1
|
Liu X, Kan Y, Kumar S, Kulikova LF, Davydov V, Agafonov V, Ding F, Bozhevolnyi SI. Off-Normal Polarized Single-Photon Emission with Anisotropic Holography Metasurfaces. NANO LETTERS 2024; 24:13867-13873. [PMID: 39297742 DOI: 10.1021/acs.nanolett.4c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Solid-state quantum emitters (QEs) with arbitrary direction emission and well-defined polarization are critical for scalable single-photon sources and quantum information processing. However, the design strategy for on-chip generation of off-normal photon emission with high-purity polarization characteristics has so far remained elusive. Here, we introduce the anisotropic holography metasurfaces for efficiently manipulating the emission direction and polarization of QE. The proposed method offers a flexible way to realize phase matching in surface plasmon scattering with spatially varying filling factors and provides an efficient route for designing advanced QE-coupled metasurfaces. By nonradiatively coupling nanodiamonds with metasurfaces, we experimentally demonstrate on-chip generation of well-collimated single-photon emission propagating along off-normal directions (i.e., 20° and 30°) featuring a divergence angle lower than 2.5°. The experimental average degree of linear polarization attains up to >0.98, thereby revealing markedly high polarization purity. This study facilitates applications of QEs in the deployment of integrated quantum networks.
Collapse
Affiliation(s)
- Xujing Liu
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Liudmila F Kulikova
- L. F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow 108840, Russia
| | - Valeriy Davydov
- L. F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Moscow 108840, Russia
| | | | - Fei Ding
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
2
|
Bera A, Maiti A, Pal AJ. Electronic States of Single Perovskite Quantum Dots in Weak and Strong Interaction Regimes: Implications in Electrically Pumped Quantum Emitters. NANO LETTERS 2024; 24:11544-11550. [PMID: 39254085 DOI: 10.1021/acs.nanolett.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We investigate the effect of Coulomb interactions on the electronic states of a single perovskite quantum dot (PQD), CsPbBr3, through scanning tunneling microscopy/spectroscopy (STM/S). Under a weak interaction regime, where the time-averaged occupation of electrons in a PQD remains zero, the peaks observed in the differential tunneling conductance (dI/dV) spectrum correspond to the single-particle density of states (DOS) without any electron-electron correlation. However, with a shorter tunnel distance between the STM tip and PQD, additional electrons are trapped in the QD, leading to a strong interaction regime with well-defined electronic fine structures due to the lifting of spin degeneracy in the conduction bands. Interestingly, we observe that the strong Coulomb interaction can modify the spin-orbit coupling (SOC) strength in the PQDs. We have concluded that the energy levels under a strong electron-electron interaction regime are of utmost importance since they will be applicable to electrically pumped PQD-based single photon quantum emitters.
Collapse
Affiliation(s)
- Arpan Bera
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
3
|
Samanta K, Deswal P, Alam S, Bhati M, Ivanov SA, Tretiak S, Ghosh D. Ligand Controls Excited Charge Carrier Dynamics in Metal-Rich CdSe Quantum Dots: Computational Insights. ACS NANO 2024; 18:24941-24952. [PMID: 39189799 DOI: 10.1021/acsnano.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Small metal-rich semiconducting quantum dots (QDs) are promising for solid-state lighting and single-photon emission due to their highly tunable yet narrow emission line widths. Nonetheless, the anionic ligands commonly employed to passivate these QDs exert a substantial influence on the optoelectronic characteristics, primarily owing to strong electron-phonon interactions. In this work, we combine time-domain density functional theory and nonadiabatic molecular dynamics to investigate the excited charge carrier dynamics of Cd28Se17X22 QDs (X = HCOO-, OH-, Cl-, and SH-) at ambient conditions. These chemically distinct but regularly used molecular groups influence the dynamic surface-ligand interfacial interactions in Cd-rich QDs, drastically modifying their vibrational characteristics. The strong electron-phonon coupling leads to substantial transient variations at the band edge states. The strength of these interactions closely depends on the physicochemical characteristics of passivating ligands. Consequently, the ligands largely control the nonradiative recombination rates and emission characteristics in these QDs. Our simulations indicate that Cd28Se17(OH)22 has the fastest nonradiative recombination rate due to the strongest electron-phonon interactions. Conversely, QDs passivated with thiolate or chloride exhibit considerably longer carrier lifetimes and suppressed nonradiative processes. The ligand-controlled electron-phonon interactions further give rise to the broadest and narrowest intrinsic optical line widths for OH and Cl-passivated single QDs, respectively. Obtained computational insights lay the groundwork for designing appropriate passivating ligands on metal-rich QDs, making them suitable for a wide range of applications, from blue LEDs to quantum emitters.
