1
|
Wiemann J. Fossilized dinosaur cells that defied the ravages of time - 20 years since a key discovery. Nature 2025; 639:875-876. [PMID: 40097757 DOI: 10.1038/d41586-025-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
|
2
|
Schweitzer MH, Zheng W, Dickinson E, Scannella J, Hartstone-Rose A, Sjövall P, Lindgren J. Taphonomic variation in vascular remains from Mesozoic non-avian dinosaurs. Sci Rep 2025; 15:4359. [PMID: 39910217 PMCID: PMC11799182 DOI: 10.1038/s41598-025-85497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
The identity and source of flexible, semi-transparent, vascular-like components recovered from non-avian dinosaur bone are debated, because: (1) such preservation is not predicted by degradation models; (2) taphonomic mechanisms for this type of preservation are not well defined; and (3) although support for molecular endogeneity has been demonstrated in select specimens, comparable data are lacking on a broader scale. Here, we use a suite of micromorphological and molecular techniques to examine vessel-like material recovered from the skeletal remains of six non-avian dinosaurs, representing different taxa, depositional environments and geological ages, and we compare the data obtained from our analyses against vessels liberated from extant ostrich bone. The results of this in-depth, multi-faceted study present strong support for endogeneity of the fossil-derived vessels, although we also detect evidence of invasive microorganisms.
Collapse
Affiliation(s)
- M H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
- Museum of the Rockies, Montana State University, Bozeman, MT, USA.
- Department of Geology, Lund University, Lund, Sweden.
| | - W Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - E Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - J Scannella
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - A Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - P Sjövall
- Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
| | - J Lindgren
- Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Rossi V, Unitt R, McNamara M. A new non-destructive method to decipher the origin of organic matter in fossils using Raman spectroscopy. RSC Adv 2024; 14:26747-26759. [PMID: 39183999 PMCID: PMC11342070 DOI: 10.1039/d4ra04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Ancient biomolecules provide a unique perspective on the past but are underutilized in paleontology because of challenges in interpreting the chemistry of fossils. Most organically preserved soft tissues in fossils have been altered by thermal maturation during the fossilization process, obscuring original chemistry. Here, we use a comprehensive program of thermal maturation experiments on soft tissues from diverse extant organisms to systematically test whether thermally altered biosignatures can be discriminated using Raman spectroscopy. All experimentally matured samples show chemical signatures that are superficially similar. Comparative analysis of Raman spectra following peak deconvolution, however, reveals strong tissue-specific signals. Application of this approach to fossils from the Bolca (49 Ma) and Libros (10 Ma) Konservat-Lagerstätten successfully discriminates fossil vertebrate soft tissue from that of fossil plants. Critically, our data confirm that a robust interrogation of Raman spectra coupled with multivariate analysis is a powerful tool to shed light on the taxonomic origins of thermally matured fossil soft tissues.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Richard Unitt
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| |
Collapse
|
4
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
5
|
Morton-Hayward AL, Anderson RP, Saupe EE, Larson G, Cosmidis JG. Human brains preserve in diverse environments for at least 12 000 years. Proc Biol Sci 2024; 291:20232606. [PMID: 38503334 PMCID: PMC10950470 DOI: 10.1098/rspb.2023.2606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The brain is thought to be among the first human organs to decompose after death. The discovery of brains preserved in the archaeological record is therefore regarded as unusual. Although mechanisms such as dehydration, freezing, saponification, and tanning are known to allow for the preservation of the brain on short time scales in association with other soft tissues (≲4000 years), discoveries of older brains, especially in the absence of other soft tissues, are rare. Here, we collated an archive of more than 4400 human brains preserved in the archaeological record across approximately 12 000 years, more than 1300 of which constitute the only soft tissue preserved amongst otherwise skeletonized remains. We found that brains of this type persist on time scales exceeding those preserved by other means, which suggests an unknown mechanism may be responsible for preservation particular to the central nervous system. The untapped archive of preserved ancient brains represents an opportunity for bioarchaeological studies of human evolution, health and disease.
