisuke Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tomohiro Nakamura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
- Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Hidetomo Iwano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
- Phage Therapy Institute, Waseda University, Tokyo 169-8050, Japan
| |
Collapse
|
14
|
Sanz-García F, Gil-Gil T, Laborda P, Blanco P, Ochoa-Sánchez LE, Baquero F, Martínez JL, Hernando-Amado S. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat Rev Microbiol 2023; 21:671-685. [PMID: 37208461 DOI: 10.1038/s41579-023-00902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology, 9301, Rigshospitalet, Copenhagen, Denmark
| | - Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | | |
Collapse
|
15
|
Martínez JL, Baquero F. What are the missing pieces needed to stop antibiotic resistance? Microb Biotechnol 2023; 16:1900-1923. [PMID: 37417823 PMCID: PMC10527211 DOI: 10.1111/1751-7915.14310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.
Collapse
Affiliation(s)
| | - Fernando Baquero
- Ramón y Cajal Institute for Health Research (IRYCIS), Department of MicrobiologyRamón y Cajal University Hospital, CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
16
|
Yekani M, Azargun R, Sharifi S, Nabizadeh E, Nahand JS, Ansari NK, Memar MY, Soki J. Collateral sensitivity: An evolutionary trade-off between antibiotic resistance mechanisms, attractive for dealing with drug-resistance crisis. Health Sci Rep 2023; 6:e1418. [PMID: 37448730 PMCID: PMC10336338 DOI: 10.1002/hsr2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background The discovery and development of antimicrobial drugs were one of the most significant advances in medicine, but the evolution of microbial resistance limited the efficiency of these drugs. Aim This paper reviews the collateral sensitivity in bacteria and its potential and limitation as a new target for treating infections. Results and Discussion Knowledge mechanisms of resistance to antimicrobial agents are useful to trace a practical approach to treat and control of resistant pathogens. The effect of a resistance mechanism to certain antibiotics on the susceptibility or resistance to other drugs is a key point that may be helpful for applying a strategy to control resistance challenges. In an evolutionary trade-off known as collateral sensitivity, the resistance mechanism to a certain drug may be mediated by the hypersensitivity to other drugs. Collateral sensitivity has been described for different drugs in various bacteria, but the molecular mechanisms affecting susceptibility are not well demonstrated. Collateral sensitivity could be studied to detect its potential in the battle against resistance crisis as well as in the treatment of pathogens adapting to antibiotics. Collateral sensitivity-based antimicrobial therapy may have the potential to limit the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of MedicineKashan University of Medical SciencesKashanIran
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeKashan University of Medical SciencesKashanIran
| | - Robab Azargun
- Department of Microbiology, Faculty of MedicineMaragheh University of Medical ScienceMaraghehIran
| | - Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Navideh Karimi Ansari
- Department of Microbiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Jozsef' Soki
- Institute of Medical Microbiology, Albert Szent‐Györgyi Faculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
17
|
Genova R, Laborda P, Cuesta T, Martínez JL, Sanz-García F. Collateral Sensitivity to Fosfomycin of Tobramycin-Resistant Mutants of Pseudomonas aeruginosa Is Contingent on Bacterial Genomic Background. Int J Mol Sci 2023; 24:ijms24086892. [PMID: 37108055 PMCID: PMC10138353 DOI: 10.3390/ijms24086892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the consequences in bacterial physiology of the acquisition of drug resistance is needed to identify and exploit the weaknesses derived from it. One of them is collateral sensitivity, a potentially exploitable phenotype that, unfortunately, is not always conserved among different isolates. The identification of robust, conserved collateral sensitivity patterns is then relevant for the translation of this knowledge into clinical practice. We have previously identified a robust fosfomycin collateral sensitivity pattern of Pseudomonas aeruginosa that emerged in different tobramycin-resistant clones. To go one step further, here, we studied if the acquisition of resistance to tobramycin is associated with robust collateral sensitivity to fosfomycin among P. aeruginosa isolates. To that aim, we analyzed, using adaptive laboratory evolution approaches, 23 different clinical isolates of P. aeruginosa presenting diverse mutational resistomes. Nine of them showed collateral sensitivity to fosfomycin, indicating that this phenotype is contingent on the genetic background. Interestingly, collateral sensitivity to fosfomycin was linked to a larger increase in tobramycin minimal inhibitory concentration. Further, we unveiled that fosA low expression, rendering a higher intracellular accumulation of fosfomycin, and a reduction in the expression of the P. aeruginosa alternative peptidoglycan-recycling pathway enzymes, might be on the basis of the collateral sensitivity phenotype.