Collapse
Affiliation(s)
- Kushal Samanta
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Deswal
- Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Shayeeque Alam
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Bhati
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei A Ivanov
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Hu S, Huang J, Arul R, Sánchez-Iglesias A, Xiong Y, Liz-Marzán LM, Baumberg JJ. Robust consistent single quantum dot strong coupling in plasmonic nanocavities. Nat Commun 2024; 15:6835. [PMID: 39122720 PMCID: PMC11315915 DOI: 10.1038/s41467-024-51170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Strong coupling between a single quantum emitter and an optical cavity (at rate Ω) accesses fundamental quantum optics and provides an essential building block for photonic quantum technologies. However, the minimum mode volume of conventional dielectric cavities restricts their operation to cryogenic temperature for strong coupling. Here we harness surface self-assembly to make deterministic strong coupling at room temperature using CdSe/CdS quantum dots (QDs) in nanoparticle-on-mirror (NPoM) plasmonic nanocavities. We achieve a fabrication yield of ~70% for single QD strong coupling by optimizing their size and nano-assembly. A clear and reliable Rabi splitting is observed both in the scattering of each nanocavity and their photoluminescence, which are however not equal. Integrating these quantum elements with electrical pumping allows demonstration of strong coupling in their electroluminescence. This advance provides a straightforward way to achieve practical quantum devices at room temperature, and opens up exploration of their nonlinear, electrical, and quantum correlation properties.
Collapse
Affiliation(s)
- Shu Hu
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China.
| | - Junyang Huang
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Rakesh Arul
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Yuling Xiong
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jeremy J Baumberg
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Lei H, Lv L, Zhou X, Liu S, Zhu M, Wang H, Qin H, Fang Q, Peng X. Weakly Confined Semiconductor Nanocrystals Excel in Photochemical and Optoelectronic Properties: Evidence from Single-Dot Studies. J Am Chem Soc 2024; 146:21948-21959. [PMID: 39075033 DOI: 10.1021/jacs.4c06993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Single-molecule spectroscopy offers state-resolved measurements on charge-transfer reactions of single semiconductor nanocrystals, leading to the discovery of up to six single-charge transfer reactions with seven transient states for single CdSe/CdS core/shell nanocrystals with water (or oxygen) as the hole (or electron) acceptors. Kinetic rates of three photoinduced single-hole transfer reactions decrease significantly upon increasing the number of excess electrons in a nanocrystal, mainly due to efficient Auger nonradiative recombination of the charged single excitons. Conversely, the kinetic rates of three single-electron transfer reactions of an unexcited nanocrystal increase proportionally to the number of excess electrons in it. Results here reveal that charge-transfer reactions of nanocrystals, at the center of nearly all their functions, could only be deciphered at a state-resolved level on a single nanocrystal. Size-dependent studies validate the weakly confined semiconductor nanocrystals, instead of strongly confined ones (quantum dots), as optimal candidates for photochemical and optoelectronic applications.
Collapse
Affiliation(s)
- Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liulin Lv
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xionglin Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Meiyi Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Huifeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Chuang YT, Lin TY, Tan GH, Jan PE, Lin HC, Chen HM, Hsiao KY, Chen BH, Lu CH, Lee CH, Pao CW, Yang SD, Lu MY, Lin HW. Highly Efficient MAPbI 3-Based Quantum Dots Exhibiting Unusual Nonblinking Single Photon Emission at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308676. [PMID: 38072780 DOI: 10.1002/smll.202308676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Indexed: 05/03/2024]
Abstract
Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3-based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10-12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.
