1
|
Quintes T, Weber S, Richert S. Teacups, a Python Package for the Simulation of Time-Resolved EPR Spectra of Spin-Polarized Multi-Spin Systems. J Phys Chem A 2025; 129:3375-3388. [PMID: 40152748 PMCID: PMC11995384 DOI: 10.1021/acs.jpca.5c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Spin-polarized magnetic systems, generated by the interaction of photoactive molecules with light, play a key role in a wide range of scientific applications. Representative examples are OLEDs, organic photovoltaics, and singlet fission. Further, they are important intermediates in certain biological processes including photosynthesis and, possibly, avian magnetoreception. Transient continuous-wave electron paramagnetic resonance (trEPR) spectroscopy is a powerful tool to reveal the temporal evolution of nonequilibrium spin states, which contains valuable information on any photoinduced dynamic processes occurring in these systems. For the analysis of the recorded trEPR data, simulations are essential. While the simulation of static trEPR spectra is supported well by tools like EasySpin, the simulation of time-resolved trEPR data is less developed. Here, we introduce teacups, a new freely available and well-documented Python-based routine for the simulation of the temporal evolution of trEPR spectra. The internal dynamics of different spin-polarized systems can be analyzed, thereby enhancing our mechanistic understanding. In this manuscript, we explain the theoretical background and provide a description of the features and setup of teacups. Further, a step-by-step example for data analysis is provided.
Collapse
Affiliation(s)
- Theresia Quintes
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
3
|
Majewska M, Hanić M, Bartölke R, Schmidt J, Bożek J, Gerhards L, Mouritsen H, Koch KW, Solov’yov IA, Brand I. European Robin Cryptochrome-4a Associates with Lipid Bilayers in an Ordered Manner, Fulfilling a Molecular-Level Condition for Magnetoreception. ACS Chem Biol 2025; 20:592-606. [PMID: 39982451 PMCID: PMC11934094 DOI: 10.1021/acschembio.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Since the middle of the 20th century, long-distance avian migration has been known to rely partly on geomagnetic field. However, the underlying sensory mechanism is still not fully understood. Cryptochrome-4a (ErCry4a), found in European robin (Erithacus rubecula), a night-migratory songbird, has been suggested to be a magnetic sensory molecule. It is sensitive to external magnetic fields via the so-called radical-pair mechanism. ErCry4a is primarily located in the outer segments of the double-cone photoreceptor cells in the eye, which contain stacked and highly ordered membranes that could facilitate the anisotropic attachment of ErCry4a needed for magnetic compass sensing. Here, we investigate possible interactions of ErCry4a with a model membrane that mimics the lipid composition of outer segments of vertebrate photoreceptor cells using experimental and computational approaches. Experimental results show that the attachment of ErCry4a to the membrane could be controlled by the physical state of lipid molecules (average area per lipid) in the outer leaflet of the lipid bilayer. Furthermore, polarization modulation infrared reflection absorption spectroscopy allowed us to determine the conformation, motional freedom, and average orientation of the α-helices in ErCry4a in a membrane-associated state. Atomistic molecular dynamics studies supported the experimental results. A ∼ 1000 kcal mol-1 decrease in the interaction energy as a result of ErCry4a membrane binding was determined compared to cases where no protein binding to the membrane occurred. At the molecular level, the binding seems to involve negatively charged carboxylate groups of the phosphoserine lipids and the C-terminal residues of ErCry4a. Our study reveals a potential direct interaction of ErCry4a with the lipid membrane and discusses how this binding could be an essential step for ErCry4a to propagate a magnetic signal further and thus fulfill a role as a magnetoreceptor.
Collapse
Affiliation(s)
- Marta Majewska
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Maja Hanić
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Rabea Bartölke
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
| | - Jessica Schmidt
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
| | - Justyna Bożek
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Luca Gerhards
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Henrik Mouritsen
- Animal
Navigation, Institute of Biology and Environmental Sciences, School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg D-26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| | - Karl-Wilhelm Koch
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
- Division
of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
- Institute
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Izabella Brand
- Institute
of Chemistry, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Center for Neurosensory Sciences, Carl von
Ossietzky Universität Oldenburg, Oldenburg D-26111, Germany
| |
Collapse
|
4
|
Oh IT, Kim SC, Kim Y, Kim YH, Chae KS. Magnetic sense-dependent probabilistic decision-making in humans. Front Neurosci 2025; 19:1497021. [PMID: 40125477 PMCID: PMC11925921 DOI: 10.3389/fnins.2025.1497021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Even though it is not well characterized how much humans can sense the geomagnetic field (GMF), numerous magnetosensitive animals can detect GMF broadly as a sensory cue, when a spatial decision-making is needed for orientation or migration. In an article of recent series of studies, we showed that the empirical probabilities of stone selections in Go game were significantly different from the theoretical probability. In this study, we assessed the implication of the GMF in modulating subconscious non-spatial decision-making in human subjects and the underlying mechanism with exploiting the zero-sum binary stone selection of Go game as a proof-of-principle. In a laboratory setting, the experimental probability in a decision-making was significantly hampered by the cancelation of the ambient GMF. Moreover, the attenuation of decision-making was confirmed by a specific range of magnetic resonance radiofrequency. In numerous stone selection games among amateur Go players in the artificial magnetic field setting, the analyses of stone selection rate by trials and steps for decision-making pinpointed the subconscious stone selection as a primary modulating target in the binary decision-making. Our findings may provide unique insights into the impact of sensing GMF in probabilistic decision-making in which theoretical probability is manifested into empirical probability through a magnetic field resonance-dependent mechanism.