Collapse
Affiliation(s)
- Roberta Genova
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Fernando Sanz-García
- Centro Nacional de Biotecnología, CSIC, 28043 Madrid, Spain
- Microbiology Department, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Hernando-Amado S, Laborda P, Martínez JL. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat Commun 2023; 14:1723. [PMID: 36997518 PMCID: PMC10063638 DOI: 10.1038/s41467-023-37357-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Special Issue: “Antimicrobial Resistance in Pseudomonas aeruginosa”. Microorganisms 2023; 11:microorganisms11030744. [PMID: 36985317 PMCID: PMC10056382 DOI: 10.3390/microorganisms11030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most prevalent pathogens causing nosocomial infections, mainly in patients presenting with basal pathologies or those who are immunocompromised [...]
Collapse
|
20
|
Hernando-Amado S, López-Causapé C, Laborda P, Sanz-García F, Oliver A, Martínez JL. Rapid Phenotypic Convergence towards Collateral Sensitivity in Clinical Isolates of Pseudomonas aeruginosa Presenting Different Genomic Backgrounds. Microbiol Spectr 2023; 11:e0227622. [PMID: 36533961 PMCID: PMC9927454 DOI: 10.1128/spectrum.02276-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off by which acquisition of resistance to an antibiotic leads to increased susceptibility to another. This Achilles' heel of antibiotic resistance could be exploited to design evolution-based strategies for treating bacterial infections. To date, most studies in the field have focused on the identification of CS patterns in model strains. However, one of the main requirements for the clinical application of this trade-off is that it must be robust and has to emerge in different genomic backgrounds, including preexisting drug-resistant isolates, since infections are frequently caused by pathogens already resistant to antibiotics. Here, we report the first analysis of CS robustness in clinical strains of Pseudomonas aeruginosa presenting different ab initio mutational resistomes. We identified a robust CS pattern associated with short-term evolution in the presence of ciprofloxacin of clinical P. aeruginosa isolates, including representatives of high-risk epidemic clones belonging to sequence type (ST) 111, ST175, and ST244. We observed the acquisition of different ciprofloxacin resistance mutations in strains presenting varied STs and different preexisting mutational resistomes. Importantly, despite these genetic differences, the use of ciprofloxacin led to a robust CS to aztreonam and tobramycin. In addition, we describe the possible application of this evolutionary trade-off to drive P. aeruginosa infections to extinction by using the combination of ciprofloxacin-tobramycin or ciprofloxacin-aztreonam. Our results support the notion that the identification of robust patterns of CS may establish the basis for developing evolution-informed treatment strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens. IMPORTANCE Collateral sensitivity (CS) is a trade-off of antibiotic resistance evolution that could be exploited to design strategies for treating bacterial infections. Clinical application of CS requires it to robustly emerge in different genomic backgrounds. In this study, we performed an analysis to identify robust patterns of CS associated with the use of ciprofloxacin in clinical isolates of P. aeruginosa presenting different mutational resistomes and including high-risk epidemic clones (ST111, ST175, and ST244). We demonstrate the robustness of CS to tobramycin and aztreonam and the potential application of this evolutionary observation to drive P. aeruginosa infections to extinction. Our results support the notion that the identification of robust CS patterns may establish the basis for developing evolutionary strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Fernando Sanz-García
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | | |
Collapse
|
21
|
Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K, Blankers T, Cairns J, Colizzi ES, Cusseddu D, Desai MM, van Dijk B, Egas M, Ellers J, Groot AT, Heckel DG, Johnson ML, Kraaijeveld K, Krug J, Laan L, Lässig M, Lind PA, Meijer J, Noble LM, Okasha S, Rainey PB, Rozen DE, Shitut S, Tans SJ, Tenaillon O, Teotónio H, de Visser JAGM, Visser ME, Vroomans RMA, Werner GDA, Wertheim B, Pennings PS. Towards evolutionary predictions: Current promises and challenges. Evol Appl 2023; 16:3-21. [PMID: 36699126 PMCID: PMC9850016 DOI: 10.1111/eva.13513] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