Collapse
Affiliation(s)
- Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Yu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-En Jan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Cheng Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-Ming Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chi-Hsuan Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
7
|
Jun S, Kim J, Choi M, Kim BS, Park J, Kim D, Shin B, Cho YH. Ultrafast and Bright Quantum Emitters from the Cavity-Coupled Single Perovskite Nanocrystals. ACS NANO 2024; 18:1396-1403. [PMID: 37943020 PMCID: PMC10795470 DOI: 10.1021/acsnano.3c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Perovskite nanocrystals (NCs) have attracted increasing interest in the realization of single-photon emitters owing to their ease of chemical synthesis, wide spectral tunability, fast recombination rate constant, scalability, and high quantum yield. However, the integration of a single perovskite NC into a photonic structure has yet to be accomplished. In this work, the integration of a highly stable individual zwitterionic ligand-based CsPbBr3 perovskite NC with a circular Bragg grating (CBG) is successfully demonstrated. The far-field radiation pattern of the NC inside the CBG exhibits high directionality toward a low azimuthal angle, which is consistent with the simulation results. A 5.4-fold enhancement in brightness is observed due to an increase in collection efficiency. Moreover, a 1.95-fold increase in the recombination rate constant is achieved. This study offers ultrafast (<100 ps) single-photon emission and an improved brightness of perovskite NCs, which are critical factors for practical quantum optical applications.
Collapse
Affiliation(s)
- Seongmoon Jun
- Department
of Physics and KI for the NanoCentury, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joonyun Kim
- Department
of Material Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minho Choi
- Department
of Physics and KI for the NanoCentury, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byung Su Kim
- Department
of Physics and KI for the NanoCentury, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinu Park
- Department
of Material Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daehan Kim
- Department
of Material Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byungha Shin
- Department
of Material Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong-Hoon Cho
- Department
of Physics and KI for the NanoCentury, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Rahman IKMR, Uddin SZ, Yeh M, Higashitarumizu N, Kim J, Li Q, Lee H, Lee K, Kim H, Park C, Lim J, Ager JW, Javey A. Gate Controlled Excitonic Emission in Quantum Dot Thin Films. NANO LETTERS 2023; 23:10164-10170. [PMID: 37934978 DOI: 10.1021/acs.nanolett.3c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Formation of charged trions is detrimental to the luminescence quantum efficiency of colloidal quantum dot (QD) thin films as they predominantly undergo nonradiative recombination. In this regard, control of charged trion formation is of interest for both fundamental characterization of the quasi-particles and performance optimization. Using CdSe/CdS QDs as a prototypical material system, here we demonstrate a metal-oxide-semiconductor capacitor based on QD thin films for studying the background charge effect on the luminescence efficiency and lifetime. The concentration ratio of the charged and neutral quasiparticles in the QDs is reversibly controlled by applying a gate voltage, while simultaneous steady-state and time-resolved photoluminescence measurements are performed. Notably, the photoluminescence intensity is modulated by up to 2 orders of magnitude with a corresponding change in the effective lifetime. In addition, chip-scale modulation of brightness is demonstrated, where the photoluminescence is effectively turned on and off by the gate, highlighting potential applications in voltage-controlled electrochromics.
Collapse
Affiliation(s)
- I K M Reaz Rahman
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shiekh Zia Uddin
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew Yeh
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jongchan Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Quanwei Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Hyeonjun Lee
- Department of Energy Science and Centre for Artificial Atoms, Sungkyunkwan University, Natural Sciences Campus, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Kyuho Lee
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - HoYeon Kim
- Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cheolmin Park
- Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaehoon Lim
- Department of Energy Science and Centre for Artificial Atoms, Sungkyunkwan University, Natural Sciences Campus, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Joel W Ager
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Jia S, Hu M, Gu M, Ma J, Li D, Xiang G, Liu P, Wang K, Servati P, Ge WK, Sun XW. Optimizing ZnO-Quantum Dot Interface with Thiol as Ligand Modification for High-Performance Quantum Dot Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307298. [PMID: 37972284 DOI: 10.1002/smll.202307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Indexed: 11/19/2023]
Abstract
As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2 . Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.