Collapse
Affiliation(s)
- In-Taek Oh
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Chan Kim
- Department of Electrical and Electronic Engineering, Research Center for Applied Human Sciences, Hankyong National University, Anseong, Republic of Korea
| | - Yongkuk Kim
- Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Hwan Kim
- Neuroscience Program, School of Allied Health Sciences, Boise State University, Boise, ID, United States
| | - Kwon-Seok Chae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Bertolesi GE, Debnath N, Heshami N, Bui R, Zadeh‐Haghighi H, Simon C, McFarlane S. Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation. Pigment Cell Melanoma Res 2025; 38:e13220. [PMID: 39825699 PMCID: PMC11742648 DOI: 10.1111/pcmr.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells. We studied light/dark cycles and melatonin coordination in melanin synthesis and cell proliferation of Xenopus laevis melanophores. In vivo, tadpole pigmentation shows robust circadian regulation mainly hormone-driven, in that isolated melanophores respond strongly to melatonin but only slightly to light. Melanophore proliferation is faster in the dark and slower with melatonin as compared to a 12/12 light/dark cycle. Expression of circadian core genes (clock, bmal1, per1, per2, per3, cry1, cry2, and cry4) in melatonin-treated cells during the light phase mimics dark phase expression. Overexpression of individual Crys did not affect melanization or cell proliferation, likely due to their cooperative actions. Melanin synthesis was inhibited by circadian cycle deregulation through (a) pharmacological inhibition of Cry1 and Cry2 degradation with KL001, (b) continuous light or dark conditions, and (c) melatonin treatment. Our findings suggest that circadian cycle regulation, rather than proliferative capacity, alters melanization of melanophores.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Nilakshi Debnath
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Neda Heshami
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Ryan Bui
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Hadi Zadeh‐Haghighi
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Christoph Simon
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physics and Astronomy, Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
6
|
Arai S, Kobayashi R, Adachi M, Kimura K, Masai H. Possibility of two-dimensional ordering of cryptochrome 4a from European robin. Biochem Biophys Res Commun 2024; 737:150513. [PMID: 39126860 DOI: 10.1016/j.bbrc.2024.150513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Cryptochrome (Cry) in some species could act as a quantum senser to detect the inclination angle of geomagnetic field, the function of which attributes the magnetic sensitivity of spins of unpaired electrons in radical pair (RP) in CRY generated by blue light irradiation. However, the effect of blue light on the structure and molecular behavior of Cry has not been well investigated. We conducted the size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS) analyses to inspect the molecular structure and behavior of cryptochrome 4a (ErCry4a) from European robin, a representative magnetosensory animal. The results indicated that ErCry4a could form flat-shape oligomers. Moreover, blue light irradiation induced the contraction of the ErCry4a molecule at the monomer scale and simultaneously accelerated the two-dimensional oligomerization of ErCry4a. This oligomerization may enhance the regularity of the two-dimensional arrangement of ErCry4a molecules, providing a positive effect for detecting the inclination angle.
Collapse
Affiliation(s)
- Shigeki Arai
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.
| | - Ryoma Kobayashi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Koji Kimura
- Graduate School of Engineering Global College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hirokazu Masai
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
7
|
Deser A, Kuhne J, Leymann HAM. Numerical and analytical inspection of magnetic field effects in the radical pair mechanism by a simplified rate equation model. Bioelectromagnetics 2024; 45:399-405. [PMID: 39497324 DOI: 10.1002/bem.22528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024]
Abstract
The radical pair mechanism is by now the most prominent candidate for a biologically relevant quantum effect of magnetic fields. Recently, N. Ikeya and J. R. Woodward demonstrated a magnetic field effect for sub-extremely low frequency (ELF) fields in the mT range by investigating the autofluorescence spectrum of flavin adenine dinucleotide in living HeLa cells. We apply a simple rate equation model to show numerically and analytically that magnetic field effects can be expected to exist in the whole ELF range.
Collapse
Affiliation(s)
- Andreas Deser
- Federal Office for Radiation Protection, Competence Center for Electromagnetic Fields, Cottbus, Germany
| | - Jens Kuhne
- Competence Center for Electromagnetic Fields, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Heinrich A M Leymann
- Federal Office for Radiation Protection, Competence Center for Electromagnetic Fields, Cottbus, Germany
| |
Collapse
|
8
|
Ramsay JL, Schuhmann F, Solov’yov IA, Kattnig DR. Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics. Comput Struct Biotechnol J 2024; 26:58-69. [PMID: 39802491 PMCID: PMC11725172 DOI: 10.1016/j.csbj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate. This signal transduction pathway has been the subject of previous all-atom molecular dynamics (MD) simulations, but insights were limited to short timescales and equilibrium structures. To address this, we developed a non-equilibrium coarse-grained MD simulation approach, exploring cryptochrome's photo-reduction over 20 replicates of 20 µs each. Our results revealed significant structural changes across the protein, with an overall time constant of 3 µs. The C-terminal (CT) region responded on a timescale of 4.7 µs, followed by the EEE-motif, while the phosphate binding loop (PBL) showed slower dynamics (9 µs). Network analysis highlighted direct pathways connecting the tryptophan tetrad to the CT, and distant pathways involving the EEE and PBL regions. The CT-dynamics are significantly impacted by a rearrangement of tryptophan residues in the central electron transfer chain. Our findings underscore the importance of considering longer timescales when studying cryptochrome magnetoreception and highlight the potential of non-equilibrium coarse-grained MD simulations as a powerful tool to unravel protein photoactivation reactions.
Collapse
Affiliation(s)
- Jessica L. Ramsay
- Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK
- Living Systems Institute, University of Exeter, Stocker Rd., Exeter EX4 4QD, UK
| | - Fabian Schuhmann
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9–11, Oldenburg 26129, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26129, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114–118, Oldenburg 26129, Germany
| | - Daniel R. Kattnig
- Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK
- Living Systems Institute, University of Exeter, Stocker Rd., Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Yee C, Bartölke R, Görtemaker K, Schmidt J, Leberecht B, Mouritsen H, Koch KW. Comparison of retinol binding protein 1 with cone specific G-protein as putative effector molecules in cryptochrome signalling. Sci Rep 2024; 14:28326. [PMID: 39550406 PMCID: PMC11569197 DOI: 10.1038/s41598-024-79699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Vision and magnetoreception in navigating songbirds are strongly connected as recent findings link a light dependent radical-pair mechanism in cryptochrome proteins to signalling pathways in cone photoreceptor cells. A previous yeast-two-hybrid screening approach identified six putative candidate proteins showing binding to cryptochrome type 4a. So far, only the interaction of the cone specific G-protein transducin α-subunit was investigated in more detail. In the present study, we compare the binding features of the G-protein α-subunit with those of another candidate from the yeast-two-hybrid screen, cellular retinol binding protein. Purified recombinant European robin retinol binding protein bound retinol with high affinity, displaying an EC50 of less than 5 nM, thereby demonstrating its functional state. We applied surface plasmon resonance and a Förster resonance transfer analysis to test for interactions between retinol binding protein and cryptochrome 4a. In the absence of retinol, we observed no robust binding events, which contrasts the strong interaction we observed between cryptochrome 4a and the G-protein α-subunit. We conclude that retinol binding protein is unlikely to be involved in the primary magnetosensory signalling cascade.