Collapse
Affiliation(s)
- Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Deepa Agashe
- National Centre for Biological SciencesBangaloreIndia
| | | | - Claudia Bank
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Gulbenkian Science InstituteOeirasPortugal
| | - Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
- Laboratory of Aquatic Biology, KU Leuven KulakKortrijkBelgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
| | | | - Enrico Sandro Colizzi
- Origins CenterGroningenThe Netherlands
- Mathematical InstituteLeiden UniversityLeidenThe Netherlands
| | | | | | - Bram van Dijk
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jacintha Ellers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Ken Kraaijeveld
- Leiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Joachim Krug
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of NanoscienceTU DelftDelftThe Netherlands
| | - Michael Lässig
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Peter A. Lind
- Department Molecular BiologyUmeå UniversityUmeåSweden
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Luke M. Noble
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRSParisFrance
| | - Daniel E. Rozen
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Shraddha Shitut
- Origins CenterGroningenThe Netherlands
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | | | | | | | | | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Renske M. A. Vroomans
- Origins CenterGroningenThe Netherlands
- Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | | |
Collapse
|
22
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
23
|
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that usually causes difficult-to-treat infections due to its low intrinsic antibiotic susceptibility and outstanding capacity for becoming resistant to antibiotics. In addition, it has a remarkable metabolic versatility, being able to grow in different habitats, from natural niches to different and changing inpatient environments. Study of the environmental conditions that shape genetic and phenotypic changes of P. aeruginosa toward antibiotic resistance supposes a novelty, since experimental evolution assays are usually performed with well-defined antibiotics in regular laboratory growth media. Therefore, in this work we address the extent to which the nutrients’ availability may constrain the evolution of antibiotic resistance. We determined that P. aeruginosa genetic trajectories toward resistance to tobramycin, ceftazidime, and ceftazidime-avibactam are different when evolving in laboratory rich medium, urine, or synthetic sputum. Furthermore, our study, linking genotype with phenotype, showed a clear impact of each analyzed environment on both the fitness and resistance level associated with particular resistance mutations. This indicates that the phenotype associated with specific resistance mutations is variable and dependent on the bacterial metabolic state in each particular habitat. Our results support that the design of evolution-based strategies to tackle P. aeruginosa infections should be based on robust patterns of evolution identified within each particular infection and body location. IMPORTANCE Predicting evolution toward antibiotic resistance (AR) and its associated trade-offs, such as collateral sensitivity, is important to design evolution-based strategies to tackle AR. However, the effect of nutrients' availability on such evolution, particularly those that can be found under in vivo infection conditions, has been barely addressed. We analyzed the evolutionary patterns of P. aeruginosa in the presence of antibiotics in different media, including urine and synthetic sputum, whose compositions are similar to the ones in infections, finding that AR evolution differs, depending on growth conditions. Furthermore, the representative mutants isolated under each condition tested render different AR levels and fitness costs, depending on nutrients’ availability, supporting the idea that environmental constraints shape the phenotypes associated with specific AR mutations. Consequently, the selection of AR mutations that render similar phenotypes is environment dependent. The analysis of evolution patterns toward AR requires studying growth conditions mimicking those that bacteria face during in vivo evolution.
