1
|
Li J, Wang P, Zhang D, Liao X. Unraveling the anti-biofouling mechanisms of slippery liquid-infused porous surface from molecular interaction perspective. J Colloid Interface Sci 2025; 686:785-794. [PMID: 39922168 DOI: 10.1016/j.jcis.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Newly developed slippery liquid-infused porous surfaces (SLIPS) exhibit highly effective anti-fouling performance without harming organisms, making them a promising solution for both environmental and material protection. However, previous studies have primarily understood the anti-fouling effects of SLIPS from a mechanical perspective, neglecting the atomic interactions involved in the anti-fouling process. In this study, we combined microbiological experiments with multi-scale simulations to elucidate the microscopic mechanisms behind the unique anti-biofouling effects of SLIPS. After developing SLIPS with robust liquid-repellency, we characterized its physical and chemical properties and demonstrated its superior effectiveness in preventing Pseudomonas aeruginosa attachment. To probe the initial contact during bacterial attachment, all-atom molecular dynamics (MD) simulations were conducted, revealing that the liquid-liquid interface suppresses the effective pilin adhesion on SLIPS. Further analysis through steered MD, ab initio MD, and density functional theory calculations revealed that the flexible siloxane backbone and the non-polar nature of silicone oil molecules enhance the diffusivity of interfacial water and lead to the continuous nanoscale fluctuation of liquid-liquid interface, thus inhibiting the role of protein dynamics in promoting bio-adhesion. These novel insights into the characteristics of liquid-liquid and nano-bio interface during the anti-biofouling process of SLIPS may promote the future development of bio-inspired functional surfaces.
Collapse
Affiliation(s)
- Jiawei Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Peng Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Dun Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiufen Liao
- Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Lee SH, Yoo S, Kim SH, Kim YM, Han SI, Lee H. Nature-inspired surface modification strategies for implantable devices. Mater Today Bio 2025; 31:101615. [PMID: 40115053 PMCID: PMC11925587 DOI: 10.1016/j.mtbio.2025.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Medical and implantable devices are essential instruments in contemporary healthcare, improving patient quality of life and meeting diverse clinical requirements. However, ongoing problems such as bacterial colonization, biofilm development, foreign body responses, and insufficient device-tissue adhesion hinder the long-term effectiveness and stability of these devices. Traditional methods to alleviate these issues frequently prove inadequate, necessitating the investigation of nature-inspired alternatives. Biomimetic surfaces, inspired by the chemical and physical principles found in biological systems, present potential opportunities to address these challenges. Recent breakthroughs in manufacturing techniques, including lithography, vapor deposition, self-assembly, and three-dimensional printing, now permit precise control of surface properties at the micro- and nanoscale. Biomimetic coatings can diminish inflammation, prevent bacterial adherence, and enhance stable tissue integration by replicating the antifouling, antibacterial, and adhesive properties observed in creatures such as geckos, mussels, and biological membranes. This review emphasizes the cutting-edge advancements in biomimetic surfaces for medical and implantable devices, outlining their design methodologies, functional results, and prospective clinical applications. Biomimetic coatings, by integrating biological inspiration with advanced surface engineering, have the potential to revolutionize implantable medical devices, providing safer, more lasting, and more effective interfaces for prolonged patient benefit.
Collapse
Affiliation(s)
- Soo-Hwan Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sungjae Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Hoon Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Ihn Han
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- SKKU-KIST, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
3
|
Pramanik B, Mukherjee P, Ahmed S. Ultrashort Peptide Hydrogels Biomaterials with Potent Antibacterial Activity. Chem Asian J 2025; 20:e202401137. [PMID: 39688224 DOI: 10.1002/asia.202401137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
For the past few decades, ultrashort peptide hydrogels have been at the forefront of biomaterials due to their unique properties like biocompatibility, tunable mechanical properties, and potent antibacterial activity. These ultrashort peptides self-assemble into a hydrogel matrix with nanofibrous networks. In this minireview, we have explored the design and self-assembly of these ultrashort peptide hydrogels by focusing on their antibacterial properties. Cationic and hydrophobic residues are incorporated to engineer the peptides, facilitating interaction with bacterial membranes and leading to membrane disruption and cell death. The hydrogels exhibit broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, this minireview highlights the potential of ultrashort peptide hydrogels as versatile and practical antibacterial biomaterials, providing a novel approach to combating bacterial infections and addressing the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Bapan Pramanik
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Payel Mukherjee
- Dept. of Chemistry, School of Basic and Applied Sciences, Adamas University, Kolkata, 700126, India
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, 700054, India
| |
Collapse
|
4
|
Liang Z, Sun R, Zhang X, Luan S, Xu H, Wang R, Song L, Shi H, Wang L. Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections. Adv Healthc Mater 2025; 14:e2403597. [PMID: 39744785 DOI: 10.1002/adhm.202403597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Indexed: 03/04/2025]
Abstract
Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges. Herein, a multifunctional polymer coating (CPB-Ac) is created, incorporating an ultrasonic-responsive carbon monoxide release unit (CORM-Ac) and antifouling unit to treat catheter-related complications. As-synthesized CPB-Ac polymer can be stably anchored to various medical devices with arbitrary shapes and compositions via facile UV treatment. Both in vivo and vitro experiments demonstrated that this multi-functional coating exhibits anti-fouling, anti-inflammatory, and broad-spectrum antibacterial activities as well as good biosafety. During the initial implantation phase, the antifouling units of CPB-Ac coating effectively inhibit the attachment of biological contaminants, significantly reducing the risk of thrombosis and bacterial infection. Once bacterial infection occurs, ultrasonic irradiation can activate CPB-Ac coating to release CO with a much higher amount of 55.3 µm than non-ultrasound controls, therefore rapidly eliminating bacteria and alleviating inflammatory response. It is believed that the work may provide an effective method for the development of next-generation intelligent medical coatings against catheter-related complications.
Collapse
Affiliation(s)
- Ziqing Liang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rui Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Rui Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lingjie Song
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Lv X, Li Z, Zhang Z, Wang H, Song H, Yuan S, Fu X, Li Z. Quaternary Ammonium Salt-Based Intrinsic Antibacterial Polyurethanes: Optimizing the Antibacterial Activity via Cationic Main- or Side-Chain Design in Hard Segments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56862-56873. [PMID: 39397780 DOI: 10.1021/acsami.4c13588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Thermoplastic polyurethanes (TPUs) are one of the most appealing materials with extensive applications in biomedical fields due to their versatile mechanical properties and excellent biocompatibility. In response to the escalating challenges of bacterial infections, it is desirable to obtain TPUs with intrinsic antibacterial activity, particularly for application in biomedical devices and public places. Herein, a cationic main-/side-chain structure regulation strategy in the TPU hard segment was adopted to introduce and optimize the antibacterial activity. This was achieved by synthesizing two types of quaternary ammonium salts (QAS)-containing chain extenders, i.e., N-methyl-N-alkyl-N,N-bis(2-hydroxyethyl) ammonium bromide (Mn, where n represents the N-alkyl chain length) and N,N-dimethyl-N-alkyl-N-2,3-propylene glycol (Dn), from N-methyldiethanolamine (MDEA) and 3-dimethylamino-1,2-propanediol (DMAD), respectively. Given the structural differences between Mn and Dn, main-chain-type PU-Mn and side-chain-type PU-Dn were subsequently obtained with QAS groups in the hard segment. The N-alkyl chain length, QAS content, and main-/side-chain types were systematically investigated to optimize bactericidal properties. The results revealed that a long N-alkyl chain (from C6 to C14) increased the antibacterial activity of the chain extenders and corresponding TPU films. Besides, side-chain-type PU-Dn films showed higher contact-active antibacterial activity than that exerted by the main-chain-type PU-Mn films. Remarkably, almost 100% of Staphylococcus aureus(S. aureus) could be killed by the PU-D14 film with a low QAS content (1.6 wt %). All the TPUs showed good thermal stability with a degradation temperature of 5% mass loss (Td,5%) above 300 °C. Moreover, the TPU films displayed excellent mechanical properties with the tensile strength at break varying from 20.7 to 47.5 MPa and ultimate elongation above 1000%. All of the intrinsic antibacterial films showed negligible hemolytic activities.