Collapse
Affiliation(s)
- Chad Yee
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Rabea Bartölke
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Katharina Görtemaker
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Jessica Schmidt
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Bo Leberecht
- Animal Biodiversity and Evolutionary Biology, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
10
|
Shi H, Tang R, Wang Q, Song T. Performance Evaluation of a Bioinspired Geomagnetic Sensor and Its Application for Geomagnetic Navigation in Simulated Environment. SENSORS (BASEL, SWITZERLAND) 2024; 24:6477. [PMID: 39409517 PMCID: PMC11479290 DOI: 10.3390/s24196477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
For geomagnetic navigation technology, taking inspiration from nature and leveraging the principle of animals' utilization of the geomagnetic field for long-distance navigation, and employing biomimetic technology to develop higher-precision geomagnetic sensors and more advanced navigation strategies, has emerged as a new trend. Based on the two widely acknowledged biological magnetic induction mechanisms, we have designed a bioinspired weak magnetic vector (BWMV) sensor and integrated it with neural networks to achieve geomagnetic matching navigation. In this paper, we assess the performance of the BWMV sensor through finite element model simulation. The result validates its high measurement accuracy and outstanding adaptability to installation errors with the assistance of specially trained neural networks. Furthermore, we have enhanced the bioinspired geomagnetic navigation algorithm and proposed a more advanced search strategy to adapt to navigation under the condition of no prior geomagnetic map. A simulated geomagnetic navigation platform was constructed based on the finite element model to simulate the navigation of the BWMV sensor in geomagnetic environments. The simulated navigation experiment verified that the proposed search strategy applied to the BWMV sensor can achieve high-precision navigation. This study proposes a novel approach for the research of bioinspired geomagnetic navigation technology, which holds great development prospects.
Collapse
Affiliation(s)
- Hongkai Shi
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Ruiqi Tang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
11
|
Oka Y, Inoue K. Time-resolved EPR observation of blue-light-induced radical ion pairs in a flavin-Trp dyad. Phys Chem Chem Phys 2024; 26:16444-16448. [PMID: 38808575 DOI: 10.1039/d3cp06219h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A dyad of flavin and Trp bridged by a p-phenylamide linker was synthesized as an artificial model system to investigate molecular-based magnetic-field sensors relevant to blue-light photoreceptor proteins. The results demonstrated that intramolecular electron transfer generates a radical pair, only the triplet-born one of which has a microsecond lifetime at room temperature.
Collapse
Affiliation(s)
- Yoshimi Oka
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Research Promotion Institute, Oita University, 700 Dannoharu, Oita 870-1192, Japan
- Graduate School of Advanced Science and Engineering, Chirality Research Center (CResCent), and International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan.
| | - Katsuya Inoue
- Graduate School of Advanced Science and Engineering, Chirality Research Center (CResCent), and International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan.
| |
Collapse
|
12
|
Kretschmer K, Frederiksen A, Reinholdt P, Kongsted J, Solov’yov IA. Understanding the Red Shift in the Absorption Spectrum of the FAD Cofactor in ClCry4 Protein. J Phys Chem B 2024; 128:5320-5326. [PMID: 38805723 PMCID: PMC11163422 DOI: 10.1021/acs.jpcb.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH•) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from Columbia livia (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH• state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH• state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.
Collapse
Affiliation(s)
- Katarina Kretschmer
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Anders Frederiksen
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK 5230 Odense, Denmark
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory
Science, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky
Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Luo J. Sensitivity enhancement of radical-pair magnetoreceptors as a result of spin decoherence. J Chem Phys 2024; 160:074306. [PMID: 38380753 DOI: 10.1063/5.0182172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Electron spin relaxation is, on many occasions, considered an elephant in the room that challenges the idea of a radical-pair compass, a leading hypothesis for the navigation of migratory avian species. It has been widely recognized that an effective radical-pair magnetoreceptor requires a relaxation time that is long enough for an external magnetic field as weak as the geomagnetic field to significantly modify the coherent spin dynamics. However, previous studies proposed that certain spin relaxation, far quicker than the radical recombination reactions, could enhance, rather than degrade, the directional sensitivity of a radical-pair magnetoreceptor. Here, I investigate relaxation effects on the singlet-triplet interconversion of a model radical pair and find that the enhancement effect originates from population relaxation over a period of several microseconds as a result of efficient spin decoherence. Insights into the truncated spin systems shed light on the physics behind them. I further investigate the possibilities of such enhancement in cryptochrome-based magnetoreception, in which electron hopping takes place between tryptophan residues.
Collapse
Affiliation(s)
- Jiate Luo
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
15
|
Langebrake C, Manthey G, Frederiksen A, Lugo Ramos JS, Dutheil JY, Chetverikova R, Solov'yov IA, Mouritsen H, Liedvogel M. Adaptive evolution and loss of a putative magnetoreceptor in passerines. Proc Biol Sci 2024; 291:20232308. [PMID: 38320616 PMCID: PMC10846946 DOI: 10.1098/rspb.2023.2308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Migratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity in vitro compared to Cry4a from resident species. We investigate Cry and their potential involvement in magnetoreception in a phylogenetic framework, integrating molecular evolutionary analyses with protein dynamics modelling. Our analysis is based on 363 bird genomes and identifies different selection regimes in passerines. We show that Cry4a is characterized by strong positive selection and high variability, typical characteristics of sensor proteins. We identify key sites that are likely to have facilitated the evolution of an optimized sensory protein for night-time orientation in songbirds. Additionally, we show that Cry4 was lost in hummingbirds, parrots and Tyranni (Suboscines), and thus identified a gene deletion, which might facilitate testing the function of Cry4a in birds. In contrast, the other avian Cry (Cry1 and Cry2) were highly conserved across all species, indicating basal, non-sensory functions. Our results support a specialization or functional differentiation of Cry4 in songbirds which could be magnetosensation.