Collapse
|
24
|
Wang J, Sun X, Xie Y, Long Y, Chen H, He X, Zou T, Mao ZW, Xia W. Identification of an Au(I) N-Heterocyclic Carbene Compound as a Bactericidal Agent Against Pseudomonas aeruginosa. Front Chem 2022; 10:895159. [PMID: 35572114 PMCID: PMC9096233 DOI: 10.3389/fchem.2022.895159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial resistance to antibiotics. We herein identify a gold(I) N-heterocyclic carbene compound as a highly potent antibacterial agent towards P. aeruginosa. The compound significantly attenuates P. aeruginosa virulence and leads to low tendency to develop bacterial resistance. The antibacterial mechanism studies show that the compound abrogates bacterial membrane integrity, exhibiting a high bactericidal activity toward P. aeruginosa. The relatively low cytotoxic compound has excellent therapeutic effects on both the eukaryotic cell co-culture and murine wound infection experiments, suggesting its potential application as a bactericidal agent to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Jinhui Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanxuan Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yan Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huowen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun He
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Wan Mao
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Wei Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc Natl Acad Sci U S A 2022; 119:e2109370119. [PMID: 35385351 PMCID: PMC9169633 DOI: 10.1073/pnas.2109370119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial adaptation to the presence of an antibiotic often involves evolutionary trade-offs, such as increased susceptibility to other drugs (collateral sensitivity). Its exploitation to design improved therapeutic strategies is only feasible if collateral sensitivity is robust, reproducible, and emerges in resistant mutants; these issues are rarely addressed in available publications. We describe a robust collateral sensitivity phenotype that emerges in different antibiotic-resistance mutational backgrounds, due to different genetic events, and propose therapeutic strategies effective for treating infections caused by Pseudomonas aeruginosa antibiotic-resistant mutants. Since conserved collateral sensitivity phenotypes do not confer adaptation to the presence of antibiotics, our results are also relevant for understanding convergent evolution processes in which the force selecting the emerging phenotype remains unclear. Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin–tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin–aztreonam or ciprofloxacin–tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.
Collapse
|
26
|
Hernando-Amado S, Laborda P, Valverde JR, Martínez JL. Rapid decline of ceftazidime resistance in antibiotic-free and sub-lethal environments is contingent on genetic background. Mol Biol Evol 2022; 39:6543660. [PMID: 35291010 PMCID: PMC8935207 DOI: 10.1093/molbev/msac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología. CSIC, Madrid, 28049, Spain
| | | | | |
Collapse
|
27
|
The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol 2022; 20:478-490. [PMID: 35241807 DOI: 10.1038/s41579-022-00700-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy.
Collapse
|
28
|
Laborda P, Martínez JL, Hernando‐Amado S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb Biotechnol 2022; 15:613-629. [PMID: 33960651 PMCID: PMC8867969 DOI: 10.1111/1751-7915.13817] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de BiotecnologíaCSICMadrid28049Spain
| | | | | |
Collapse
|
29
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Ardell SM, Kryazhimskiy S. The population genetics of collateral resistance and sensitivity. eLife 2021; 10:73250. [PMID: 34889185 PMCID: PMC8765753 DOI: 10.7554/elife.73250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022] Open
Abstract
Resistance mutations against one drug can elicit collateral sensitivity against other drugs. Multi-drug treatments exploiting such trade-offs can help slow down the evolution of resistance. However, if mutations with diverse collateral effects are available, a treated population may evolve either collateral sensitivity or collateral resistance. How to design treatments robust to such uncertainty is unclear. We show that many resistance mutations in Escherichia coli against various antibiotics indeed have diverse collateral effects. We propose to characterize such diversity with a joint distribution of fitness effects (JDFE) and develop a theory for describing and predicting collateral evolution based on simple statistics of the JDFE. We show how to robustly rank drug pairs to minimize the risk of collateral resistance and how to estimate JDFEs. In addition to practical applications, these results have implications for our understanding of evolution in variable environments. Drugs known as antibiotics are the main treatment for most serious infections caused by bacteria. However, many bacteria are acquiring genetic mutations that make them resistant to the effects of one or more types of antibiotics, making them harder to eliminate. One way to tackle drug-resistant bacteria is to develop new types of antibiotics; however, in recent years, the rate at which new antibiotics have become available has been dwindling. Using two or more existing drugs, one after another, can also be an effective way to eliminate resistant bacteria. The success of any such ‘multi-drug’ treatment lies in being able to predict whether mutations that make the bacteria resistant to one drug simultaneously make it sensitive to another, a phenomenon known as collateral sensitivity. Different resistance mutations may have different collateral effects: some may increase the bacteria’s sensitivity to the second drug, while others might make the bacteria more resistant. However, it is currently unclear how to design robust multi-drug treatments that take this diversity of collateral effects into account. Here, Ardell and Kryazhimskiy used a concept called JDFE (short for the joint distribution of fitness effects) to describe the diversity of collateral effects in a population of bacteria exposed to a single drug. This information was then used to mathematically model how collateral effects evolved in the population over time. Ardell and Kryazhimskiy showed that this approach can predict how likely a population is to become collaterally sensitive or collaterally resistant to a second antibiotic. Drug pairs can then be ranked according to the risk of collateral resistance emerging, so long as information on the variety of resistance mutations available to the bacteria are included in the model. Each year, more than 700,000 people die from infections caused by bacteria that are resistant to one or more antibiotics. The findings of Ardell and Kryazhimskiy may eventually help clinicians design multi-drug treatments that effectively eliminate bacterial infections and help to prevent more bacteria from evolving resistance to antibiotics. However, to achieve this goal, more research is needed to fully understand the range collateral effects caused by resistance mutations.