Collapse
Affiliation(s)
- Xingshuang Lv
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhi Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhenhao Zhang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao Wang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongwei Song
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaohui Fu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
6
|
Wang M, Li J, Geng M, Yang Z, Xi A, Yu Y, Liu B, Tay FR, Gou Y. Mussel-inspired bifunctional coating for long-term stability of oral implants. Acta Biomater 2024; 188:138-156. [PMID: 39299623 DOI: 10.1016/j.actbio.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Peri-implantitis and osseointegration failure present considerable challenges to the prolonged stability of oral implants. To address these issues, there is an escalating demand for a resilient implant surface coating that seamlessly integrates antimicrobial features to combat bacteria-induced peri‑implantitis, and osteogenic properties to promote bone formation. In the present study, a bio-inspired poly(amidoamine) dendrimer (DA-PAMAM-NH2) is synthesized by utilizing a mussel protein (DA) known for its strong adherence to various materials. Conjugating DA with PAMAM-NH2, inherently endowed with antibacterial and osteogenic properties, results in a robust and multifunctional coating. Robust adhesion between DA-PAMAM-NH2 and the titanium alloy surface is identified using confocal laser scanning microscopy (CLSM) and attenuated total reflectance-infrared (ATR-IR) spectroscopy. Following a four-week immersion of the coated titanium alloy surface in simulated body fluid (SBF), the antimicrobial activity and superior osteogenesis of the DA-PAMAM-NH2-coated surface remain stable. In contrast, the bifunctional effects of the PAMAM-NH2-coated surface diminish after the same immersion period. In vivo animal experiments validate the enduring antimicrobial and osteogenic properties of DA-PAMAM-NH2-coated titanium alloy implants, significantly enhancing the long-term stability of the implants. This innovative coating holds promise for addressing the multifaceted challenges associated with peri‑implantitis and osseointegration failure in titanium-based implants. STATEMENT OF SIGNIFICANCE: Prolonged stability of oral implants remains a clinically-significant challenge. Peri-implantitis and osseointegration failure are two important contributors to the poor stability of oral implants. The present study developed a mussel-bioinspired poly(amidoamine) dendrimer (DA-PAMAM-NH2) for a resilient implant surface coating that seamlessly integrates antimicrobial features to combat bacteria-induced peri‑implantitis, and osteogenic properties to promote bone formation to extend the longevity of oral implants.
Collapse
Affiliation(s)
- Mengmeng Wang
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Jie Li
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Mengqian Geng
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Zhen Yang
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Aiwen Xi
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Yingying Yu
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Yaping Gou
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Lee JW, Cho JA, Roh YJ, Han MA, Jeong JU, Subramanian SA, Kang E, Yeom J, Lee CH, Kim SJ. Antibacterial Immunonegative Coating with Biocompatible Materials on a Nanostructured Titanium Plate for Orthopedic Bone Fracture Surgery. Biomater Res 2024; 28:0070. [PMID: 39262834 PMCID: PMC11387750 DOI: 10.34133/bmr.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Periprosthetic infections resulting from bacterial biofilm formation following surgical bone fracture fixation present important clinical challenges. Conventional orthopedic implant materials, such as titanium, are prone to biofilm formation. This study introduces a novel surface for orthopedic titanium plates, optimized for clinical application in human bone fractures. Leveraging nanostructure-based surface coating technology, the plate achieves an antibacterial/immunonegative surface using biocompatible materials, including poloxamer 407, epigallocatechin gallate, and octanoic acid. These materials demonstrate high biocompatibility and thermal stability after autoclaving. The developed plate, named antibacterial immunonegative surface, releases antibacterial agents and prevents adhesion between human tissue and metal surfaces. Antibacterial immunonegative surface plates exhibit low cell toxicity, robust antibacterial effects against pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, high resistance to biofilm formation on the implant surface and surrounding tissues, and minimal immune reaction in a rabbit femoral fracture model. This innovation holds promise for addressing periprosthetic infections and improving the performance of orthopedic implants.
Collapse
Affiliation(s)
- Jeong-Won Lee
- Department of Mechanical Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jung-Ah Cho
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
- College of Transdisciplinary Studies, School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Yoo Jin Roh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Min Ae Han
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Je-Un Jeong
- Department of Mechanical Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | | | - Eunho Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jiwoo Yeom
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwaseong, Republic of Korea
| |
Collapse
|
8
|
Shi L, Zhou X, Qi P. Resin Acid Copper Salt, an Interesting Chemical Pesticide, Controls Rice Bacterial Leaf Blight by Regulating Bacterial Biofilm, Motility, and Extracellular Enzymes. Molecules 2024; 29:4297. [PMID: 39339292 PMCID: PMC11434517 DOI: 10.3390/molecules29184297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL-1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides' (EPS's) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL-1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL-1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL-1 in vivo.
Collapse
Affiliation(s)
- Lihong Shi
- Guizhou Province Engineering Research Center of Medical Resourceful Healthcare Products, College of Pharmacy, Guiyang Healthcare Vocational University, Guiyang 550081, China;
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Puying Qi
- National Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Hu Q, Du Y, Bai Y, Xing D, Wu C, Li K, Lang S, Liu X, Liu G. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections. Biomater Sci 2024; 12:4471-4482. [PMID: 39058335 DOI: 10.1039/d4bm00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hydrophilic antifouling coatings based on zwitterionic polymers have been widely applied for the surface modification of bone implants to combat biofilm formation and reduce the likelihood of implant-related infections. However, their long-term effectiveness is significantly limited by the lack of effective and precise antibacterial activity. Here, a pH-responsive smart zwitterionic antibacterial coating (PSB/GS coating) was designed and robustly fabricated onto titanium-base bone implants by using a facile two-step method. First, dopamine (DA) and a poly(sulfobetaine methacrylate-co-dopamine methacrylamide) (PSBDA) copolymer were deposited on implants via mussel-inspired surface chemistry, resulting in a hydrophilic base coating with abundant catechol residues. Next, an amino-rich antibiotic, gentamicin sulfate (GS), was covalently linked to the coating through the formation of acid-sensitive Schiff base bonds between the amine groups of GS and the catechol residues present in both the zwitterionic polymer and the DA component. During the initial implantation period, the hydrophilic zwitterionic polymers demonstrated the desired anti-fouling properties that could effectively reduce protein and bacterial adhesion by over 90%. With time, the bacterial proliferation led to a decrease in the microenvironment pH value, resulting in the hydrolysis of the acid-sensitive Schiff base bonds, thereby releasing GS on demand and effectively enhancing the anti-biofilm properties of coatings. Benefiting from this synergistic antifouling and smart antibacterial activities, the PSB/GS coating exerted an excellent anti-infective activity in both in vivo preoperative and postoperative infection rat models. This proposed facile yet effective coating strategy is expected to provide a promising solution to combat bone implant-related infections.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, Ya'an People's Hospital, Ya'an 625000, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chengcheng Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoyan Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Lee M, Lee Y, Choi JH, Kim H, Jeong D, Park K, Kim J, Park J, Jang WY, Seo J, Lee J. Postoperative Long-Term Monitoring of Mechanical Characteristics in Reconstructed Soft Tissues Using Biocompatible, Immune-Tolerant, and Wireless Electronic Sutures. ACS NANO 2024; 18:12210-12224. [PMID: 38695533 DOI: 10.1021/acsnano.4c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Accurate postoperative assessment of varying mechanical properties is crucial for customizing patient-specific treatments and optimizing rehabilitation strategies following Achilles tendon (AT) rupture and reconstruction surgery. This study introduces a wireless, chip-less, and immune-tolerant in vivo strain-sensing suture designed to continuously monitor mechanical stiffness variations in the reconstructed AT throughout the healing process. This innovative sensing suture integrates a standard medical suturing thread with a wireless fiber strain-sensing system, which incorporates a fiber strain sensor and a double-layered inductive coil for wireless readout. The winding design of Au nanoparticle-based fiber electrodes and a hollow core contribute to the fiber strain sensor's high sensitivity (factor of 6.2 and 15.1 pF for revised sensitivity), negligible hysteresis, and durability over 10,000 stretching cycles. To ensure biocompatibility and immune tolerance during extended in vivo periods, an antibiofouling lubricant layer was applied to the sensing suture. Using this sensing system, we successfully monitored the strain responses of the reconstructed AT in an in vivo porcine model. This facilitated the postoperative assessment of mechanical stiffness variations through a well-established analytical model during the healing period.