Collapse
Affiliation(s)
- Corinna Langebrake
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
| | - Georg Manthey
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Anders Frederiksen
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Juan S. Lugo Ramos
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
- The Francis Crick Institute, London NW1 1AT, UK
| | - Julien Y. Dutheil
- Research Group Molecular Systems Evolution, MPI Evolutionary Biology, 24306 Plön, Germany
| | - Raisa Chetverikova
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Ilia A. Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Henrik Mouritsen
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| | - Miriam Liedvogel
- Institute of Avian Research ‘Vogelwarte Helgoland’, 26386 Wilhelmshaven, Germany
- MPRG Behavioural Genomics, MPI Evolutionary Biology, 24306 Plön, Germany
- Biology and Environmental Sciences Department, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg
| |
Collapse
|
16
|
Galván I, Hassasfar A, Adams B, Petruccione F. Isotope effects on radical pair performance in cryptochrome: A new hypothesis for the evolution of animal migration: The quantum biology of migration. Bioessays 2024; 46:e2300152. [PMID: 37888800 DOI: 10.1002/bies.202300152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Mechanisms occurring at the atomic level are now known to drive processes essential for life, as revealed by quantum effects on biochemical reactions. Some macroscopic characteristics of organisms may thus show an atomic imprint, which may be transferred across organisms and affect their evolution. This possibility is considered here for the first time, with the aim of elucidating the appearance of an animal innovation with an unclear evolutionary origin: migratory behaviour. This trait may be mediated by a radical pair (RP) mechanism in the retinal flavoprotein cryptochrome, providing essential magnetic orientation for migration. Isotopes may affect the performance of quantum processes through their nuclear spin. Here, we consider a simple model and then apply the standard open quantum system approach to the spin dynamics of cryptochrome RP. We changed the spin quantum number (I) and g-factor of hydrogen and nitrogen isotopes to investigate their effect on RP's yield and magnetic sensitivity. Strong differences arose between isotopes with I = 1 and I = 1/2 in their contribution to cryptochrome magnetic sensitivity, particularly regarding Earth's magnetic field strengths (25-65 µT). In most cases, isotopic substitution improved RP's magnetic sensitivity. Migratory behaviour may thus have been favoured in animals with certain isotopic compositions of cryptochrome.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Abbas Hassasfar
- Department of Physics, Stellenbosch University, Stellenbosch, South Africa
| | - Betony Adams
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- The Guy Foundation, Beaminster, Dorset, UK
| | - Francesco Petruccione
- Department of Physics, Stellenbosch University, Stellenbosch, South Africa
- School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| |
Collapse
|
17
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
18
|
Muheim R, Phillips JB. Effects of low-level RF fields reveal complex pattern of magnetic input to the avian magnetic compass. Sci Rep 2023; 13:19970. [PMID: 37968316 PMCID: PMC10651899 DOI: 10.1038/s41598-023-46547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
The avian magnetic compass can be disrupted by weak narrow-band and broadband radio-frequency (RF) fields in the lower MHz range. However, it is unclear whether disruption of the magnetic compass results from the elimination of the perception pattern produced by the magnetic field or from qualitative changes that make the pattern unrecognizable. We show that zebra finches trained in a 4-arm maze to orient relative to the magnetic field are disoriented when tested in the presence of low-level (~ 10 nT) Larmor-frequency RF fields. However, they are able to orient when tested in such RF fields if trained under this condition, indicating that the RF field alters, but does not eliminate, the magnetic input. Larmor-frequency RF fields of higher intensities, with or without harmonics, dramatically alter the magnetic compass response. In contrast, exposure to broadband RF fields in training, in testing, or in both training and testing eliminates magnetic compass information. These findings demonstrate that low-level RF fields at intensities found in many laboratory and field experiments may have very different effects on the perception of the magnetic field in birds, depending on the type and intensity of the RF field, and the birds' familiarity with the RF-generated pattern.
Collapse
Affiliation(s)
- Rachel Muheim
- Department of Biology, Lund University, Biology Building, 223 62, Lund, Sweden.
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
19
|
Golesworthy MJ, Zollitsch T, Luo J, Selby D, Jarocha LE, Henbest KB, Paré-Labrosse O, Bartölke R, Schmidt J, Xu J, Mouritsen H, Hore PJ, Timmel CR, Mackenzie SR. Singlet-triplet dephasing in radical pairs in avian cryptochromes leads to time-dependent magnetic field effects. J Chem Phys 2023; 159:105102. [PMID: 37694754 DOI: 10.1063/5.0166675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's.
Collapse
Affiliation(s)
| | - Tilo Zollitsch
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jiate Luo
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Dan Selby
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lauren E Jarocha
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Kevin B Henbest
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Rabea Bartölke
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jessica Schmidt
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jingjing Xu
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
20
|
Zhang L, Malkemper EP. Cryptochromes in mammals: a magnetoreception misconception? Front Physiol 2023; 14:1250798. [PMID: 37670767 PMCID: PMC10475740 DOI: 10.3389/fphys.2023.1250798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.
Collapse
Affiliation(s)
| | - E. Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior—caesar, Bonn, Germany
| |
Collapse
|
21
|
Hanić M, Antill LM, Gehrckens AS, Schmidt J, Görtemaker K, Bartölke R, El-Baba TJ, Xu J, Koch KW, Mouritsen H, Benesch JLP, Hore PJ, Solov'yov IA. Dimerization of European Robin Cryptochrome 4a. J Phys Chem B 2023. [PMID: 37428840 PMCID: PMC10364083 DOI: 10.1021/acs.jpcb.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Homo-dimer formation is important for the function of many proteins. Although dimeric forms of cryptochromes (Cry) have been found by crystallography and were recently observed in vitro for European robin Cry4a, little is known about the dimerization of avian Crys and the role it could play in the mechanism of magnetic sensing in migratory birds. Here, we present a combined experimental and computational investigation of the dimerization of robin Cry4a resulting from covalent and non-covalent interactions. Experimental studies using native mass spectrometry, mass spectrometric analysis of disulfide bonds, chemical cross-linking, and photometric measurements show that disulfide-linked dimers are routinely formed, that their formation is promoted by exposure to blue light, and that the most likely cysteines are C317 and C412. Computational modeling and molecular dynamics simulations were used to generate and assess a number of possible dimer structures. The relevance of these findings to the proposed role of Cry4a in avian magnetoreception is discussed.