Collapse
Affiliation(s)
- Siqi Jia
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046, China
- Peng Cheng Laboratory, Shenzhen, 518038, China
| | - Menglei Hu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mi Gu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingrui Ma
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Depeng Li
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guohong Xiang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pai Liu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Wang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Kun Ge
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Komisar D, Kumar S, Kan Y, Meng C, Kulikova LF, Davydov VA, Agafonov VN, Bozhevolnyi SI. Multiple channelling single-photon emission with scattering holography designed metasurfaces. Nat Commun 2023; 14:6253. [PMID: 37803006 PMCID: PMC10558519 DOI: 10.1038/s41467-023-42046-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Channelling single-photon emission in multiple well-defined directions and simultaneously controlling its polarization characteristics is highly desirable for numerous quantum technology applications. We show that this can be achieved by using quantum emitters (QEs) nonradiatively coupled to surface plasmon polaritons (SPPs), which are scattered into outgoing free-propagating waves by appropriately designed metasurfaces. The QE-coupled metasurface design is based on the scattering holography approach with radially diverging SPPs as reference waves. Using holographic metasurfaces fabricated around nanodiamonds with single Ge vacancy centres, we experimentally demonstrate on-chip integrated efficient generation of two well-collimated single-photon beams propagating along different 15° off-normal directions with orthogonal linear polarizations.
Collapse
Affiliation(s)
- Danylo Komisar
- Centre for Nano Optics, University of Southern Denmark, DK-5230, Odense M, Denmark.
| | - Shailesh Kumar
- Centre for Nano Optics, University of Southern Denmark, DK-5230, Odense M, Denmark.
| | - Yinhui Kan
- Centre for Nano Optics, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Chao Meng
- Centre for Nano Optics, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Liudmila F Kulikova
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 142190, Russia
| | - Valery A Davydov
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 142190, Russia
| | | | - Sergey I Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, DK-5230, Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, DK-5230, Odense M, Denmark
| |
Collapse
|
11
|
Steenbock T, Dittmann T, Kumar S, Bester G. Ligand-Induced Symmetry Breaking as the Origin of Multiexponential Photoluminescence Decay in CdSe Quantum Dots. J Phys Chem Lett 2023; 14:8859-8866. [PMID: 37756012 DOI: 10.1021/acs.jpclett.3c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The bright photoluminescence (PL) of colloidal CdSe quantum dots (QDs) makes them interesting for optical applications. For most of them, well-defined PL properties, dominated by a single excitonic state, are required. However, in many PL experiments with QD ensembles, multiexponential decay was observed. On the basis of spin-orbit density functional theory and screened configuration interaction calculations, we show that highly symmetric and defect-free CdSe QDs with diameters of 1.7 and 2.0 nm possess a multiexponential low-temperature PL at the single-dot level. This is a consequence of ligand-induced symmetry breaking with a subsequent rearrangement of the lowest eight excitonic states in two sets of four singly degenerate excitonic states. For each set, the lowest state is dark and the other three are bright. We find that the splitting between the sets can be modified by the coverage and choice of the ligand, which facilitates the engineering of the PL properties of CdSe QDs.
Collapse
Affiliation(s)
- Torben Steenbock
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Tobias Dittmann
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Surender Kumar
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Gabriel Bester
- Department of Chemistry and Physics, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
12
|
Barelli M, Vidal C, Fiorito S, Myslovska A, Cielecki D, Aglieri V, Moreels I, Sapienza R, Di Stasio F. Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO 2 Nanocrystals. ACS PHOTONICS 2023; 10:1662-1670. [PMID: 37215316 PMCID: PMC10197167 DOI: 10.1021/acsphotonics.3c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 05/24/2023]
Abstract
The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.