Collapse
Affiliation(s)
- Sarah M Ardell
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Sergey Kryazhimskiy
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
32
|
Laborda P, Sanz-García F, Hernando-Amado S, Martínez JL. Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin. Curr Opin Microbiol 2021; 64:125-132. [PMID: 34710741 DOI: 10.1016/j.mib.2021.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa, a bacterium characterized for its low antibiotics' susceptibility, is one of the most relevant opportunistic pathogens, causing infections at hospitals and in cystic fibrosis patients. Besides its relevance for human health, P. aeruginosa colonizes environmental ecosystems; therefore the elements driving its infectivity and antibiotic resistance must be analyzed from a One-Health perspective. Although some epidemic clones have been described, there are not specific lineages linked to infections, suggesting that P. aeruginosa virulence and antibiotic resistance determinants evolved in nature to play functions other than infecting the human host and avoiding antimicrobial treatment. Herein, we review current information on the population structure of P. aeruginosa and on the functional role that its resistance and virulence determinants have in non-clinical ecosystems.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Sanz-García F, Hernando-Amado S, Martínez JL. Evolution under low antibiotic concentrations: a risk for the selection of Pseudomonas aeruginosa multidrug-resistant mutants in nature. Environ Microbiol 2021; 24:1279-1293. [PMID: 34666420 DOI: 10.1111/1462-2920.15806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Antibiotic pollution of non-clinical environments might have a relevant impact on human health if resistant pathogens are selected. However, this potential risk is often overlooked, since drug concentrations in nature are usually below their minimal inhibitory concentrations (MICs). Albeit, antibiotic resistant bacteria can be selected even at sub-MIC concentrations, in a range known as the sub-MIC selective window. Using short-term evolution experiments, we have determined the sub-MIC selective windows of the opportunistic pathogen Pseudomonas aeruginosa for seven antibiotics of clinical relevance, finding the ones of quinolones to be the widest, and the ones of polymyxin B and imipenem, the narrowest. Clinically relevant multidrug-resistant mutants arose within the sub-MIC selective windows of most antibiotics tested, being some of these phenotypes mediated by efflux pumps' activity. The fact that the concentration of antibiotics reported in aquatic ecosystems - colonizable by P. aeruginosa - are, in occasions, higher than the ones that select multidrug-resistant mutants in our assays, has implications for understanding the role of different ecosystems and conditions in the emergence of antibiotic resistance from a One-Health perspective. Further, it reinforces the importance of procuring accurate information on the sub-MIC selective windows for drugs of clinical value in pathogens with environmental niches.
Collapse
|
34
|
Fluctuating Bacteriophage-induced galU Deficiency Region is Involved in Trade-off Effects on the Phage and Fluoroquinolone Sensitivity in Pseudomonas aeruginosa. Virus Res 2021; 306:198596. [PMID: 34648885 DOI: 10.1016/j.virusres.2021.198596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa, which causes chronic infections, has demonstrated rapid acquisition of antimicrobial resistance (AMR). Therefore, bacteriophages have received significant attention as promising antimicrobial agents; however, previous trials have reported the occurrence of phage-resistant variants. P. aeruginosa has lost large chromosomal fragments via evolutionary selection by MutL. Mutants lacking galU and hmgA, located in close proximity, exhibit phage resistance and brown color phenotype since hmgA encodes a homogentisic acid metabolic enzyme and deletion of galU results in a lack of O-antigen polysaccharide and absence of the phage receptor. In the present study, we evaluated this mechanism for controlling phage resistance in P. aeruginosa veterinary isolate Pa12. Phage-resistant Pa12 brown mutants (brmts) with galU and hmgA deletions were isolated. Whole-genome sequencing of the brmts revealed that regions 148-27 kbp upstream and 261-110 kbp downstream of galU were largely deleted from the Pa12 parental chromosome. Furthermore, all of these fluctuating deleted sequences in Pa12 brmts, tentatively designated bacteriophage-induced galU deficiency (BigD) regions, harbor multi-drug efflux system genes (mexXY). Minimum inhibitory concentration (MIC) assays demonstrated that brmts altered sensitivity to antibiotics and exhibited increased levofloxacin sensitivity compared with the Pa12 parent. Orbifloxacin and enrofloxacin also effectively suppressed growth of the Pa12 brmts, suggesting that MexXY, which mediates quinolone efflux and is located in the BigD region, might be associated with restoration of fluoroquinolone sensitivity. Our findings indicate that AMR-related genes in the BigD region could produce trade-off effects between phages and drug sensitivity and thereby contribute to a potential strategy to control and prevent phage-resistant variants in phage therapy.