Collapse
Affiliation(s)
- Maja Hanić
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Lewis M Antill
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura Ward, Saitama 338-8570, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Angela S Gehrckens
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jessica Schmidt
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Katharina Görtemaker
- Department of Neuroscience, Division of Biochemistry, Carl von Ossietzky University of Oldenburg, Oldenburg D-26111, Germany
| | - Rabea Bartölke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Tarick J El-Baba
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Kavli Institute for NanoScience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K
| | - Jingjing Xu
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, Carl von Ossietzky University of Oldenburg, Oldenburg D-26111, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Kavli Institute for NanoScience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K
| | - P J Hore
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
22
|
Pažėra G, Benjamin P, Mouritsen H, Hore PJ. Isotope Substitution Effects on the Magnetic Compass Properties of Cryptochrome-Based Radical Pairs: A Computational Study. J Phys Chem B 2023; 127:838-845. [PMID: 36669149 PMCID: PMC9900586 DOI: 10.1021/acs.jpcb.2c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/29/2022] [Indexed: 01/21/2023]
Abstract
The biophysical mechanism of the magnetic compass sense of migratory songbirds is thought to rely on the photochemical reactions of flavin-containing radical pairs in cryptochrome proteins located in the birds' eyes. A consequence of this hypothesis is that the effect of the Earth's magnetic field on the quantum yields of reaction products should be sensitive to isotopic substitutions that modify the hyperfine interactions in the radicals. In this report, we use spin dynamics simulations to explore the effects of 1H → 2H, 12C → 13C, and 14N → 15N isotopic substitutions on the functioning of cryptochrome 4a as a magnetic direction sensor. Two main conclusions emerge. (1) Uniform deuteration of the flavin chromophore appears to be the best way to boost the anisotropy of the magnetic field effect and to change its symmetry. (2) 13C substitution of three of the 12 flavin carbons, in particular C4, C4a, and C8α, seems to be the best recipe for attenuating the anisotropy. These predictions should give insight into the factors that control the magnetic sensitivity once spectroscopic techniques are available for measuring magnetic field effects on oriented protein samples.
Collapse
Affiliation(s)
| | - Philip Benjamin
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | - Henrik Mouritsen
- Institut
für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research
Centre for Neurosensory Science, University
of Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| |
Collapse
|
23
|
Hong G, Pachter R. Effects of inter-radical interactions and scavenging radicals on magnetosensitivity: spin dynamics simulations of proposed radical pairs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:27-37. [PMID: 36792823 DOI: 10.1007/s00249-023-01630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Although the magnetosensitivity to weak magnetic fields, such as the geomagnetic field, which was exhibited by radical pairs that are potentially responsible for avian navigation, has been previously investigated by spin dynamics simulations, understanding this behavior for proposed radical pairs in other species is limited. These include, for example, radical pairs formed in the single-cell green alga Chlamydomonas reinhardtii (CraCRY) and in Columba livia (ClCRY4). In addition, the radical pair of FADH• with the one-electron reduced cyclobutane thymine dimer that was shown to be sensitive to weak magnetic fields has been of interest. In this work, we investigated the directional magnetosensitivity of these radical pairs to a weak magnetic field by spin dynamics simulations. We find significant reduction in the magnetosensitivity by inclusion of dipolar and exchange interactions, which can be mitigated by a scavenging radical, as demonstrated for the [FAD•- TyrD•] radical pair in CraCRY, but not for the [FADH• T□T•-] radical pair because of the large exchange coupling. The directional magnetosensitivity of the ClCRY4 [FAD•- TyrE•] radical pair can survive this adverse effect even without the scavenging reaction, possibly motivating further experimental exploration.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, 45433, USA.
| |
Collapse
|
24
|
Yee C, Görtemaker K, Wellpott R, Koch KW. Kinetics of cone specific G-protein signaling in avian photoreceptor cells. Front Mol Neurosci 2023; 16:1107025. [PMID: 36733826 PMCID: PMC9887155 DOI: 10.3389/fnmol.2023.1107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Cone photoreceptor cells of night-migratory songbirds seem to process the primary steps of two different senses, vision and magnetoreception. The molecular basis of phototransduction is a prototypical G protein-coupled receptor pathway starting with the photoexcitation of rhodopsin or cone opsin thereby activating a heterotrimeric G protein named transducin. This interaction is well understood in vertebrate rod cells, but parameter describing protein-protein interactions of cone specific proteins are rare and not available for migratory birds. European robin is a model organism for studying the orientation of birds in the earth magnetic field. Recent findings showed a link between the putative magnetoreceptor cryptochrome 4a and the cone specific G-protein of European robin. In the present work, we investigated the interaction of European robin cone specific G protein and cytoplasmic regions of long wavelength opsin. We identified the second loop in opsin connecting transmembrane regions three and four as a critical binding interface. Surface plasmon resonance studies using a synthetic peptide representing the second cytoplasmic loop and purified G protein α-subunit showed a high affinity interaction with a K D value of 21 nM. Truncation of the G protein α-subunit at the C-terminus by six amino acids slightly decreased the affinity. Our results suggest that binding of the G protein to cryptochrome can compete with the interaction of G protein and non-photoexcited long wavelength opsin. Thus, the parallel presence of two different sensory pathways in bird cone photoreceptors is reasonable under dark-adapted conditions or during illumination with short wavelengths.
Collapse
Affiliation(s)
- Chad Yee
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Katharina Görtemaker
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Rieke Wellpott
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany,Research Center Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany,*Correspondence: Karl-Wilhelm Koch, ✉
| |
Collapse
|
25
|
Wong SY, Benjamin P, Hore PJ. Magnetic field effects on radical pair reactions: estimation of B1/2 for flavin-tryptophan radical pairs in cryptochromes. Phys Chem Chem Phys 2023; 25:975-982. [PMID: 36519379 PMCID: PMC9811481 DOI: 10.1039/d2cp03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic field effects on the yields of radical pair reactions are often characterised by the "half-field" parameter, B1/2, which encodes useful information on spin relaxation, radical recombination kinetics and electron-electron couplings as well as electron-nuclear hyperfine interactions. Here we use a variety of spin dynamics simulation methods to estimate the hyperfine-only values of B1/2 for the flavin-tryptophan radical pair, [FAD˙- TrpH˙+], thought to be the detector in the magnetic compass sense of migratory songbirds. The main findings are: (a) in the absence of fast recombination and spin relaxation, [FAD˙- TrpH˙+] radical pairs in solution and in the putative magnetoreceptor protein, cryptochrome, have B1/2 ≈ 1.89 mT and 2.46 mT, respectively. (b) The widely used expression for B1/2 due to Weller et al. (Chem. Phys. Lett, 1983, 96, 24-27) is only applicable to small, short-lived (∼5 ns), rapidly tumbling radical pairs in solution, and is quantitatively unreliable in the context of magnetoreception. (c) In the absence of molecular tumbling, the low-field effect for [FAD˙- TrpH˙+] is predicted to be abolished by the anisotropic components of the hyperfine interactions. Armed with the 2.46 mT "base value" for cryptochrome, measurements of B1/2 can be used to understand the impact of spin relaxation on its performance as a magnetic compass sensor.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität OldenburgOldenburg 26111Germany
| | - Philip Benjamin
- Department of Chemistry, University of OxfordOxfordOX1 3QZUK
| | - P. J. Hore
- Department of Chemistry, University of OxfordOxfordOX1 3QZUK
| |
Collapse
|
26
|
Pophof B, Henschenmacher B, Kattnig DR, Kuhne J, Vian A, Ziegelberger G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. HEALTH PHYSICS 2023; 124:39-52. [PMID: 36480584 PMCID: PMC9722389 DOI: 10.1097/hp.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ABSTRACT This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively. Radical pairs and magnetite are discussed mechanisms of magnetoreception in insects, birds, and mammals. Moreover, several insects as well as marine species possess specialized electroreceptors, and behavioral reactions to anthropogenic fields have been reported. Plants react to experimental modifications of their magnetic environment by growth changes. Strong adverse effects of anthropogenic fields have not been described, but knowledge gaps were identified; further studies, aiming at the identification of the interaction mechanisms and the ecological consequences, are recommended.