Collapse
Affiliation(s)
- Mugeun Lee
- Department of Robotics and Mechatronics Engineering, DGIST Daegu 42988, Republic of Korea
| | - Yeontaek Lee
- School of Electrical and Electronic Engineering, Yonsei University Seoul 03722, Republic of Korea
| | - Ji Hye Choi
- Department of Orthopedic Surgery, Korea University College of Medicine Seoul 02841, Republic of Korea
- Institute of Nanobiomarker-Based Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hwajoong Kim
- Department of Robotics and Mechatronics Engineering, DGIST Daegu 42988, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, Korea University College of Medicine Seoul 02841, Republic of Korea
- Institute of Nanobiomarker-Based Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University Seoul 03722, Republic of Korea
| | - Jinho Kim
- Department of Robotics and Mechatronics Engineering, DGIST Daegu 42988, Republic of Korea
| | - Jae Park
- School of Electrical and Electronic Engineering, Yonsei University Seoul 03722, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University College of Medicine Seoul 02841, Republic of Korea
- Institute of Nanobiomarker-Based Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University Seoul 03722, Republic of Korea
| | - Jaehong Lee
- Department of Robotics and Mechatronics Engineering, DGIST Daegu 42988, Republic of Korea
| |
Collapse
|
11
|
Ren H, Wang P, Huang H, Huang J, Lu Y, Wu Y, Xie Z, Tang Y, Cai Z, Shen H. N-Halaminated spermidine-containing polymeric coating enables titanium to achieve dual functions of antibacterial and osseointegration. Biomater Sci 2024; 12:2648-2659. [PMID: 38573023 DOI: 10.1039/d4bm00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous N-halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration. The as-obtained Ti-SPD-Cl contains abundant N-Cl groups and demonstrates effective antibacterial ability against S. aureus and E. coli. Meanwhile, due to the presence of the spermidine component and construction of a porous hydrophilic surface, Ti-SPD-Cl is also beneficial for maintaining cell membrane homeostasis and promoting cell adhesion, exhibiting good biocompatibility and osteogenic ability. The rat osteomyelitis model demonstrates that Ti-SPD-Cl can effectively suppress bacterial infection and enhance bone-implant integration. Thus, Ti-SPD-Cl shows promising clinical applicability in the prevention of orthopedic implant infections and poor osseointegration.
Collapse
Affiliation(s)
- Hang Ren
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Peng Wang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Hanwen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Junshen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yuheng Lu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yanfeng Wu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhongyu Xie
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Youchen Tang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Huiyong Shen
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| |
Collapse
|
12
|
Liu X, Gao J, Liu J, Cheng J, Han Z, Li Z, Chang Z, Zhang L, Li M, Tang P. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2581-2594. [PMID: 38489227 DOI: 10.1021/acsbiomaterials.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The treatment of bone tissue defects continues to be a complex medical issue. Recently, three-dimensional (3D)-printed scaffold technology for bone tissue engineering (BTE) has emerged as an important therapeutic approach for bone defect repair. Despite the potential of BTE scaffolds to contribute to long-term bone reconstruction, there are certain challenges associated with it including the impediment of bone growth within the scaffolds and vascular infiltration. These difficulties can be resolved by using scaffold structural modification strategies that can effectively guide bone regeneration. This study involved the preparation of biphasic calcium phosphate spherical hollow structural scaffolds (SHSS) with varying pore sizes using 3D printing (photopolymerized via digital light processing). The chemical compositions, microscopic morphologies, mechanical properties, biocompatibilities, osteogenic properties, and impact on repairing critical-sized bone defects of SHSS were assessed through characterization analyses, in vitro cytological assays, and in vivo biological experiments. The results revealed the biomimetic properties of SHSS and their favorable biocompatibility. The scaffolds stimulated cell adhesion, proliferation, differentiation, and migration and facilitated the expression of osteogenic genes and proteins, including Col-1, OCN, and OPN. Furthermore, they could effectively repair a critical-sized bone defect in a rabbit femoral condyle by establishing an osteogenic platform and guiding bone regeneration in the defect region. This innovative strategy presents a novel therapeutic approach for assessing critical-sized bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhenchuan Han
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zijian Li
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
13
|
Bhattacharjee A, Bose S. Ginger extract loaded Fe2O3/MgO-doped hydroxyapatite: Evaluation of biological properties for bone-tissue engineering. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. AMERICAN CERAMIC SOCIETY 2024; 107:2081-2092. [PMID: 38855017 PMCID: PMC11160932 DOI: 10.1111/jace.19568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/17/2023] [Indexed: 06/11/2024]
Abstract
Since antiquity, the medicinal properties of naturally sourced biomolecules such as ginger (Zingiber officinale) extract are documented in the traditional Indian and Chinese medical systems. However, limited work is performed to assess the potential of ginger extracts for bone-tissue engineering. Our work demonstrates the direct incorporation of ginger extract on iron oxide-magnesium oxide (Fe2O3 and MgO) co-doped hydroxyapatite (HA) for enhancement in the biological properties. The addition of Fe2O3 and MgO co-doping system and ginger extract with HA increases the osteoblast viability up to ~ 1.4 times at day 11. The presence of ginger extract leads to up to ~ 9 times MG-63 cell viability reduction. The co-doping does not adversely affect the release of ginger extract from the graft surface in the biological medium at pH 7.4 for up to 28 days. Assessment of antibacterial efficacy according to the modified ISO 22196: 2011 standard method indicates that the combined effects of Fe2O3, MgO, and ginger extract lead to ~ 82 % more bacterial cell reduction, compared to the control HA against S. aureus. These ginger extract-loaded artificial bone grafts with enhanced biological properties may be utilized as a localized site-specific delivery vehicle for various bone tissue engineering applications.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
14
|
Wang Y, Zhao Y, Ma S, Fu M, Wu M, Li J, Wu K, Zhuang X, Lu Z, Guo J. Injective Programmable Proanthocyanidin-Coordinated Zinc-Based Composite Hydrogel for Infected Bone Repair. Adv Healthc Mater 2024; 13:e2302690. [PMID: 37885334 DOI: 10.1002/adhm.202302690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.
Collapse
Affiliation(s)
- Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
- Guangzhou New Materials Science Center, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511361, P. R. China
| |
Collapse
|
15
|
Li B, Thebault P, Labat B, Ladam G, Alt V, Rupp M, Brochausen C, Jantsch J, Ip M, Zhang N, Cheung WH, Leung SYS, Wong RMY. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat 2024; 45:24-35. [PMID: 38495742 PMCID: PMC10943307 DOI: 10.1016/j.jot.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Objective Fracture-related infection (FRI) remains a major concern in orthopaedic trauma. Functionalizing implants with antibacterial coatings are a promising strategy in mitigating FRI. Numerous implant coatings have been reported but the preventive and therapeutic effects vary. This systematic review aimed to provide a comprehensive overview of current implant coating strategies to prevent and treat FRI in animal fracture and bone defect models. Methods A literature search was performed in three databases: PubMed, Web of Science and Embase, with predetermined keywords and criteria up to 28 February 2023. Preclinical studies on implant coatings in animal fracture or defect models that assessed antibacterial and bone healing effects were included. Results A total of 14 studies were included in this systematic review, seven of which used fracture models and seven used defect models. Passive coatings with bacteria adhesion resistance were investigated in two studies. Active coatings with bactericidal effects were investigated in 12 studies, four of which used metal ions including Ag+ and Cu2+; five studies used antibiotics including chlorhexidine, tigecycline, vancomycin, and gentamicin sulfate; and the other three studies used natural antibacterial materials including chitosan, antimicrobial peptides, and lysostaphin. Overall, these implant coatings exhibited promising efficacy in antibacterial effects and bone formation. Conclusion Antibacterial coating strategies reduced bacterial infections in animal models and favored bone healing in vivo. Future studies of implant coatings should focus on optimal biocompatibility, antibacterial effects against multi-drug resistant bacteria and polymicrobial infections, and osseointegration and osteogenesis promotion especially in osteoporotic bone by constructing multi-functional coatings for FRI therapy. The translational potential of this paper The clinical treatment of FRI is complex and challenging. This review summarizes novel orthopaedic implant coating strategies applied to FRI in preclinical studies, and offers a perspective on the future development of orthopaedic implant coatings, which can potentially contribute to alternative strategies in clinical practice.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascal Thebault
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Huang Y, Wan X, Su Q, Zhao C, Cao J, Yue Y, Li S, Chen X, Yin J, Deng Y, Zhang X, Wu T, Zhou Z, Wang D. Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections. Nat Commun 2024; 15:1643. [PMID: 38388555 PMCID: PMC10884398 DOI: 10.1038/s41467-024-45619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Implant-associated infections due to the formation of bacterial biofilms pose a serious threat in medical healthcare, which needs effective therapeutic methods. Here, we propose a multifunctional nanoreactor by spatiotemporal ultrasound-driven tandem catalysis to amplify the efficacy of sonodynamic and chemodynamic therapy. By combining piezoelectric barium titanate with polydopamine and copper, the ultrasound-activated piezo-hot carriers transfer easily to copper by polydopamine. It boosts reactive oxygen species production by piezoelectrics, and facilitates the interconversion between Cu2+ and Cu+ to promote hydroxyl radical generation via Cu+ -catalyzed chemodynamic reactions. Finally, the elevated reactive oxygen species cause bacterial membrane structure loosening and DNA damage. Transcriptomics and metabolomics analysis reveal that intracellular copper overload restricts the tricarboxylic acid cycle, promoting bacterial cuproptosis-like death. Therefore, the polyetherketoneketone scaffold engineered with the designed nanoreactor shows excellent antibacterial performance with ultrasound stimulation and promotes angiogenesis and osteogenesis on-demand in vivo.