Collapse
Affiliation(s)
- Alexandra L. Morton-Hayward
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Ross P. Anderson
- Department of Earth Sciences, University of Oxford, Oxford, UK
- All Souls College, University of Oxford, Oxford, UK
| | - Erin E. Saupe
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Stoneman MR, McCoy VE, Gee CT, Bober KMM, Raicu V. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Commun Biol 2024; 7:53. [PMID: 38184735 PMCID: PMC10771488 DOI: 10.1038/s42003-024-05763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
Fluorescence emission is common in plants. While fluorescence microscopy has been widely used to study living plants, its application in quantifying the fluorescence of fossil plants has been limited. Fossil plant fluorescence, from original fluorophores or formed during fossilization, can offer valuable insights into fluorescence in ancient plants and fossilization processes. In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood. The advanced micro-spectroscope utilized, with its pixel-level spectral resolution and line-scan excitation capabilities, allows us to collect comprehensive excitation and emission spectra with high sensitivity and minimal laser damage to the specimens. By applying linear spectral unmixing to the spectrally resolved fluorescence images, we can differentiate between (a) the matrix and (b) the materials that comprise the fossil. Our analysis suggests that the latter correspond to durable tissues such as lignin and cellulose. Additionally, we observe potential signals from chlorophyll derivatives/tannins, although minerals may have contributed to this. This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. Furthermore, the protocols developed herein can also be applied to analyze non-plant fossils and biological specimens.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
- School of Geography, Geology, and the Environment, University of Leicester, Leicester, LE1 7RH, UK.
| | - Carole T Gee
- Institute of Geosciences, Division of Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
| | - Katherine M M Bober
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
7
|
Li X, Li S, Wu Q. Non-Invasive Detection of Biomolecular Abundance from Fermentative Microorganisms via Raman Spectra Combined with Target Extraction and Multimodel Fitting. Molecules 2023; 29:157. [PMID: 38202740 PMCID: PMC10780171 DOI: 10.3390/molecules29010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Biomolecular abundance detection of fermentation microorganisms is significant for the accurate regulation of fermentation, which is conducive to reducing fermentation costs and improving the yield of target products. However, the development of an accurate analytical method for the detection of biomolecular abundance still faces important challenges. Herein, we present a non-invasive biomolecular abundance detection method based on Raman spectra combined with target extraction and multimodel fitting. The high gain of the eXtreme Gradient Boosting (XGBoost) algorithm was used to extract the characteristic Raman peaks of metabolically active proteins and nucleic acids within E. coli and yeast. The test accuracy for different culture times and cell cycles of E. coli was 94.4% and 98.2%, respectively. Simultaneously, the Gaussian multi-peak fitting algorithm was exploited to calculate peak intensity from mixed peaks, which can improve the accuracy of biomolecular abundance calculations. The accuracy of Gaussian multi-peak fitting was above 0.9, and the results of the analysis of variance (ANOVA) measurements for the lag phase, log phase, and stationary phase of E. coli growth demonstrated highly significant levels, indicating that the intracellular biomolecular abundance detection was consistent with the classical cell growth law. These results suggest the great potential of the combination of microbial intracellular abundance, Raman spectra analysis, target extraction, and multimodel fitting as a method for microbial fermentation engineering.