Collapse
Affiliation(s)
- Blanka Pophof
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Bernd Henschenmacher
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Jens Kuhne
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gunde Ziegelberger
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| |
Collapse
|
27
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
28
|
Zhang Y, Zeng L, Wei Y, Zhang M, Pan W, Sword GA, Yang F, Chen F, Wan G. Reliable reference genes for gene expression analyses under the hypomagnetic field in a migratory insect. Front Physiol 2022; 13:954228. [PMID: 36003646 PMCID: PMC9393789 DOI: 10.3389/fphys.2022.954228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Manipulating the hypomagnetic field (HMF), which is the absence or significant weakening (<5 μT) of the geomagnetic field (GMF), offers a unique tool to investigate magnetic field effects on organismal physiology, development, behavior and life history. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been utilized to study changes in gene expression associated with exposure to the HMF. However, selecting appropriate reference genes (RGs) with confirmed stable expression across environments for RT-qPCR is often underappreciated. Using three algorithms (BestKeeper, NormFinder, and GeNorm), we investigated the expression stability of eight candidate RGs when exposed to the HMF condition versus local GMF during developmental from juveniles to adults in the migratory insect pest, the brown planthopper Nilaparvata lugens. During the nymphal stage, RPL5 & α-TUB1, EF1-α & ARF1, RPL5 & AK, EF1-α & RPL5, and ARF1 & AK were suggested as the most stable RG sets in the 1st to 5th instars, respectively. For 1- to 3-day-old adults, AK & ARF1, AK & α-TUB1, AK & ARF1 and EF1-α & RPL5, AK & α-TUB1, AK & EF1-α were the optimal RG sets for macropterous and brachypterous females, respectively. ACT1 & RPL5, RPL5 & EF1-α, α-TUB1 & ACT1 and EF1-α & RPL5, ARF1 & ACT1, ACT1 & ARF1 were the optimal RG sets for macropterous and brachypterous males, respectively. These results will facilitate accurate gene expression analyses under the HMF in N. lugens. The verification approach illustrated in this study highlights the importance of identifying reliable RGs for future empirical studies of magnetobiology (including magnetoreception) that involve magnetic field intensity as a factor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Luying Zeng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Yongji Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Guijun Wan,
| |
Collapse
|
29
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
30
|
Hanić M, Schuhmann F, Frederiksen A, Langebrake C, Manthey G, Liedvogel M, Xu J, Mouritsen H, Solov'yov IA. Computational Reconstruction and Analysis of Structural Models of Avian Cryptochrome 4. J Phys Chem B 2022; 126:4623-4635. [PMID: 35704801 DOI: 10.1021/acs.jpcb.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study by Xu et al. (Nature, 2021, 594, 535-540) provided strong evidence that cryptochrome 4 (Cry4) is a key protein to endow migratory birds with the magnetic compass sense. The investigation compared the magnetic field response of Cry4 from migratory and nonmigratory bird species and suggested that a difference in magnetic sensitivity could exist. This finding prompted an in-depth investigation into Cry4 protein differences on the structural and dynamic levels. In the present study, the pigeon Cry4 (ClCry4) crystal structure was used to reconstruct the missing avian Cry4 protein structures via homology modeling for carefully selected bird species. The reconstructed Cry4 structure from European robin, Eurasian blackcap, zebra finch, chicken, and pigeon were subsequently simulated dynamically and analyzed. The studied avian Cry4 structures show flexibility in analogous regions pointing to similar activation mechanisms and/or signaling interaction partners. It can be concluded that the experimentally recorded difference in the magnetic field sensitivity of Cry4 from different birds is unlikely to be due to solely intrinsic dynamics of the proteins but requires additional factors that have not yet been identified.
Collapse
Affiliation(s)
- Maja Hanić
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Anders Frederiksen
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Georg Manthey
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Miriam Liedvogel
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany.,Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jingjing Xu
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
31
|
Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein. Cells 2022; 11:cells11132043. [PMID: 35805127 PMCID: PMC9265643 DOI: 10.3390/cells11132043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Night-migratory birds sense the Earth’s magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. Methods: Protein–protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. Results: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. Conclusions: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.
Collapse
|
32
|
Al Said T, Weber S, Schleicher E. OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-Correlated Radical Pairs in Biomolecules. Front Mol Biosci 2022; 9:890826. [PMID: 35813811 PMCID: PMC9262093 DOI: 10.3389/fmolb.2022.890826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
In addition to the commonly used electron-electron double resonance (ELDOR) technique, there are several other electron paramagnetic resonance (EPR) methods by which structure information can be obtained by exploiting the dipolar coupling between two radicals based on its characteristic r -3 dependence. In this contribution, we explore the potential of out-of-phase-electron-spin echo envelope modulation (OOP-ESEEM) spectroscopy to collect accurate distance information in photo-sensitive (bio) molecules. Although the method has already been applied to spin-correlated radical pairs in several classes of light-active proteins, the accuracy of the information obtained has not yet been extensively evaluated. To do this in a system-independent fashion, OOP-ESEEM time traces simulated with different values of the dipolar and exchange couplings were generated and analyzed in a best-possible way. Excellent agreement between calculated and numerically fitted values over a wide range of distances (between 15 and 45 Å) was obtained. Furthermore, the limitations of the method and the dependence on various experimental parameters could be evaluated.