Collapse
Affiliation(s)
- Yanli Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Su
- Department of Orthopedics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Chunlin Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianzeng Zhang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China.
| | - Tianmin Wu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China.
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
18
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
19
|
Zhang Y, Song G, Hu C, Liu Z, Liu H, Wang Y, Wang L, Feng X. Perfluoropolyether-incorporated polyurethane with enhanced antibacterial and anti-adhesive activities for combating catheter-induced infection. RSC Adv 2024; 14:568-576. [PMID: 38173603 PMCID: PMC10759042 DOI: 10.1039/d3ra07831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
To avoid the undesired bacterial attachment on polyurethane-based biomedical devices, we designed a class of novel perfluoropolyether-incorporated polyurethanes (PFPU) containing different contents of perfluoropolyether (PFPE) segments. After blending with Ag nanoparticles (AgNPs), a series of bifunctional PFPU/AgNPs composites with bactericidal and anti-adhesion abilities were obtained and correspondingly made into PFPU/AgNPs films (PFPU/Ag-F) using a simple solvent-casting method. Due to its highest hydrophobicity and suitable mechanical properties, PFPU8/Ag-F containing 8 mol% of PFPE content was chosen as the optimized one for the next antibacterial assessment. The PFPU8/Ag-F can effectively deactivate over 99.9% of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) cells at 106 CFU mL-1 within 30 min. Furthermore, the PFPU8/AgNPs composite was used as painting material to form a protective coating for the commercial polyurethane (PU) catheter. The as-prepared PFPU8/Ag coating exhibits high resistance to bacterial adhesion in a continuous-flow artificial urine model in an 8 day exposure. Therefore, it can be expected that the proposed PFPE-containing films and coatings can effectively prevent bacterial colonization and biofilm formation on catheters or other implants, thereby reducing the risk of postoperative catheter-induced infection.
Collapse
Affiliation(s)
- Yang Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Guangbin Song
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Can Hu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Zixu Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Huansen Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Yilei Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Liang Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin China
| | - Xuequan Feng
- Neurosurgery Department, Tianjin First Centre Hospital Tianjin China
| |
Collapse
|
20
|
Liu L, Yu H, Wang L, Zhou D, Duan X, Zhang X, Yin J, Luan S, Shi H. Heparin-network-mediated long-lasting coatings on intravascular catheters for adaptive antithrombosis and antibacterial infection. Nat Commun 2024; 15:107. [PMID: 38167880 PMCID: PMC10761715 DOI: 10.1038/s41467-023-44478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria-associated infections and thrombosis, particularly catheter-related bloodstream infections and catheter-related thrombosis, are life-threatening complications. Herein, we utilize a concise assembly of heparin sodium with organosilicon quaternary ammonium surfactant to fabricate a multifunctional coating complex. In contrast to conventional one-time coatings, the complex attaches to medical devices with arbitrary shapes and compositions through a facile dipping process and further forms robust coatings to treat catheter-related bloodstream infections and thrombosis simultaneously. Through their robustness and adaptively dissociation, coatings not only exhibit good stability under extreme conditions but also significantly reduce thrombus adhesion by 60%, and shows broad-spectrum antibacterial activity ( > 97%) in vitro and in vivo. Furthermore, an ex vivo rabbit model verifies that the coated catheter has the potential to prevent catheter-related bacteremia during implantation. This substrate-independent and portable long-lasting multifunctional coating can be employed to meet the increasing clinical demands for combating catheter-related bloodstream infections and thrombosis.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
21
|
Kołodziejska B, Figat R, Kolmas J. Biomimetic Apatite/Natural Polymer Composite Granules as Multifunctional Dental Tissue Regenerative Material. Int J Mol Sci 2023; 24:16751. [PMID: 38069072 PMCID: PMC10706555 DOI: 10.3390/ijms242316751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
This study presents a comprehensive evaluation of novel composite biomaterials designed for dental applications, aiming to potentially address the prevalent challenge of dental and periodontal tissue loss. The composites consisted of biomimetic hydroxyapatite (mHA) enriched with Mg2+, CO32-, and Zn2+ ions, type I collagen, alginate, and, additionally, chitosan and sericin. The granules were loaded with ibuprofen sodium salt. The investigation encompassed a morphology characterization, a porosity analysis, a chemical structure assessment, and an examination of the swelling behavior, drug release kinetics (ibuprofen), and release profiles of zinc and magnesium ions. The granules exhibited irregular surfaces with an enhanced homogeneity in the chitosan-coated granules and well-developed mesoporous structures. The FT-IR spectra confirmed the presence of ibuprofen sodium, despite overlapping bands for the polymers. The granules demonstrated a high water-absorption capacity, with delayed swelling observed in the chitosan-coated granules. Ibuprofen displayed burst-release profiles, especially in the G1 and G3 samples. In the case of the chitosan-coated granules (G2 and G4), lower amounts of ibuprofen were released. In turn, there was a significant difference in the released amount of magnesium and zinc ions from the granules, which was most likely caused by their different location in the hydroxyapatite crystals. The cytotoxicity assays confirmed the non-cytotoxic behavior of the biomaterial. These findings suggest the potential applicability of these biomaterials in dental scenarios, emphasizing their multifunctional and biocompatible nature.
Collapse
Affiliation(s)
- Barbara Kołodziejska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Ramona Figat
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
22
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
23
|
Zhou H, Ye S, Xu M, Hao L, Chen J, Fang Z, Guo K, Chen Y, Wang L. Dynamic surface adapts to multiple service stages by orchestrating responsive polymers and functional peptides. Biomaterials 2023; 301:122200. [PMID: 37423184 DOI: 10.1016/j.biomaterials.2023.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Control over the implant surface functions is highly desirable to enhance tissue healing outcomes but has remained unexplored to adapt to the different service stages. In the present study, we develop a smart titanium surface by orchestrating thermoresponsive polymer and antimicrobial peptide to enable dynamic adaptation to the implantation stage, normal physiological stage and bacterial infection stage. The optimized surface inhibited bacterial adhesion and biofilm formation during surgical implantation, while promoted osteogenesis in the physiological stage. The further temperature increase driven by bacterial infection induced polymer chain collapse to expose antimicrobial peptides by rupturing bacterial membranes, as well as protect the adhered cells from the hostile environment of infection and abnormal temperature. The engineered surface could inhibit infection and promote tissue healing in rabbit subcutaneous and bone defect infection models. This strategy enables the possibility to create a versatile surface platform to balance bacteria/cell-biomaterial interactions at different service stages of implants that has not been achieved before.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Silin Ye
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Mingjian Xu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Lihui Hao
- Department of Stomatology, Xingtai Medical College, Xingtai 054000, China
| | - Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Zhou Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
24
|
Tesler AB, Kolle S, Prado LH, Thievessen I, Böhringer D, Backholm M, Karunakaran B, Nurmi HA, Latikka M, Fischer L, Stafslien S, Cenev ZM, Timonen JVI, Bruns M, Mazare A, Lohbauer U, Virtanen S, Fabry B, Schmuki P, Ras RHA, Aizenberg J, Goldmann WH. Long-term stability of aerophilic metallic surfaces underwater. NATURE MATERIALS 2023:10.1038/s41563-023-01670-6. [PMID: 37723337 DOI: 10.1038/s41563-023-01670-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.