Collapse
Affiliation(s)
- Matteo Barelli
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Cynthia Vidal
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Sergio Fiorito
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Alina Myslovska
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Dimitrie Cielecki
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Vincenzo Aglieri
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Iwan Moreels
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, U.K
| | - Francesco Di Stasio
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
13
|
Morozov S, Vezzoli S, Myslovska A, Di Giacomo A, Mortensen NA, Moreels I, Sapienza R. Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature. NANOSCALE 2023; 15:1645-1651. [PMID: 36597874 DOI: 10.1039/d2nr04744f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Giant shell CdSe/CdS quantum dots are bright and flexible emitters, with near-unity quantum yield and suppressed blinking, but their single photon purity is reduced by efficient multiexcitonic emission. We report the observation, at the single dot level, of a large blueshift of the photoluminescence biexciton spectrum (24 ± 5 nm over a sample of 32 dots) for pure-phase wurtzite quantum dots. By spectral filtering, we demonstrate a 2.3 times reduction of the biexciton quantum yield relative to the exciton emission, while preserving as much as 60% of the exciton single photon emission, thus improving the purity from g2(0) = 0.07 ± 0.01 to g2(0) = 0.03 ± 0.01. At a larger pump fluency, spectral purification is even more effective with up to a 6.6 times reduction in g2(0), which is due to the suppression of higher order excitons and shell states experiencing even larger blueshifts. Our results indicate the potential for the synthesis of engineered giant shell quantum dots, with further increased biexciton blueshifts, for quantum optical applications requiring both high purity and brightness.
Collapse
Affiliation(s)
- Sergii Morozov
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Stefano Vezzoli
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, UK.
| | - Alina Myslovska
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - Alessio Di Giacomo
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - N Asger Mortensen
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, UK.
| |
Collapse
|
14
|
Nguyen HA, Sharp D, Fröch JE, Cai YY, Wu S, Monahan M, Munley C, Manna A, Majumdar A, Kagan CR, Cossairt BM. Deterministic Quantum Light Arrays from Giant Silica-Shelled Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4294-4302. [PMID: 36507852 DOI: 10.1021/acsami.2c18475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal quantum dots (QDs) are promising candidates for single-photon sources with applications in photonic quantum information technologies. Developing practical photonic quantum devices with colloidal materials, however, requires scalable deterministic placement of stable single QD emitters. In this work, we describe a method to exploit QD size to facilitate deterministic positioning of single QDs into large arrays while maintaining their photostability and single-photon emission properties. CdSe/CdS core/shell QDs were encapsulated in silica to both increase their physical size without perturbing their quantum-confined emission and enhance their photostability. These giant QDs were then precisely positioned into ordered arrays using template-assisted self-assembly with a 75% yield for single QDs. We show that the QDs before and after assembly exhibit antibunching behavior at room temperature and their optical properties are retained after an extended period of time. Together, this bottom-up synthetic approach via silica shelling and the robust template-assisted self-assembly offer a unique strategy to produce scalable quantum photonics platforms using colloidal QDs as single-photon emitters.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - David Sharp
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Johannes E Fröch
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shenwei Wu
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Arnab Manna
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| |
Collapse
|
15
|
Ashokan A, Han J, Hutchison JA, Mulvaney P. Spectroelectrochemistry of CdSe/Cd xZn 1-xS Nanoplatelets. ACS NANO 2023; 17:1247-1254. [PMID: 36629376 DOI: 10.1021/acsnano.2c09298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report an unexpected enhancement of photoluminescence (PL) in CdSe-based core/shell nanoplatelets (NPLs) upon electrochemical hole injection. Moderate hole doping densities induce an enhancement of more than 50% in PL intensity. This is accompanied by a narrowing and blue-shift of the PL spectrum. Simultaneous, time-resolved PL experiments reveal a slower luminescence decay. Such hole-induced PL brightening in NPLs is in stark contrast to the usual observation of PL quenching of CdSe-based quantum dots following hole injection. We propose that hole injection removes surface traps responsible for the formation of negative trions, thereby blocking nonradiative Auger processes. Continuous photoexcitation causes the enhanced PL intensity to decrease back to its initial level, indicating that photocharging is a key step leading to loss of PL luminescence during normal aging. Modulating the potential can be used to reversibly enhance or quench the PL, which enables electro-optical switching.