Collapse
Affiliation(s)
- Xinli Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China
| | - Suyi Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China
| | - Qingyi Wu
- Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Slater TS, Ito S, Wakamatsu K, Zhang F, Sjövall P, Jarenmark M, Lindgren J, McNamara ME. Taphonomic experiments reveal authentic molecular signals for fossil melanins and verify preservation of phaeomelanin in fossils. Nat Commun 2023; 14:5651. [PMID: 37803012 PMCID: PMC10558522 DOI: 10.1038/s41467-023-40570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2023] [Indexed: 10/08/2023] Open
Abstract
Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, 501 15, Borås, Sweden
| | | | - Johan Lindgren
- Department of Geology, Lund University, 223 62, Lund, Sweden
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
10
|
Tingle KE, Porter SM, Raven MR, Czaja AD, Webb SM, Bloeser B. Organic preservation of vase-shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA. GEOBIOLOGY 2023; 21:290-309. [PMID: 36651474 DOI: 10.1111/gbi.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate (shell-forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X-ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light-colored, translucent appearance in transmitted light.
Collapse
Affiliation(s)
- Kelly E Tingle
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Susannah M Porter
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Morgan R Raven
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Bonnie Bloeser
- Department of Geological Sciences, San Diego State University, San Diego, California, USA
| |
Collapse
|
11
|
Loron CC, Rodriguez Dzul E, Orr PJ, Gromov AV, Fraser NC, McMahon S. Molecular fingerprints resolve affinities of Rhynie chert organic fossils. Nat Commun 2023; 14:1387. [PMID: 36914650 PMCID: PMC10011563 DOI: 10.1038/s41467-023-37047-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
The affinities of extinct organisms are often difficult to resolve using morphological data alone. Chemical analysis of carbonaceous specimens can complement traditional approaches, but the search for taxon-specific signals in ancient, thermally altered organic matter is challenging and controversial, partly because suitable positive controls are lacking. Here, we show that non-destructive Fourier Transform Infrared Spectroscopy (FTIR) resolves in-situ molecular fingerprints in the famous 407 Ma Rhynie chert fossil assemblage of Aberdeenshire, Scotland, an important early terrestrial Lagerstätte. Remarkably, unsupervised clustering methods (principal components analysis and K-mean) separate the fossil spectra naturally into eukaryotes and prokaryotes (cyanobacteria). Additional multivariate statistics and machine-learning approaches also differentiate prokaryotes from eukaryotes, and discriminate eukaryotic tissue types, despite the overwhelming influence of silica. We find that these methods can clarify the affinities of morphologically ambiguous taxa; in the Rhynie chert for example, we show that the problematic "nematophytes" have a plant-like composition. Overall, we demonstrate that the famously exquisite preservation of cells, tissues and organisms in the Rhynie chert accompanies similarly impressive preservation of molecular information. These results provide a compelling positive control that validates the use of infrared spectroscopy to investigate the affinity of organic fossils in chert.
Collapse
Affiliation(s)
- C C Loron
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - E Rodriguez Dzul
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - P J Orr
- UCD School of Earth Sciences, University College Dublin, Dublin, Ireland
| | - A V Gromov
- EastCHEM and School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - N C Fraser
- Natural Sciences Department, National Museums Scotland, Edinburgh, UK
| | - S McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK. .,School of Geosciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Anderson LA. Biomolecular histology as a novel proxy for ancient DNA and protein sequence preservation. Ecol Evol 2022; 12:e9518. [PMID: 36518622 PMCID: PMC9743065 DOI: 10.1002/ece3.9518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
Researchers' ability to accurately screen fossil and subfossil specimens for preservation of DNA and protein sequences remains limited. Thermal exposure and geologic age are usable proxies for sequence preservation on a broad scale but are of nominal use for specimens of similar depositional environments. Cell and tissue biomolecular histology is thus proposed as a novel proxy for determining sequence preservation potential of ancient specimens with improved accuracy. Biomolecular histology as a proxy is hypothesized to elucidate why fossils/subfossils of some depositional environments preserve sequences while others do not and to facilitate selection of ancient specimens for use in molecular studies.
Collapse
Affiliation(s)
- Landon A Anderson
- Department of Biology North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
13
|
Norell MA, Wiemann J, Menéndez I, Fabbri M, Yu C, Marsicano CA, Moore-Nall A, Varricchio DJ, Pol D, Zelenitsky DK. Reply to: Triassic sauropodomorph eggshell might not be soft. Nature 2022; 610:E11-E14. [PMID: 36261552 DOI: 10.1038/s41586-022-05152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain. .,Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain.