Collapse
Affiliation(s)
- Alexander B Tesler
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefan Kolle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lucia H Prado
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Böhringer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matilda Backholm
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Heikki A Nurmi
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mika Latikka
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Lena Fischer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mark Bruns
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anca Mazare
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai, Japan
| | - Ulrich Lohbauer
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sannakaisa Virtanen
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | - Robin H A Ras
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
25
|
Wang L, Li H, Wang X, Yang X, Tian C, Sun D, Liu L, Li J. Modification of Low-Energy Surfaces Using Bicyclic Peptides Discovered by Phage Display. J Am Chem Soc 2023; 145:17613-17620. [PMID: 37531461 DOI: 10.1021/jacs.3c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Solid-binding peptides are a simple and versatile tool for the non-covalent modification of solid material surfaces, and a variety of peptides have been developed by reference to natural proteins or de novo design. Here, for the first time, we report the discovery of a bicyclic peptide targeting the heterogeneous material polypropylene by combining phage display technology and next-generation sequencing. We find that the enrichment properties of bicyclic peptides capable of binding to polypropylene are distinct from linear peptides, as reflected in amino acid abundance and a trend toward negative net charges and high hydrophobicity. The selected bicyclic peptide has a higher binding affinity for polypropylene compared with a previously reported linear peptide, enabling the hydrophilic and adhesive properties of the polypropylene to be more effectively enhanced. Our work paves the way for the exploration and utilization of conformational-restricted cyclic peptides as a new family of functionally evolvable agents for material surface modification.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haodong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xinyan Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xichu Yang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Changlin Tian
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Demeng Sun
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| |
Collapse
|
26
|
Fan D, Miller Naranjo B, Mansi S, Mela P, Lieleg O. Dopamine-Mediated Biopolymer Multilayer Coatings for Modulating Cell Behavior, Lubrication, and Drug Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37986-37996. [PMID: 37491732 DOI: 10.1021/acsami.3c05298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biopolymer coatings on implants mediate the interactions between the synthetic material and its biological environment. Owing to its ease of preparation and the possibility to incorporate other bioactive molecules, layer-by-layer deposition is a method commonly used in the construction of biopolymer multilayers. However, this method typically requires at least two types of oppositely charged biopolymers, thus limiting the range of macromolecular options by excluding uncharged biopolymers. Here, we present a layer-by-layer approach that employs mussel-inspired polydopamine as the adhesive intermediate layer to build biopolymer multilayer coatings without requiring any additional chemical modifications. We select three biopolymers with different charge states─anionic alginate, neutral dextran, and cationic polylysine─and successfully assemble them into mono-, double-, or triple-layers. Our results demonstrate that both the layer number and the polymer type modulate the coating properties. Overall, increasing the number of layers in the coatings leads to reduced cell attachment, lower friction, and higher drug loading capacity but does not alter the surface potential. Moreover, varying the biopolymer type affects the surface potential, macrophage differentiation, lubrication performance, and drug release behavior. This proof-of-concept study offers a straightforward and universal coating method, which may broaden the use of multilayer coatings in biomedical applications.
Collapse
Affiliation(s)
- Di Fan
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Bernardo Miller Naranjo
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Salma Mansi
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
27
|
Dhiman NK, Reddy MS, Agnihotri S. Graphene oxide reinforced chitosan/polyvinyl alcohol antibacterial coatings on stainless steel surfaces exhibit superior bioactivity without human cell cytotoxicity. Colloids Surf B Biointerfaces 2023; 227:113362. [PMID: 37257298 DOI: 10.1016/j.colsurfb.2023.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
The study proposes an alternative therapeutics to diminish bacterial attachment in biomedical implants by modifying their surface with passive coatings. A uniform, thin-film of chitosan/polyvinyl alcohol/graphene oxide (CS/PVA/GO) was coated on 316 L stainless steel (SS) surface through spread casting followed by solvent evaporation. The abundant anchoring sites available at macromolecular interfaces of chitosan/PVA matrix facilitated a smooth, dense loading of GO. The effect of GO content on physicochemical features, antibacterial potential, and biocompatibility of coatings was thoroughly studied. The hybrid films displayed good adhesion behavior, and UV-protection ability with desired mechanical and thermal stability when coated on SS surface. Coatings manifested a 1.5-1.7 fold rise in antibacterial efficacy against Staphylococcus epidermidis and Staphylococcus aureus and exhibited a permanent biocidal response after 6 h of contact-active behaviour. We investigated a 3-fold generation of reactive oxygen species as the predominant antibacterial mechanism, which diminishes bacterial integrity by inducing protein leakage (8.5-9 fold higher) and suppressing respiratory chain activity as two secondary mechanisms. All coatings with varying GO content appeared non-haemolytic (<2%) with ultra-low cytotoxicity (<29.08%) against human hepatocellular carcinoma (HepG2) and peripheral blood mononuclear cells. The degradation rate of coatings in simulated body fluid exhibited a higher stability, indicated by a lower weight loss (69-78%) and a decrease in pH values as the GO content in coatings increased from 0.05 to 0.15 wt%. Such anti-infective coating is a step forward in inhibiting bacterial colonization on SS surfaces to extend its lifespan.
Collapse
Affiliation(s)
- Navneet Kaur Dhiman
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India; Centre for Advanced Translational Research in Food Nano-Biotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| |
Collapse
|
28
|
Zhang Y, Cui J, Chen KY, Kuo SH, Sharma J, Bhatta R, Liu Z, Ellis-Mohr A, An F, Li J, Chen Q, Foss KD, Wang H, Li Y, McCoy AM, Lau GW, Cao Q. A smart coating with integrated physical antimicrobial and strain-mapping functionalities for orthopedic implants. SCIENCE ADVANCES 2023; 9:eadg7397. [PMID: 37146142 PMCID: PMC10162669 DOI: 10.1126/sciadv.adg7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
The prevalence of orthopedic implants is increasing with an aging population. These patients are vulnerable to risks from periprosthetic infections and instrument failures. Here, we present a dual-functional smart polymer foil coating compatible with commercial orthopedic implants to address both septic and aseptic failures. Its outer surface features optimum bioinspired mechano-bactericidal nanostructures, capable of killing a wide spectrum of attached pathogens through a physical process to reduce the risk of bacterial infection, without directly releasing any chemicals or harming mammalian cells. On its inner surface in contact with the implant, an array of strain gauges with multiplexing transistors, built on single-crystalline silicon nanomembranes, is incorporated to map the strain experienced by the implant with high sensitivity and spatial resolution, providing information about bone-implant biomechanics for early diagnosis to minimize the probability of catastrophic instrument failures. Their multimodal functionalities, performance, biocompatibility, and stability are authenticated in sheep posterolateral fusion model and rodent implant infection model.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jinsong Cui
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kuan-Yu Chen
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Jaishree Sharma
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Zheng Liu
- Department of Industrial and Enterprise Systems Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Austin Ellis-Mohr
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Fufei An
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiahui Li
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kari D. Foss
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign. Urbana, IL 61802, USA
- Veterinary Teaching Hospital, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yumeng Li
- Department of Industrial and Enterprise Systems Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign. Urbana, IL 61802, USA
- Veterinary Teaching Hospital, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Qing Cao
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Wang X, Diwu W, Guo J, Yan M, Ma W, Yang M, Bi L, Han Y. Enhancement of antibacterial properties and biocompatibility of Ti 6Al 4V by graphene oxide/strontium nanocomposite electrodepositing. Biochem Biophys Res Commun 2023; 665:35-44. [PMID: 37156051 DOI: 10.1016/j.bbrc.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Ti6Al4V is a widely used orthopedic implant material in clinics. Due to its poor antibacterial properties, surface modification is required to prevent peri-implantation infection. However, chemical linkers used for surface modification have generally been reported to have detrimental effects on cell growth. In this work, by optimizing parameters related to electrodeposition, a composite structural coating with graphene oxide (GO) compact films in the inner layer and 35 nm diameter strontium (Sr) nanoparticles in the outer layer was constructed on the surface of Ti6Al4V without using substance harmful to bone marrow mesenchymal stem cells (BMSCs) growth. The antibacterial properties of Ti6Al4V are enhanced by the controlled release of Sr ions and incomplete masking of the GO surface, showing excellent antibacterial activity against Staphylococcus aureus in bacterial culture assays. The biomimetic GO/Sr coating has a reduced roughness of the implant surface and a water contact angle of 44.1°, improving the adhesion, proliferation and differentiation of BMSCs. Observations of synovial tissue and fluid in the joint in an implantation model of rabbit knee also point to the superior anti-infective properties of the novel GO/Sr coating. In summary, the novel GO/Sr nanocomposite coating on the surface of Ti6Al4V effectively prevents surface colonization of Staphylococcus aureus and eliminates local infections in vitro and in vivo.