Collapse
Affiliation(s)
- Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria3010, Australia
| | - Jiho Han
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria3010, Australia
| | - James A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria3010, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
16
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Tang Y, Qin Q, Yang H, Feng S, Zhang C, Zhang J, Xiao M, Wang X. Electrical control of biexciton Auger recombination in single CdSe/CdS nanocrystals. NANOSCALE 2022; 14:7674-7681. [PMID: 35548946 DOI: 10.1039/d2nr00305h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Auger recombination effect is strongly enhanced in semiconductor nanocrystals due to the quantum confinement, and various strategies in chemical synthesis have been employed so far to suppress this nonradiative decay pathway of multiple excitons. Here we apply external electric fields on single CdSe/CdS giant nanocrystals at room temperature, showing that the biexciton Auger and single-exciton radiative rates can be averagely decreased by ∼40 and ∼10%, respectively. In addition to a reduced overlap of the electron-hole wavefunctions, the large decrease of biexciton Auger rate could be contributed by the enhanced exciton-exciton repulsion, while the electron-hole exchange interaction might be weakened to cause the relatively small decrease of the single-exciton radiative rate. The above findings have thus proved that the external electric field can serve as a post-synthetic knob to tune the exciton recombination dynamics in semiconductor nanocrystals towards their efficient applications in various optoelectronic devices.
Collapse
Affiliation(s)
- Ying Tang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Qilin Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Hongyu Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Shengnan Feng
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Jiayu Zhang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat Commun 2021; 12:6063. [PMID: 34663795 PMCID: PMC8523570 DOI: 10.1038/s41467-021-26262-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Single photon emitters in atomically-thin semiconductors can be deterministically positioned using strain induced by underlying nano-structures. Here, we couple monolayer WSe2 to high-refractive-index gallium phosphide dielectric nano-antennas providing both optical enhancement and monolayer deformation. For single photon emitters formed on such nano-antennas, we find very low (femto-Joule) saturation pulse energies and up to 104 times brighter photoluminescence than in WSe2 placed on low-refractive-index SiO2 pillars. We show that the key to these observations is the increase on average by a factor of 5 of the quantum efficiency of the emitters coupled to the nano-antennas. This further allows us to gain new insights into their photoluminescence dynamics, revealing the roles of the dark exciton reservoir and Auger processes. We also find that the coherence time of such emitters is limited by intrinsic dephasing processes. Our work establishes dielectric nano-antennas as a platform for high-efficiency quantum light generation in monolayer semiconductors. Single photon emitters (SPEs) in 2D semiconductors can be deterministically positioned using localized strain induced by underlying nanostructures. Here, the authors show SPE coupling in WSe2 to GaP dielectric nanoantennas, substantially increasing quantum efficiency and photoluminescence brightness.
Collapse
|
20
|
Fedin I, Goryca M, Liu D, Tretiak S, Klimov VI, Crooker SA. Enhanced Emission from Bright Excitons in Asymmetrically Strained Colloidal CdSe/Cd xZn 1-xSe Quantum Dots. ACS NANO 2021; 15:14444-14452. [PMID: 34473467 DOI: 10.1021/acsnano.1c03864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal CdSe quantum dots (QDs) designed with a high degree of asymmetric internal strain have recently been shown to host a number of desirable optical properties including subthermal room-temperature line widths, suppressed spectral diffusion, and high photoluminescence (PL) quantum yields. It remains an open question, however, whether they are well-suited for applications requiring emission of identical single photons. Here we measure the low-temperature PL dynamics and the polarization-resolved fluorescence line narrowing spectra from ensembles of these strained QDs. Our spectroscopy reveals the radiative recombination rates of bright and dark excitons, the relaxation rate between the two, and the energy spectra of the quantized acoustic phonons in the QDs that can contribute to relaxation processes. In comparison to conventional colloidal CdSe/ZnS core/shell QDs, we find that in asymmetrically strained CdSe QDs over six times more light is emitted directly by the bright exciton. These results are therefore encouraging for the prospects of chemically synthesized colloidal QDs as emitters of single indistinguishable photons.
Collapse
Affiliation(s)
- Igor Fedin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mateusz Goryca
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dan Liu
- Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott A Crooker
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
21
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|