1
|
Freund DR, Gable TD, Homkes AT, Jensen OR, Patchett S, Bump JK. Can Wolf Predation Immediately Alter the Foraging Behavior of Beavers?: Video of a Wolf Killing a Foraging Beaver. Ecol Evol 2025; 15:e71357. [PMID: 40352620 PMCID: PMC12065075 DOI: 10.1002/ece3.71357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Knowledge of wolf (Canis lupus)-beaver (Castor canadensis) interactions has largely been derived from indirect observations due to the cryptic nature of wolves and the densely forested areas where they usually kill beavers. In September 2023, we captured a video via remote camera of a wolf killing an adult beaver that was foraging on a feeding trail. This observation provides insight into how wolves may prevent beavers from reaching water after an attack is initiated, as well as how beavers attempt to escape once attacked. The camera also recorded the number of beavers foraging before and after the kill, providing a unique opportunity to observe the foraging behavior of the surviving beavers. The camera recorded videos on the trail for 11 nights before the predation and 37 nights after the predation. The time beavers spent on the feeding trail declined by 96% following predation. Although we present just a single observation, it raises an interesting question: is it possible or even plausible to think wolves might immediately alter where or the extent to which beavers forage through predation? We provide a detailed discussion on possibilities and highlight areas for future research.
Collapse
Affiliation(s)
- Danielle R. Freund
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
- Department of Environmental and Life SciencesTrent UniversityPeterboroughOntarioCanada
| | - Thomas D. Gable
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Austin T. Homkes
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Olivia R. Jensen
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Sage Patchett
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of MinnesotaSt PaulMinnesotaUSA
| |
Collapse
|
2
|
Morton JP, Hensel MJS, DeLaMater DS, Angelini C, Atkins RL, Prince KD, Williams SL, Boyd AD, Parsons J, Resetarits EJ, Smith CS, Valdez S, Monnet E, Farhan R, Mobilian C, Renzi J, Smith D, Craft C, Byers JE, Alber M, Pennings SC, Silliman BR. Mesopredator release moderates trophic control of plant biomass in a Georgia salt marsh. Ecology 2024:e4452. [PMID: 39468868 DOI: 10.1002/ecy.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/30/2024]
Abstract
Predators regulate communities through top-down control in many ecosystems. Because most studies of top-down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short-term and small-scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass, Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3-year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2 plots. Our nekton exclusions increased densities of plant-grazing snails and juvenile deposit-feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect on Spartina biomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects on Spartina than mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer-term experiments can illuminate community dynamics not previously understood, even in well-studied ecosystems such as salt marshes.
Collapse
Affiliation(s)
- Joseph P Morton
- Duke University Marine Lab, Beaufort, North Carolina, USA
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Marc J S Hensel
- Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, Gloucester, Virginia, USA
| | | | - Christine Angelini
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | - Rebecca L Atkins
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Kimberly D Prince
- Department of Environmental Engineering Sciences, Center for Coastal Solutions, University of Florida, Gainesville, Florida, USA
| | | | - Anjali D Boyd
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | - Jennifer Parsons
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Emlyn J Resetarits
- Department of Biological Sciences, Barnard College, Columbia University, New York, New York, USA
| | - Carter S Smith
- Duke University Marine Lab, Beaufort, North Carolina, USA
| | | | - Evan Monnet
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Roxanne Farhan
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Courtney Mobilian
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Julianna Renzi
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Dontrece Smith
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Christopher Craft
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Merryl Alber
- Deptartment of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
3
|
Bates‐Mundell L, Williams SH, Sager‐Fradkin K, Wittmer HU, Allen ML, Cristescu B, Wilmers CC, Elbroch LM. Season, prey availability, sex, and age explain prey size selection in a large solitary carnivore. Ecol Evol 2024; 14:e11080. [PMID: 38455146 PMCID: PMC10918706 DOI: 10.1002/ece3.11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Prey selection is a fundamental aspect of ecology that drives evolution and community structure, yet the impact of intraspecific variation on the selection for prey size remains largely unaccounted for in ecological theory. Here, we explored puma (Puma concolor) prey selection across six study sites in North and South America. Our results highlighted the strong influence of season and prey availability on puma prey selection, and the smaller influence of puma age. Pumas in all sites selected smaller prey in warmer seasons following the ungulate birth pulse. Our top models included interaction terms between sex and age, suggesting that males more than females select larger prey as they age, which may reflect experiential learning. When accounting for variable sampling across pumas in our six sites, male and female pumas killed prey of equivalent size, even though males are larger than females, challenging assumptions about this species. Nevertheless, pumas in different study sites selected prey of different sizes, emphasizing that the optimal prey size for pumas is likely context-dependent and affected by prey availability. The mean prey weight across all sites averaged 1.18 times mean puma weight, which was less than predicted as the optimal prey size by energetics and ecological theory (optimal prey = 1.45 puma weight). Our results help refine our understanding of optimal prey for pumas and other solitary carnivores, as well as corroborate recent research emphasizing that carnivore prey selection is impacted not just by energetics but by the effects of diverse ecology.