Collapse
|
35
|
Batra A, Roemhild R, Rousseau E, Franzenburg S, Niemann S, Schulenburg H. High potency of sequential therapy with only β-lactam antibiotics. eLife 2021; 10:68876. [PMID: 34318749 PMCID: PMC8456660 DOI: 10.7554/elife.68876] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs. Overuse of antibiotic drugs is leading to the appearance of antibiotic-resistant bacteria; this is, bacteria with mutations that allow them to survive treatment with specific antibiotics. This has made some bacterial infections difficult or impossible to treat. Learning more about how bacteria evolve resistance to antibiotics could help scientists find ways to prevent it and develop more effective treatments. Changing antibiotics frequently may be one way to prevent bacteria from evolving resistance. That way if a bacterium acquires mutations that allow it to escape one antibiotic, another antibiotic will kill it, stopping it from dividing and preventing the appearance of descendants with resistance to several antibiotics. In order to use this approach, testing is needed to find the best sequences of antibiotics to apply and the optimal timings of treatment. To find out more, Batra, Roemhild et al. grew bacteria in the laboratory and exposed them to different sequences of antibiotics, switching antibiotics at different time intervals. This showed that sequential treatments with different antibiotics can limit bacterial evolution, especially when antibiotics are switched quickly. Unexpectedly, one of the most effective sequences used very similar antibiotics. This was surprising because using similar antibiotics should lead to the evolution of cross-resistance, which is when a drug causes changes that make the bacterium less sensitive to other treatments. However, in the tested case, cross-resistance did not evolve when antibiotics were switched quickly, thereby ensuring efficiency of treatment. Batra et al. show that alternating sequences of antibiotics may be an effective strategy to prevent drug resistance. Because the experiments were done in a laboratory setting it will be important to verify the results in studies in animals and humans before the approach can be used in medical or veterinary settings. If the results are confirmed, it could reduce the need to develop new antibiotics, which is expensive and time consuming.
Collapse
Affiliation(s)
- Aditi Batra
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Roderich Roemhild
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany.,Institute of Science and Technology, Klosterneuburg, Austria
| | - Emilie Rousseau
- Borstel Research Centre, National Reference Center for Mycobacteria, Borstel, Germany
| | - Sören Franzenburg
- Competence Centre for Genomic Analysis Kiel, University of Kiel, Kiel, Germany
| | - Stefan Niemann
- Borstel Research Centre, National Reference Center for Mycobacteria, Borstel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
36
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
37
|
Gjini E, Wood KB. Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance. eLife 2021; 10:e64851. [PMID: 34289932 PMCID: PMC8331190 DOI: 10.7554/elife.64851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/08/2021] [Indexed: 01/03/2023] Open
Abstract
Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction [DI]) and how resistance to one drug impacts resistance to the other (collateral effects [CE]). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug-sensitive (ancestral) and drug-resistant (mutant) populations. We show that evolved resistance to the component drugs - and in turn, the adaptation of growth rate - is governed by a Price equation whose covariance terms encode geometric features of both the two-drug-response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multidrug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally explicit selective outcomes.
Collapse
Affiliation(s)
- Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Tecnico, University of Lisbon, PortugalLisbonPortugal
| | - Kevin B Wood
- Departments of Biophysics and Physics, University of MichiganAnn ArborUnited States
| |
Collapse
|
38
|
Affiliation(s)
| | - Dan I. Andersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| |
Collapse
|