Collapse
Affiliation(s)
- Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China; Department of Medical Identification, The Air Force Medical Center, Beijing, People's Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Jianbin Guo
- Department of Joint Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, People's Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Wenrui Ma
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| |
Collapse
|
30
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao LB, Chen JY, Chai W. Host Immune Regulation in Implant-Associated Infection (IAI): What Does the Current Evidence Provide Us to Prevent or Treat IAI? Bioengineering (Basel) 2023; 10:356. [PMID: 36978747 PMCID: PMC10044746 DOI: 10.3390/bioengineering10030356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The number of orthopedic implants for bone fixation and joint arthroplasty has been steadily increasing over the past few years. However, implant-associated infection (IAI), a major complication in orthopedic surgery, impacts the quality of life and causes a substantial economic burden on patients and societies. While research and study on IAI have received increasing attention in recent years, the failure rate of IAI has still not decreased significantly. This is related to microbial biofilms and their inherent antibiotic resistance, as well as the various mechanisms by which bacteria evade host immunity, resulting in difficulties in diagnosing and treating IAIs. Hence, a better understanding of the complex interactions between biofilms, implants, and host immunity is necessary to develop new strategies for preventing and controlling these infections. This review first discusses the challenges in diagnosing and treating IAI, followed by an extensive review of the direct effects of orthopedic implants, host immune function, pathogenic bacteria, and biofilms. Finally, several promising preventive or therapeutic alternatives are presented, with the hope of mitigating or eliminating the threat of antibiotic resistance and refractory biofilms in IAI.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuo Li
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chi Xu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Chai
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
31
|
Su Z, Kong L, Mei J, Li Q, Qian Z, Ma Y, Chen Y, Ju S, Wang J, Jia W, Zhu C, Fan W. Enzymatic bionanocatalysts for combating peri-implant biofilm infections by specific heat-amplified chemodynamic therapy and innate immunomodulation. Drug Resist Updat 2023; 67:100917. [PMID: 36608472 DOI: 10.1016/j.drup.2022.100917] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.
Collapse
Affiliation(s)
- Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Weitao Jia
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication. Biomaterials 2023; 296:122074. [PMID: 36889145 DOI: 10.1016/j.biomaterials.2023.122074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
Collapse
|
33
|
Xue Y, Zhang L, Liu F, Dai F, Kong L, Ma D, Han Y. Alkaline "Nanoswords" Coordinate Ferroptosis-like Bacterial Death for Antibiosis and Osseointegration. ACS NANO 2023; 17:2711-2724. [PMID: 36662033 DOI: 10.1021/acsnano.2c10960] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferroptosis is an iron-dependent cell death and is associated with cancer therapy. Can it play a role in resistance of postoperative infection of implants, especially with an extracellular supplement of Fe ions in a non-cytotoxic dose? To answer this, "nanoswords" of Fe-doped titanite are fabricated on a Ti implant surface to resist bacterial invasion by a synergistic action of ferroptosis-like bacteria killing, proton disturbance, and physical puncture. The related antibiosis mechanism is explored by atomic force microscopy and genome sequencing. The nanoswords induce an increased local pH value, which not only weakens the proton motive force, reducing adenosine triphosphate synthesis of Staphylococcus aureus, but also decreases the membrane modulus, making the nanoswords distort and even puncture a bacterial membrane easily. Simultaneously, more Fe ions are taken by bacteria due to increased bacterial membrane permeability, resulting in ferroptosis-like death of bacteria, and this is demonstrated by intracellular iron enrichment, lipid peroxidation, and glutathione depletion. Interestingly, a microenvironment constructed by these nanoswords improves osteoblast behavior in vitro and bone regeneration in vivo. Overall, the nanoswords can induce ferroptosis-like bacterial death without cytotoxicity and have great promise in applications with clinical implants for outstanding antibiosis and biointegration performance.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an 710038, China
| | - Fang Dai
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an 710038, China
| | - Dayan Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
34
|
Liu D, Xi Y, Yu S, Yang K, Zhang F, Yang Y, Wang T, He S, Zhu Y, Fan Z, Du J. A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Biomaterials 2023; 293:121957. [PMID: 36549042 DOI: 10.1016/j.biomaterials.2022.121957] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/12/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Aging population has been boosting the need for orthopedic implants. However, biofilm has been a major obstacle for orthopedic implants due to its insensitivity to antibiotics and tendency to drive antimicrobial resistance. Herein, an antibacterial polypeptide coating with excellent in vivo adhesive capacity was prepared to prevent implants from forming biofilms and inducing acquired antibiotic resistance. A peptide-based copolymer, poly[phenylalanine10-stat-lysine12]-block-3,4-dihydroxy-l-phenylalanine [Poly(Phe10-stat-Lys12)-DOPA] was modularly designed, where poly(Phe10-stat-Lys12) is antibacterial polypeptide with high antibacterial activity, and DOPA provides strong adhesion in both wet and dry microenvironments. Meanwhile, compared to traditional "graft-onto" methods, this antibacterial coating can be facilely achieved by immersing Titanium substrates into antibacterial polypeptide solution for 5 min at room temperature. The poly(Phe10-stat-Lys12)-DOPA polymer showed good antibacterial activity with minimum inhibitory concentrations against S. aureus and E. coli of 32 and 400 μg/mL, respectively. Compared to obvious antimicrobial resistance of S. aureus after continuous treatment with vancomycin, this antibacterial coating doesn't drive antimicrobial resistance upon long-term utilization. Transcriptome sequencing and qPCR tests further confirmed that the antibacterial coating was able to inhibit the expression of multiple peptide resistance factor (mprF) and lipoteichoic acid modification D-alanylation genes (dltB and dltC) that can increase the net positive charge of bacterial cell wall to induce the resistance to cationic antimicrobial peptides. In vivo experiments confirmed that this poly(Phe10-stat-Lys12)-DOPA coating can both effectively prevent biofilm formation through surface contact sterilization and avoid local and systemic infections. Overall, we proposed a facile method for preparing antibacterial orthopedic implants with longer indwelling time and without inducing antimicrobial resistance by coating a polypeptide-based polymer on the implants.
Collapse
Affiliation(s)
- Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Fan Zhang
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yuying Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| |
Collapse
|
35
|
Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Zhang L, Yang Y, Xiong YH, Zhao YQ, Xiu Z, Ren HM, Zhang K, Duan S, Chen Y, Xu FJ. Infection-responsive long-term antibacterial bone plates for open fracture therapy. Bioact Mater 2023; 25:1-12. [PMID: 36713134 PMCID: PMC9860072 DOI: 10.1016/j.bioactmat.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The infections in open fracture induce high morbidity worldwide. Thus, developing efficient anti-infective orthopedic devices is of great significance. In this work, we designed a kind of infection-responsive long-term antibacterial bone plates. Through a facile and flexible volatilization method, a multi-aldehyde polysaccharide derivative, oxidized sodium alginate, was crosslinked with multi-amino compounds, gentamycin and gelatin, to fabricate a uniform coating on Ti bone plates via Schiff base reaction, which was followed by a secondary crosslinking process by glutaraldehyde. The double-crosslinked coating was stable under normal condition, and could responsively release gentamycin by the triggering of the acidic microenvironment caused by bacterial metabolism, owning to the pH-responsiveness of imine structure. The thickness of the coating was ranging from 22.0 μm to 63.6 μm. The coated bone plates (Ti-GOGs) showed infection-triggered antibacterial properties (>99%) and high biocompatibility. After being soaked for five months, it still possessed efficient antibacterial ability, showing its sustainable antibacterial performance. The in vivo anti-infection ability was demonstrated by an animal model of infection after fracture fixation (IAFF). At the early stage of IAFF, Ti-GOGs could inhibit the bacterial infection (>99%). Subsequently, Ti-GOGs could promote recovery of fracture of IAFF. This work provides a convenient and universal strategy for fabrication of various antibacterial orthopedic devices, which is promising to prevent and treat IAFF.