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Negaunee Integrative Research Centre, Field Museum of Natural History, Chicago, IL, USA.
| | - Congyu Yu
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Claudia A Marsicano
- Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Diego Pol
- CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Argentina
| | - Darla K Zelenitsky
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Jurašeková Z, Fabriciová G, Silveira LF, Lee YN, Gutak JM, Ataabadi MM, Kundrát M. Raman Spectra and Ancient Life: Vibrational ID Profiles of Fossilized (Bone) Tissues. Int J Mol Sci 2022; 23:10689. [PMID: 36142598 PMCID: PMC9502200 DOI: 10.3390/ijms231810689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes. In our lab, we have investigated a wide range of different fossil tissues, mainly of Mesozoic vertebrates (from Jurassic through Cretaceous). Besides standard spectra of sedimentary rocks, including pigment contamination, our Raman spectra also exhibit interesting spectral features in the 1200-1800 cm-1 spectral range, where Raman bands of proteins, nucleic acids, and other organic molecules can be identified. In the present study, we discuss both a possible origin of the observed bands of ancient organic residues and difficulties with definition of the specific spectral markers in fossilized soft and hard tissues.
Collapse
Affiliation(s)
- Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Luis F. Silveira
- Museu de Zoologia da Universidade de São Paulo, Caixa Postal 42.494, São Paulo 04218-970, Brazil
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaroslav M. Gutak
- Department of Geology, Geodesy, and Life Security, Institute of Mining and Geosystems, Siberian State Industrial University, Kirov Street 42, 654007 Novokuznetsk, Russia
| | - Majid Mirzaie Ataabadi
- Department of Geology, Faculty of Science, University of Zanjan, Zanjan 4537138791, Iran
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group, Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| |
Collapse
|
15
|
Tripp M, Wiemann J, Brocks J, Mayer P, Schwark L, Grice K. Fossil Biomarkers and Biosignatures Preserved in Coprolites Reveal Carnivorous Diets in the Carboniferous Mazon Creek Ecosystem. BIOLOGY 2022; 11:biology11091289. [PMID: 36138768 PMCID: PMC9495973 DOI: 10.3390/biology11091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The reconstruction of ancient trophic networks is pivotal to our understanding of ecosystem function and change through time. However, inferring dietary relationships in enigmatic ecosystems dominated by organisms without modern analogues, such as the Carboniferous Mazon Creek fauna, has previously been considered challenging: preserved coprolites often do not retain sufficient morphology to identify the dietary composition. Here, we analysed n = 3 Mazon Creek coprolites in concretions for dietary signals in preserved biomarkers, stable carbon isotope data, and macromolecular composition. Cholesteroids, metazoan markers of cholesterol, show an increased abundance in the sampled coprolites (86 to 99% of the total steranes) compared to the surrounding sediment, indicating an endogenous nature of preserved organics. Presence of unaltered 5α-cholestan-3β-ol and coprostanol underline the exceptional molecular preservation of the coprolites, and reveal a carnivorous diet for the coprolite producer. Statistical analyses of in situ Raman spectra targeting coprolite carbonaceous remains support a metazoan affinity of the digested fossil remains, and suggest a high trophic level for the coprolite producer. These currently oldest, intact dietary stanols, combined with exquisitely preserved macromolecular biosignatures in Carboniferous fossils offer a novel source of trophic information. Molecular and biosignature preservation is facilitated by rapid sedimentary encapsulation of the coprolites within days to months after egestion.