Collapse
Affiliation(s)
| | | | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
34
|
Chetverikova R, Dautaj G, Schwigon L, Dedek K, Mouritsen H. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. J R Soc Interface 2022; 19:20210877. [PMID: 35414212 PMCID: PMC9006000 DOI: 10.1098/rsif.2021.0877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity. Theoretical considerations suggest that this could be best achieved if neighbouring double cones were oriented in an ordered pattern. Therefore, we investigate the orientation patterns of double cones in European robins (Erithacus rubecula) and domestic chickens (Gallus gallus domesticus). We used whole-mounted retinas labelled with double cone markers to quantify the orientations of individual double cones in relation to their nearest neighbours. In both species, our data show that the double cone array is highly ordered: the angles between neighbouring double cones were more likely to be 90°/-90° in the central retina and 180°/0° in the peripheral retina, respectively. The observed regularity in double cone orientation could aid the cells' putative function in light-dependent magnetoreception and/or polarized light sensing.
Collapse
Affiliation(s)
- Raisa Chetverikova
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Glen Dautaj
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Leonard Schwigon
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
35
|
Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:97-106. [PMID: 35019998 PMCID: PMC8918455 DOI: 10.1007/s00359-021-01537-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds’ retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75–85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75–85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin–tryptophan radical pair were the magnetic sensor.
Collapse
|
36
|
Zadeh-Haghighi H, Simon C. Radical pairs can explain magnetic field and lithium effects on the circadian clock. Sci Rep 2022; 12:269. [PMID: 34997158 PMCID: PMC8742017 DOI: 10.1038/s41598-021-04334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drosophila's circadian clock can be perturbed by magnetic fields, as well as by lithium administration. Cryptochromes are critical for the circadian clock. Further, the radical pairs in cryptochrome also can explain magnetoreception in animals. Based on a simple radical pair mechanism model of the animal magnetic compass, we show that both magnetic fields and lithium can influence the spin dynamics of the naturally occurring radical pairs and hence modulate the circadian clock's rhythms. Using a simple chemical oscillator model for the circadian clock, we show that the spin dynamics influence a rate in the chemical oscillator model, which translates into a change in the circadian period. Our model can reproduce the results of two independent experiments, magnetic field and lithium effects on the circadian clock. Our model predicts that stronger magnetic fields would shorten the clock's period. We also predict that lithium influences the clock in an isotope-dependent manner. Furthermore, our model also predicts that magnetic fields and hyperfine interactions modulate oxidative stress. The findings of this work suggest that the quantum nature of radical pairs might play roles in the brain, as another piece of evidence in addition to recent results on xenon anesthesia and lithium effects on hyperactivity.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
37
|
Ozturk N. Light-dependent reactions of animal circadian photoreceptor cryptochrome. FEBS J 2021; 289:6622-6639. [PMID: 34750956 DOI: 10.1111/febs.16273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Circadian rhythms are endogenous autonomous 24-h oscillations that are generated by a transcription-translation feedback loop (TTFL). In the positive arm of the TTFL, two transcription factors activate the expression of two genes of the negative arm as well as circadian clock-regulated genes. The circadian clocks are reset through photoreceptor proteins by sunlight in the early morning to keep synchrony with the geological clock. Among animal circadian photoreceptors, Drosophila Cryptochrome (DmCRY) has some unique properties because Drosophila has a single cryptochrome (CRY) that appears to have functions which are specific to organs or tissues, or even to a subset of cells. In mammals, CRYs are not photoreceptors but function in the TTFL, while insects have a light-insensitive mammalian-like CRY or a Drosophila-like photoreceptor CRY (or both). Here, we postulate that as being just one CRY in Drosophila, DmCRY might play different roles in different tissues/organs in a context-dependent manner. In addition to being a circadian photoreceptor/protein, attributing also a magnetoreception function to DmCRY has increased its workload. Considering that DmCRY senses photons as a photoreceptor but also can regulate many different events in a light-dependent manner, differential protein-protein interactions (PPIs) of DmCRY might play a critical role in the generation of such diverse outputs. Therefore, we need to add novel approaches in addition to the current ones to study multiple and context-dependent functions of DmCRY by adopting recently developed techniques. Successful identification of transient/fast PPIs on a scale of minutes would enhance our understanding of light-dependent and/or magnetoreception-associated reactions.
Collapse
Affiliation(s)
- Nuri Ozturk
- Molecular Biology and Genetics, Gebze Technical University, Turkey
| |
Collapse
|
38
|
Wong SY, Wei Y, Mouritsen H, Solov'yov IA, Hore PJ. Cryptochrome magnetoreception: four tryptophans could be better than three. J R Soc Interface 2021; 18:20210601. [PMID: 34753309 PMCID: PMC8580466 DOI: 10.1098/rsif.2021.0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Yujing Wei
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research Centre for Neurosensory Science, University of Oldenburg, Oldenburg 26111, Germany
| | - Ilia A. Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
39
|
Einwich A, Seth PK, Bartölke R, Bolte P, Feederle R, Dedek K, Mouritsen H. Localisation of cryptochrome 2 in the avian retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:69-81. [PMID: 34677638 PMCID: PMC8918457 DOI: 10.1007/s00359-021-01506-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Cryptochromes are photolyase-related blue-light receptors acting as core components of the mammalian circadian clock in the cell nuclei. One or more members of the cryptochrome protein family are also assumed to play a role in avian magnetoreception, but the primary sensory molecule in the retina of migratory birds that mediates light-dependent magnetic compass orientation has still not been identified. The mRNA of cryptochrome 2 (Cry2) has been reported to be located in the cell nuclei of the retina, but Cry2 localisation has not yet been demonstrated at the protein level. Here, we provide evidence that Cry2 protein is located in the photoreceptor inner segments, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer in the retina of night-migratory European robins, homing pigeons and domestic chickens. At the subcellular level, we find Cry2 both in the cytoplasm and the nucleus of cells residing in these layers. This broad nucleic expression rather points to a role for avian Cry2 in the circadian clock and is consistent with a function as a transcription factor, analogous to mammalian Cry2, and speaks against an involvement in magnetoreception.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rabea Bartölke
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Petra Bolte
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Neuherberg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
40
|
Balay SD, Hochstoeger T, Vilceanu A, Malkemper EP, Snider W, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Nordmann GC, Ushakova L, Nimpf S, Keays DA. The expression, localisation and interactome of pigeon CRY2. Sci Rep 2021; 11:20293. [PMID: 34645873 PMCID: PMC8514597 DOI: 10.1038/s41598-021-99207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Spencer D Balay
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Tobias Hochstoeger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Alexandra Vilceanu
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - E Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - William Snider
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gregory C Nordmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Simon Nimpf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - David A Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia.