Collapse
Affiliation(s)
- Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yurun Yang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yan-Hua Xiong
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui-Min Ren
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| | - Ying Chen
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
- Corresponding author.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| |
Collapse
|
37
|
Enhanced Bactericidal Effect of Calcinated Mg-Fe Layered Double Hydroxide Films Driven by the Fenton Reaction. Int J Mol Sci 2022; 24:ijms24010272. [PMID: 36613712 PMCID: PMC9820372 DOI: 10.3390/ijms24010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Osteogenic and antibacterial abilities are the permanent pursuit of titanium (Ti)-based orthopedic implants. However, it is difficult to strike the right balance between these two properties. It has been proved that an appropriate alkaline microenvironment formed by Ti modified by magnesium-aluminum layered double hydroxides (Mg-Al LDHs) could achieve the selective killing of bacteria and promote osteogenesis. However, the existence of Al induces biosafety concerns. In this study, iron (Fe), an essential trace element in the human body, was used to substitute Al, and a calcinated Mg-Fe LDH film was constructed on Ti. The results showed that a proper local alkaline environment created by the constructed film could enhance the antibacterial and osteogenic properties of the material. In addition, the introduction of Fe promoted the Fenton reaction and could produce reactive oxygen species in the infection environment, which might further strengthen the in vivo bactericidal effect.
Collapse
|
38
|
Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to Mitigate and Treat Orthopaedic Device-Associated Infections. Antibiotics (Basel) 2022; 11:1822. [PMID: 36551479 PMCID: PMC9774155 DOI: 10.3390/antibiotics11121822] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic device implants play a crucial role in restoring functionality to patients suffering from debilitating musculoskeletal diseases or to those who have experienced traumatic injury. However, the surgical implantation of these devices carries a risk of infection, which represents a significant burden for patients and healthcare providers. This review delineates the pathogenesis of orthopaedic implant infections and the challenges that arise due to biofilm formation and the implications for treatment. It focuses on research advancements in the development of next-generation orthopaedic medical devices to mitigate against implant-related infections. Key considerations impacting the development of devices, which must often perform multiple biological and mechanical roles, are delineated. We review technologies designed to exert spatial and temporal control over antimicrobial presentation and the use of antimicrobial surfaces with intrinsic antibacterial activity. A range of measures to control bio-interfacial interactions including approaches that modify implant surface chemistry or topography to reduce the capacity of bacteria to colonise the surface, form biofilms and cause infections at the device interface and surrounding tissues are also reviewed.
Collapse
Affiliation(s)
- Darragh G. Kennedy
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Eamonn P. Culligan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | | | - Katie B. Ryan
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
39
|
Wang J, Bao Z, Wu C, Zhang S, Wang N, Wang Q, Yi Z. Progress in partially degradable titanium-magnesium composites used as biomedical implants. Front Bioeng Biotechnol 2022; 10:996195. [PMID: 36159687 PMCID: PMC9490076 DOI: 10.3389/fbioe.2022.996195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium-magnesium composites have gained increasing attention as a partially degradable biomaterial recently. The titanium-magnesium composite combines the bioactivity of magnesium and the good mechanical properties of titanium. Here, we discuss the limitations of conventional mechanically alloyed titanium-magnesium alloys for bioimplants, in addition we summarize three suitable methods for the preparation of titanium-magnesium composites for bioimplants by melt: infiltration casting, powder metallurgy and hot rotary swaging, with a description of the advantages and disadvantages of all three methods. The titanium-magnesium composites were comprehensively evaluated in terms of mechanical properties and degradation behavior. The feasibility of titanium-magnesium composites as bio-implants was reviewed. In addition, the possible future development of titanium-magnesium composites was discussed. Thus, this review aims to build a conceptual and practical toolkit for the design of titanium-magnesium composites capable of local biodegradation.
Collapse
Affiliation(s)
- Jianping Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhifan Bao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Chenliang Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Song Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China
- *Correspondence: Song Zhang, ; Zhe Yi,
| | - Ningwei Wang
- School of Materials Science and Engineering, Northeastern-University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhe Yi
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Song Zhang, ; Zhe Yi,
| |
Collapse
|
40
|
Shakeri A, Yousefi H, Jarad NA, Kullab S, Al-Mfarej D, Rottman M, Didar TF. Contamination and carryover free handling of complex fluids using lubricant-infused pipette tips. Sci Rep 2022; 12:14486. [PMID: 36008518 PMCID: PMC9411573 DOI: 10.1038/s41598-022-18756-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Cross-contamination of biological samples during handling and preparation, is a major issue in laboratory setups, leading to false-positives or false-negatives. Sample carryover residue in pipette tips contributes greatly to this issue. Most pipette tips on the market are manufactured with hydrophobic polymers that are able to repel high surface tension liquids, yet they lack in performance when low surface tension liquids and viscous fluids are involved. Moreover, hydrophobicity of pipette tips can result in hydrophobic adsorption of biomolecules, causing inaccuracies and loss in precision during pipetting. Here we propose the use of lubricant-infused surface (LIS) technology to achieve omniphobic properties in pipette tips. Using a versatile and simple design, the inner lumen of commercially available pipette tips was coated with a fluorosilane (FS) layer using chemical vapor deposition (CVD). The presence of FS groups on the tips is confirmed by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) tests. After lubrication of the tips through a fluorinated lubricant, the omniphobicity and repellent behaviour of the tips drastically enhanced which are revealed via static and hysteresis contact angle measurements. The repellency of the lubricant-infused pipette tips against physical adsorption is investigated through pipetting a food coloring dye as well as human blood samples and are compared to the untreated tips. The results show significantly less amount carryover residue when the lubricant-infused tips are utilized compared to commercially available ones. We also demonstrate the lubricant-infused tips reduce bacteria contamination of the inner lumen by 3 to 6-log (over 99%, depending on the tip size) after pipetting up and down the bacteria solution.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Hanie Yousefi
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 3L8, Canada
| | - Samer Kullab
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Dalya Al-Mfarej
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Martin Rottman
- Department of Microbiology and Innovative Biomarkers Platform, GH Université Paris Saclay, Hôpital Raymond Poincaré (APHP), Garches, France
- Laboratory of Infection and Inflammation U1173, School of Medicine Simone Veil Versailles Saint-Quentin-en-Yvelines University, Montigny le Bx, France
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 3L8, Canada.
| |
Collapse
|
41
|
Park K, Kim S, Jo Y, Park J, Kim I, Hwang S, Lee Y, Kim SY, Seo J. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Bioact Mater 2022; 25:555-568. [PMID: 37056251 PMCID: PMC10088055 DOI: 10.1016/j.bioactmat.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/28/2022] Open
Abstract
Implantable biomedical devices require an anti-biofouling, mechanically robust, low friction surface for a prolonged lifespan and improved performance. However, there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues. Here, we report a lubricant skin (L-skin), a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling, frictionless, robust, and heat-mediated self-healing properties. We demonstrate biocompatible, mechanically robust, and sterilization-safe L-skin in applications of bioprinting, microfluidics, catheter, and long and narrow medical tubing. We envision that diverse applications of L-skin improve device longevity, as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.
Collapse
Affiliation(s)
- Kijun Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seunghoi Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Yejin Jo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inwoo Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Sooyoung Hwang
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeontaek Lee
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Jungmok Seo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
42
|
Park J, Chi L, Kwon HY, Lee J, Kim S, Hong S. Decaffeinated green tea extract as a nature-derived antibiotic alternative: An application in antibacterial nano-thin coating on medical implants. Food Chem 2022; 383:132399. [DOI: 10.1016/j.foodchem.2022.132399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
43
|
Yang Y, Li M, Zhou B, Jiang X, Zhang D, Luo H. Graphene oxide/gallium nanoderivative as a multifunctional modulator of osteoblastogenesis and osteoclastogenesis for the synergistic therapy of implant-related bone infection. Bioact Mater 2022; 25:594-614. [PMID: 37056253 PMCID: PMC10087081 DOI: 10.1016/j.bioactmat.2022.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, implant-associated bacterial infections account for most hospital-acquired infections in patients suffering from bone fractures or defects. Poor osseointegration and aggravated osteolysis remain great challenges for the success of implants in infectious scenarios. Consequently, developing an effective surface modification strategy for implants is urgently needed. Here, a novel nanoplatform (GO/Ga) consisting of graphene oxide (GO) and gallium nanoparticles (GaNPs) was reported, followed by investigations of its in vitro antibacterial activity and potential bacterium inactivation mechanisms, cytocompatibility and regulatory actions on osteoblastogenesis and osteoclastogenesis. In addition, the possible molecular mechanisms underlying the regulatory effects of GO/Ga nanocomposites on osteoblast differentiation and osteoclast formation were clarified. Moreover, an in vivo infectious microenvironment was established in a rat model of implant-related femoral osteomyelitis to determine the therapeutic efficacy and biosafety of GO/Ga nanocomposites. Our results indicate that GO/Ga nanocomposites with excellent antibacterial potency have evident osteogenic potential and inhibitory effects on osteoclast differentiation by modulating the BMP/Smad, MAPK and NF-κB signaling pathways. The in vivo experiments revealed that the administration of GO/Ga nanocomposites significantly inhibited bone infections, reduced osteolysis, promoted osseointegration located in implant-bone interfaces, and resulted in satisfactory biocompatibility. In summary, this synergistic therapeutic system could accelerate the bone healing process in implant-associated infections and can significantly guide the future surface modification of implants used in bacteria-infected environments.