Collapse
Affiliation(s)
- Madison Tripp
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Correspondence: (M.T.); (K.G.)
| | - Jasmina Wiemann
- Department of Earth & Planetary Sciences, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Jochen Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Paul Mayer
- The Field Museum, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
| | - Lorenz Schwark
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Organic Geochemistry Unit, Institute of Geoscience, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Correspondence: (M.T.); (K.G.)
| |
Collapse
|
16
|
Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina. BIOLOGY 2022; 11:biology11081158. [PMID: 36009785 PMCID: PMC9404821 DOI: 10.3390/biology11081158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/22/2022]
Abstract
Evidence that organic material preserves in deep time (>1 Ma) has been reported using a wide variety of analytical techniques. However, the comprehensive geochemical data that could aid in building robust hypotheses for how soft-tissues persist over millions of years are lacking from most paleomolecular reports. Here, we analyze the molecular preservation and taphonomic history of the Dreadnougtus schrani holotype (MPM-PV 1156) at both macroscopic and microscopic levels. We review the stratigraphy, depositional setting, and physical taphonomy of the D. schrani skeletal assemblage, and extensively characterize the preservation and taphonomic history of the humerus at a micro-scale via: (1) histological analysis (structural integrity) and X-ray diffraction (exogenous mineral content); (2) laser ablation-inductively coupled plasma mass spectrometry (analyses of rare earth element content throughout cortex); (3) demineralization and optical microscopy (soft-tissue microstructures); (4) in situ and in-solution immunological assays (presence of endogenous protein). Our data show the D. schrani holotype preserves soft-tissue microstructures and remnants of endogenous bone protein. Further, it was exposed to LREE-enriched groundwaters and weakly-oxidizing conditions after burial, but experienced negligible further chemical alteration after early-diagenetic fossilization. These findings support previous hypotheses that fossils that display low trace element uptake are favorable targets for paleomolecular analyses.
Collapse
|
17
|
Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature 2022; 606:522-526. [PMID: 35614213 DOI: 10.1038/s41586-022-04770-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA.
| | - Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain
| | | | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | - Jacques A Gauthier
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Pincelli M Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Mojarro A, Cui X, Zhang X, Jost AB, Bergmann KD, Vinther J, Summons RE. Comparative soft-tissue preservation in Holocene-age capelin concretions. GEOBIOLOGY 2022; 20:377-398. [PMID: 34747129 DOI: 10.1111/gbi.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Determining how soft tissues are preserved and persist through geologic time are continuing challenge because decay begins immediately after senescence while diagenetic transformations generally progress over days to millions of years. However, in recent years, carbonate concretions containing partially-to-fully decayed macroorganisms have proven to be remarkable windows into the diagenetic continuum revealing insights into the fossilization process. This is because most concretions are the result of biologically induced mineral precipitation caused by the localized decay of organic matter, which oftentimes preserves a greater biological signal relative to their host sediment. Here we present a comparative lipid biomarker study investigating processes associated with soft-tissue preservation within Holocene-age carbonate concretions that have encapsulated modern capelin (Mallotus villosus). We focus on samples collected from two depositional settings that have produced highly contrasting preservation end-members: (1) Kangerlussuaq, Greenland: a marine environment, which, due to isostatic rebound, has exposed strata containing concretions exhibiting exceptional soft-tissue preservation (6-7 kya), and (2) Greens Creek, Ottawa, Canada: a paleo brackish-to-freshwater marine excursion containing concretions exhibiting skeletal remains (~11 kya). Lipid biomarker analysis reveals endogenous capelin tissues and productive waters at Kangerlussuaq that are in sharp contrast to Greens Creek concretions, which lack appreciable capelin and environmental signals. Comparable distributions of bacterial fatty acids and statistical analyses suggest soft-tissue preservation within concretions is agnostic to specific heterotrophic decay communities. We, therefore, interpret preservation within carbonate concretions may represent a race between microbially induced authigenic precipitation and decay. Namely, factors resulting in exceptional preservation within concretions likely include: (1) organic matter input, (2) rate of decay, (3) carbonate saturation, (4) porewater velocity, and (5) rate of authigenic (carbonate) precipitation resulting in arrested decay/bacterial respiration due to cementing pore spaces limiting the diffusion of electron acceptors into the decay foci.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xingqian Cui
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xiaowen Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam B Jost