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
41
|
Hamada M, Iwata T, Fuki M, Kandori H, Weber S, Kobori Y. Orientations and water dynamics of photoinduced secondary charge-separated states for magnetoreception by cryptochrome. Commun Chem 2021; 4:141. [PMID: 36697801 PMCID: PMC9814139 DOI: 10.1038/s42004-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
In the biological magnetic compass, blue-light photoreceptor protein of cryptochrome is thought to conduct the sensing of the Earth's magnetic field by photoinduced sequential long-range charge-separation (CS) through a cascade of tryptophan residues, WA(H), WB(H) and WC(H). Mechanism of generating the weak-field sensitive radical pair (RP) is poorly understood because geometries, electronic couplings and their modulations by molecular motion have not been investigated in the secondary CS states generated prior to the terminal RP states. In this study, water dynamics control of the electronic coupling is revealed to be a key concept for sensing the direction of weak magnetic field. Geometry and exchange coupling (singlet-triplet energy gap: 2J) of photoinduced secondary CS states composed of flavin adenine dinucleotide radical anion (FAD-•) and radical cation WB(H)+• in the cryptochrome DASH from Xenopus laevis were clarified by time-resolved electron paramagnetic resonance. We found a time-dependent energetic disorder in 2J and was interpreted by a trap CS state capturing one reorientated water molecule at 120 K. Enhanced electron-tunneling by water-libration was revealed for the terminal charge-separation event at elevated temperature. This highlights importance of optimizing the electronic coupling for regulation of the anisotropic RP yield on the possible magnetic compass senses.
Collapse
Affiliation(s)
- Misato Hamada
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Tatsuya Iwata
- grid.265050.40000 0000 9290 9879Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274‒8510 Japan
| | - Masaaki Fuki
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan ,grid.47716.330000 0001 0656 7591OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan
| | - Stefan Weber
- grid.5963.9Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Yasuhiro Kobori
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| |
Collapse
|
42
|
Schleicher E, Rein S, Illarionov B, Lehmann A, Al Said T, Kacprzak S, Bittl R, Bacher A, Fischer M, Weber S. Selective 13C labelling reveals the electronic structure of flavocoenzyme radicals. Sci Rep 2021; 11:18234. [PMID: 34521887 PMCID: PMC8440535 DOI: 10.1038/s41598-021-97588-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Flavocoenzymes are nearly ubiquitous cofactors that are involved in the catalysis and regulation of a wide range of biological processes including some light-induced ones, such as the photolyase-mediated DNA repair, magnetoreception of migratory birds, and the blue-light driven phototropism in plants. One of the factors that enable versatile flavin-coenzyme biochemistry and biophysics is the fine-tuning of the cofactor's frontier orbital by interactions with the protein environment. Probing the singly-occupied molecular orbital (SOMO) of the intermediate radical state of flavins is therefore a prerequisite for a thorough understanding of the diverse functions of the flavoprotein family. This may be ultimately achieved by unravelling the hyperfine structure of a flavin by electron paramagnetic resonance. In this contribution we present a rigorous approach to obtaining a hyperfine map of the flavin's chromophoric 7,8-dimethyl isoalloxazine unit at an as yet unprecedented level of resolution and accuracy. We combine powerful high-microwave-frequency/high-magnetic-field electron-nuclear double resonance (ENDOR) with 13C isotopologue editing as well as spectral simulations and density functional theory calculations to measure and analyse 13C hyperfine couplings of the flavin cofactor in DNA photolyase. Our data will provide the basis for electronic structure considerations for a number of flavin radical intermediates occurring in blue-light photoreceptor proteins.
Collapse
Affiliation(s)
- Erik Schleicher
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Stephan Rein
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Boris Illarionov
- grid.9026.d0000 0001 2287 2617Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ariane Lehmann
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Tarek Al Said
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany ,grid.423218.ePresent Address: Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Robert Bittl
- grid.14095.390000 0000 9116 4836Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Adelbert Bacher
- grid.6936.a0000000123222966Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Markus Fischer
- grid.9026.d0000 0001 2287 2617Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- grid.5963.9Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
43
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|
44
|
Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 2021; 594:535-540. [PMID: 34163056 DOI: 10.1038/s41586-021-03618-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.
Collapse
|
45
|
Wiltschko R, Nießner C, Wiltschko W. The Magnetic Compass of Birds: The Role of Cryptochrome. Front Physiol 2021; 12:667000. [PMID: 34093230 PMCID: PMC8171495 DOI: 10.3389/fphys.2021.667000] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Christine Nießner
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Karki N, Vergish S, Zoltowski BD. Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Sci 2021; 30:1521-1534. [PMID: 33993574 DOI: 10.1002/pro.4124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Cryptochromes (CRYs) function as blue light photoreceptors in diverse physiological processes in nearly all kingdoms of life. Over the past several decades, they have emerged as the most likely candidates for light-dependent magnetoreception in animals, however, a long history of conflicts between in vitro photochemistry and in vivo behavioral data complicate validation of CRYs as a magnetosensor. In this review, we highlight the origins of conflicts regarding CRY photochemistry and signal transduction, and identify recent data that provides clarity on potential mechanisms of signal transduction in magnetoreception. The review primarily focuses on examining differences in photochemistry and signal transduction in plant and animal CRYs, and identifies potential modes of convergent evolution within these independent lineages that may identify conserved signaling pathways.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Satyam Vergish
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
47
|
Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore P, Dedek K, Mouritsen H. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1870571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Pranav K. Seth
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Raisa Chetverikova
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dominik Heyers
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Irina Wojahn
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Department of Neuroscience, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Hore
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
48
|
Wong SY, Solov'yov IA, Hore PJ, Kattnig DR. Nuclear polarization effects in cryptochrome-based magnetoreception. J Chem Phys 2021; 154:035102. [PMID: 33499614 DOI: 10.1063/5.0038947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of the magnetic compass sense of migratory songbirds is thought to involve magnetically sensitive chemical reactions of light-induced radical pairs in cryptochrome proteins located in the birds' eyes. However, it is not yet clear whether this mechanism would be sensitive enough to form the basis of a viable compass. In the present work, we report spin dynamics simulations of models of cryptochrome-based radical pairs to assess whether accumulation of nuclear spin polarization in multiple photocycles could lead to significant enhancements in the sensitivity with which the proteins respond to the direction of the geomagnetic field. Although buildup of nuclear polarization appears to offer sensitivity advantages in the more idealized model systems studied, we find that these enhancements do not carry over to conditions that more closely resemble the situation thought to exist in vivo. On the basis of these simulations, we conclude that buildup of nuclear polarization seems unlikely to be a source of significant improvements in the performance of cryptochrome-based radical pair magnetoreceptors.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|