Collapse
Affiliation(s)
- Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Corresponding author. Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Min Li
- Department of Oncology, Changsha Central Hospital, University of South China, Changsha, 410006, China
| | - Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
- Corresponding author. State Key Laboratory of Powder Metallurgy, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, China.
| |
Collapse
|
44
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
45
|
Singh S, Vashisth P, Meena VK, Kalyanasundaram D. Cellular studies and sustained drug delivery via nanostructures fabricated on 3D printed porous Neovius lattices of Ti6Al4V ELI. Biomed Mater 2022; 17. [PMID: 35447615 DOI: 10.1088/1748-605x/ac6922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Site-specific drug delivery has the potential to reduce drug dosage by 3 to 5-folds. Given the propensity of drugs used in the treatment of tuberculosis and cancers, the increased drug dosages via oral ingestion for several months to a few years of medication is often detrimental to the health of patients. In this study, the sustained delivery of drugs with multiscale structured novel Neovius lattices was achieved. 3D Neovius Open Cell Lattices (NOCL) with porosities of 40, 45, and 50 % were fabricated layer-by-layer on the laser bed fusion process. Micron-sized Ti6Al4V Eli powder was used for 3D printing. The Young's modulus achieved from the novel Neovius lattices were in the range of 1.2 to 1.6 GPa, which is comparable to human cortical bone and helps to improve implant failure due to the stress shielding effect. To provide sustained drug delivery, nanotubes (NTs) were fabricated on NOCLs via high-voltage anodisation. The osteogenic agent icariin was loaded onto the NOCL-NT samples and their release profiles were studied for 7 days. A significantly steady and slow release rate of 0.05% per hour of the drug was achieved using NOCL-NT. In addition, the initial burst release of NOCL-NT was 4 fold lower than that of the open-cell lattices without nanotubes. Cellular studies using MG63 human osteoblast-like cells were performed to determine their biocompatibility and osteogenesis which were analysed using Calcein AM staining and Alamar Blue after 1, 5, and 7 days. 3D printed NOCL samples with NTs and with Icariin loaded NTs demonstrated a significant increase in cell proliferation as compared to as printed NOCL samples.
Collapse
Affiliation(s)
- Sonu Singh
- Indian Institute of Technology Delhi, Centre for Biomedical Engineering, New Delhi, 110016, INDIA
| | - Priya Vashisth
- Mechanical Engineering, Indian Institute of Technology Delhi, II/253, Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, New Delhi, 110016, INDIA
| | - Vijay Kumar Meena
- Council of Scientific & Industrial Research, CSIR, Chandigarh, New Delhi, 110001, INDIA
| | - Dinesh Kalyanasundaram
- Indian Institute of Technology Delhi, Centre for Biomedical Engineering, New Delhi, 110016, INDIA
| |
Collapse
|
46
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
47
|
Zhang Z, Zhou J, Liu C, Zhang J, Shibata Y, Kong N, Corbo C, Harris MB, Tao W. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Ozkan E, Mondal A, Douglass M, Hopkins SP, Garren M, Devine R, Pandey R, Manuel J, Singha P, Warnock J, Handa H. Bioinspired ultra-low fouling coatings on medical devices to prevent device-associated infections and thrombosis. J Colloid Interface Sci 2022; 608:1015-1024. [PMID: 34785450 PMCID: PMC8665144 DOI: 10.1016/j.jcis.2021.09.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023]
Abstract
Addressing thrombosis and biofouling of indwelling medical devices within healthcare institutions is an ongoing problem. In this work, two types of ultra-low fouling surfaces (i.e., superhydrophobic and lubricant-infused slippery surfaces) were fabricated to enhance the biocompatibility of commercial medical grade silicone rubber (SR) tubes that are widely used in clinical care. The superhydrophobic (SH) coatings on the tubing substrates were successfully created by dip-coating in superhydrophobic paints consisting of polydimethylsiloxane (PDMS), perfluorosilane-coated hydrophobic zinc oxide (ZnO) and copper (Cu) nanoparticles (NPs) in tetrahydrofuran (THF). The SH surfaces were converted to lubricant-infused slippery (LIS) surfaces through the infusion of silicone oil. The anti-biofouling properties of the coatings were investigated by adsorption of platelets, whole blood coagulation, and biofilm formation in vitro. The results revealed that the LIS tubes possess superior resistance to clot formation and platelet adhesion than uncoated and SH tubes. In addition, bacterial adhesion was investigated over 7 days in a drip-flow bioreactor, where the SH-ZnO-Cu tube and its slippery counterpart significantly reduced bacterial adhesion and biofilm formation of Escherichia coli relative to control tubes (>5 log10 and >3 log10 reduction, respectively). The coatings also demonstrated good compatibility with fibroblast cells. Therefore, the proposed coatings may find potential applications in high-efficiency on-demand prevention of biofilm and thrombosis formation on medical devices to improve their biocompatibility and reduce the risk of complications from medical devices.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Rashmi Pandey
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - James Manuel
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - James Warnock
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
49
|
Zwicker P, Schmidt T, Hornschuh M, Lode H, Kramer A, Müller G. In vitro response of THP-1 derived macrophages to antimicrobially effective PHMB-coated Ti6Al4V alloy implant material with and without contamination with S. epidermidis and P. aeruginosa. Biomater Res 2022; 26:1. [PMID: 35000621 PMCID: PMC8744236 DOI: 10.1186/s40824-021-00247-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022] Open
Abstract
AIM Periprosthetic joint infections are a devastating complication after arthroplasty, leading to rejection of the prosthesis. The prevention of septic loosening may be possible by an antimicrobial coating of the implant surface. Poly (hexamethylene) biguanide hydrochloride [PHMB] seems to be a suitable antiseptic agent for this purpose since previous studies revealed a low cytotoxicity and a long-lasting microbicidal effect of Ti6Al4V alloy coated with PHMB. To preclude an excessive activation of the immune system, possible inflammatory effects on macrophages upon contact with PHMB-coated surfaces alone and after killing of S. epidermidis and P. aeruginosa are analyzed. METHODS THP-1 monocytes were differentiated to M0 macrophages by phorbol 12-myristate 13-acetate and seeded onto Ti6Al4V surfaces coated with various amounts of PHMB. Next to microscopic immunofluorescence analysis of labeled macrophages after adhesion on the coated surface, measurement of intracellular reactive oxygen species and analysis of cytokine secretion at different time points without and with previous bacterial contamination were conducted. RESULTS No influence on morphology of macrophages and only slight increases in iROS generation were detected. The cytokine secretion pattern depends on the surface treatment procedure and the amount of adsorbed PHMB. The PHMB coating resulted in a high reduction of viable bacteria, resulting in no significant differences in cytokine secretion as reaction to coated surfaces with and without bacterial burden. CONCLUSION Ti6Al4V specimens after alkaline treatment followed by coating with 5-7 μg PHMB and specimens treated with H2O2 before PHMB-coating (4 μg) had the smallest influence on the macrophage phienotype and thus are considered as the surface with the best cytocompatibility to macrophages tested in the present study.
Collapse
Affiliation(s)
- Paula Zwicker
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany.
| | - Thomas Schmidt
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Melanie Hornschuh
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Holger Lode
- Department of Pediatric Hematology and Oncology, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Gerald Müller
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| |
Collapse
|
50
|
Zhang Z, Liu L, Xu D, Zhang R, Shi H, Luan S, Yin J. Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|