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristin D Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jakob Vinther
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. BIOLOGY 2022; 11:biology11030395. [PMID: 35336769 PMCID: PMC8945194 DOI: 10.3390/biology11030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Insect fossils dating 55 million-years-old from the Stolleklint Clay and Fur Formation of Denmark are known to preserve both fine morphological details and color patterns. To enhance our understanding on how such fragile animals are retained in the fossil record, we examined a pair of beetle elytra, a wasp and a damselfly using sensitive analytical techniques. In our paper, we demonstrate that all three insect fossils are composed of cuticular remains (that is, traces of the exoskeleton) that, in turn, are dominated by the natural pigment eumelanin. In addition, the beetle elytra show evidence of a delicate lamellar structure comparable to multilayered reflectors that produce metallic hues in modern insects. Our results contribute to improved knowledge on the process of fossilization of insect body fossils in marine environments. Abstract Marine sediments of the lowermost Eocene Stolleklint Clay and Fur Formation of north-western Denmark have yielded abundant well-preserved insects. However, despite a long history of research, in-depth information pertaining to preservational modes and taphonomic pathways of these exceptional animal fossils remains scarce. In this paper, we use a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess the ultrastructural and molecular composition of three insect fossils: a wasp (Hymenoptera), a damselfly (Odonata) and a pair of beetle elytra (Coleoptera). Our analyses show that all specimens are preserved as organic remnants that originate from the exoskeleton, with the elytra displaying a greater level of morphological fidelity than the other fossils. TEM analysis of the elytra revealed minute features, including a multilayered epicuticle comparable to those nanostructures that generate metallic colors in modern insects. Additionally, ToF-SIMS analyses provided spectral evidence for chemical residues of the pigment eumelanin as part of the cuticular remains. To the best of our knowledge, this is the first occasion where both structural colors and chemical traces of an endogenous pigment have been documented in a single fossil specimen. Overall, our results provide novel insights into the nature of insect body fossils and additionally shed light on exceptionally preserved terrestrial insect faunas found in marine paleoenvironments.
Collapse
|
20
|
Wiemann J, Briggs DEG. Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (https://doi.org/10.1002/bies.202000295). Bioessays 2022; 44:e2100070. [PMID: 34993976 DOI: 10.1002/bies.202100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
A recent article argued that signals from conventional Raman spectroscopy of organic materials are overwhelmed by edge filter and fluorescence artefacts. The article targeted a subset of Raman spectroscopic investigations of fossil and modern organisms and has implications for the utility of conventional Raman spectroscopy in comparative tissue analytics. The inferences were based on circular reasoning centered around the unconventional analysis of spectra from just two samples, one modern, and one fossil. We validated the disputed signals with in situ Fourier-Transform Infrared (FT-IR) Spectroscopy and through replication with different lasers, filters, and operators in independent laboratories. Our Raman system employs a holographic notch filter which is not affected by edge filter or other artefacts. Multiple lines of evidence confirm that conventional Raman spectra of fossils contain biologically and geologically meaningful information. Statistical analyses of large Raman and FT-IR spectral data sets reveal patterns in fossil composition and yield valuable insights into the history of life.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.,Dinosaur Institute, Natural History Museum of LA County, Los Angeles, California, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Yale Peabody Museum of Natural History, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Abstract
The goal of paleoproteomics is to characterize proteins from specimens that have been subjected to the degrading and obscuring effects of time, thus obtaining biological information about tissues or organisms both unobservable in the present and unobtainable through morphological study. Although the description of sequences from Tyrannosaurus rex and Brachylophosaurus canadensis suggested that proteins may persist over tens of millions of years, the majority of paleoproteomic analyses have focused on historical, archeological, or relatively young paleontological samples that rarely exceed 1 million years in age. However, recent advances in methodology and analyses of diverse tissues types (e.g., fossil eggshell, dental enamel) have begun closing the large window of time that remains unexplored in the fossil history of the Cenozoic. In this perspective, we discuss the history and current state of deep time paleoproteomics (DTPp), here defined as paleoproteomic study of samples ∼1 million years (1 Ma) or more in age. We then discuss the future of DTPp research, including what we see as critical ways the field can expand, advancements in technology that can be utilized, and the types of questions DTPp can address if such a future is realized.
Collapse
Affiliation(s)
- Elena R Schroeter
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, Maryland 20746, United States
| | - Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27605, United States.,Department of Geology, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
22
|
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biol Rev Camb Philos Soc 2021; 97:449-465. [PMID: 34649299 DOI: 10.1111/brv.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Bastian Mähler
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, U.S.A
| |
Collapse
|
23
|
Zheng X, Bailleul AM, Li Z, Wang X, Zhou Z. Nuclear preservation in the cartilage of the Jehol dinosaur Caudipteryx. Commun Biol 2021; 4:1125. [PMID: 34561538 PMCID: PMC8463611 DOI: 10.1038/s42003-021-02627-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Previous findings on dinosaur cartilage material from the Late Cretaceous of Montana suggested that cartilage is a vertebrate tissue with unique characteristics that favor nuclear preservation. Here, we analyze additional dinosaur cartilage in Caudipteryx (STM4-3) from the Early Cretaceous Jehol biota of Northeast China. The cartilage fragment is highly diagenetically altered when observed in ground-sections but shows exquisite preservation after demineralization. It reveals transparent, alumino-silicified chondrocytes and brown, ironized chondrocytes. The histochemical stain Hematoxylin and Eosin (that stains the nucleus and cytoplasm in extant cells) was applied to both the demineralized cartilage of Caudipteryx and that of a chicken. The two specimens reacted identically, and one dinosaur chondrocyte revealed a nucleus with fossilized threads of chromatin. This is the second example of fossilized chromatin threads in a vertebrate material. These data show that some of the original nuclear biochemistry is preserved in this dinosaur cartilage material and further support the hypothesis that cartilage is very prone to nuclear fossilization and a perfect candidate to further understand DNA preservation in deep time.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China.
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| |
Collapse
|
24
|
Alleon J, Montagnac G, Reynard B, Brulé T, Thoury M, Gueriau P. Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts. Bioessays 2021; 43:e2000295. [PMID: 33543495 DOI: 10.1002/bies.202000295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/07/2022]
Abstract
Widespread preservation of fossilized biomolecules in many fossil animals has recently been reported in six studies, based on Raman microspectroscopy. Here, we show that the putative Raman signatures of organic compounds in these fossils are actually instrumental artefacts resulting from intense background luminescence. Raman spectroscopy is based on the detection of photons scattered inelastically by matter upon its interaction with a laser beam. For many natural materials, this interaction also generates a luminescence signal that is often orders of magnitude more intense than the light produced by Raman scattering. Such luminescence, coupled with the transmission properties of the spectrometer, induced quasi-periodic ripples in the measured spectra that have been incorrectly interpreted as Raman signatures of organic molecules. Although several analytical strategies have been developed to overcome this common issue, Raman microspectroscopy as used in the studies questioned here cannot be used to identify fossil biomolecules.
Collapse
Affiliation(s)
- Julien Alleon
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland
| | - Gilles Montagnac
- Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, LGL-TPE, Lyon, F-69007, France
| | - Bruno Reynard
- Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, LGL-TPE, Lyon, F-69007, France
| | | | - Mathieu Thoury
- Universitè Paris-Saclay, CNRS, ministère de la Culture, UVSQ, MNHN, Institut photonique d'analyse non-destructive européen des matériaux anciens, Saint-Aubin, 91192, France
| | - Pierre Gueriau
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland
| |
Collapse
|