Collapse
Affiliation(s)
- Logan Bates‐Mundell
- Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburg im BreisgauGermany
| | | | - Kim Sager‐Fradkin
- Lower Elwha Klallam Tribe Natural ResourcesPort AngelesWashingtonUSA
| | - Heiko U. Wittmer
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Maximilian L. Allen
- Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignIllinoisUSA
| | - Bogdan Cristescu
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | | | | |
Collapse
|
4
|
Lynggaard C, Frøslev TG, Johnson MS, Olsen MT, Bohmann K. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Mol Ecol Resour 2024; 24:e13840. [PMID: 37497670 DOI: 10.1111/1755-0998.13840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
The current biodiversity and climate crises highlight the need for efficient tools to monitor terrestrial ecosystems. Here, we provide evidence for the use of airborne eDNA analyses as a novel method for detecting terrestrial vertebrate communities in nature. Metabarcoding of 143 airborne eDNA samples collected during 3 days in a mixed forest in Denmark yielded 64 bird, mammal, fish and amphibian taxa, of which the detected 57 'wild' taxa represent over a quarter of the around 210 terrestrial vertebrates that occur in the overall area. We provide evidence for the spatial movement and temporal patterns of airborne eDNA and for the influence of weather conditions on vertebrate detections. This study demonstrates airborne eDNA for high-resolution biomonitoring of vertebrates in terrestrial systems and elucidates its potential to guide global nature management and conservation efforts in the ongoing biodiversity crisis.
Collapse
Affiliation(s)
- Christina Lynggaard
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Guldberg Frøslev
- Section for GeoGenetics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- DevLabs, Copenhagen, Denmark
| | - Morten Tange Olsen
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Gable TD, Johnson-Bice SM, Homkes AT, Fieberg J, Bump JK. Wolves alter the trajectory of forests by shaping the central place foraging behaviour of an ecosystem engineer. Proc Biol Sci 2023; 290:20231377. [PMID: 37935367 PMCID: PMC10645084 DOI: 10.1098/rspb.2023.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Predators can directly and indirectly alter the foraging behaviour of prey through direct predation and the risk of predation, and in doing so, initiate indirect effects that influence myriad species and ecological processes. We describe how wolves indirectly alter the trajectory of forests by constraining the distance that beavers, a central place forager and prolific ecosystem engineer, forage from water. Specifically, we demonstrate that wolves wait in ambush and kill beavers on longer feeding trails than would be expected based on the spatio-temporal availability of beavers. This pattern is driven by temporal dynamics of beaver foraging: beavers make more foraging trips and spend more time on land per trip on longer feeding trails that extend farther from water. As a result, beavers are more vulnerable on longer feeding trails than shorter ones. Wolf predation appears to be a selective evolutionary pressure propelled by consumptive and non-consumptive mechanisms that constrain the distance from water beavers forage, which in turn limits the area of forest around wetlands, lakes and rivers beavers alter through foraging. Thus, wolves appear intricately linked to boreal forest dynamics by shaping beaver foraging behaviour, a form of natural disturbance that alters the successional and ecological states of forests.
Collapse
Affiliation(s)
- Thomas D. Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - Sean M. Johnson-Bice
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Austin T. Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - John Fieberg
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circles, St Paul, MN 55108, USA
| |
Collapse
|
6
|
Gable TD, Johnson-Bice SM, Homkes AT, Bump JK. Differential provisioning roles, prey size, and prey abundance shape the dynamic feeding behavior of gray wolves. Commun Biol 2023; 6:1045. [PMID: 37838820 PMCID: PMC10576808 DOI: 10.1038/s42003-023-05419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
The demands of raising dependent young can influence the feeding behaviors of social carnivores, especially for individuals that are primarily responsible for provisioning young. We investigated how the feeding and provisioning behavior of a social carnivore, gray wolves (Canis lupus), are connected and shaped by extrinsic and intrinsic factors, and whether and how these patterns changed throughout the pup-rearing season (April-August). We found breeding wolves had shorter handling times of prey, lower probability of returning to kills, and greater probability of returning to homesites after kills compared to subordinate individuals. However, the feeding and provisioning behaviors of breeding individuals changed considerably over the pup-rearing season. Wolves had longer handling times and returned to provision pups directly after kills less frequently as annual prey abundance decreased. These patterns indicate that adult wolves prioritize meeting their own energetic demands over those of their pups when prey abundance decreases. We suggest that differential provisioning of offspring based on prey abundance is a behavioral mechanism by which group size adjusts to available resources via changes in neonate survival.
Collapse
Affiliation(s)
- Thomas D Gable
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA.
| | - Sean M Johnson-Bice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Austin T Homkes
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
7
|
Shukla I, Gaynor KM, Worm B, Darimont CT. The diversity of animals identified as keystone species. Ecol Evol 2023; 13:e10561. [PMID: 37818247 PMCID: PMC10560868 DOI: 10.1002/ece3.10561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Although the keystone species concept was conceived of over 50 years ago, contemporary efforts to synthesize related literature have been limited. Our objective was to create a list of keystone animal species identified in the literature and to examine the variation in the traits of species and the ecosystem influences they elicit. We documented 230 species considered keystones. A clustering analysis classified them into five archetypes based on combinations of their taxonomic class, body size, trophic level, and role (consumers, modifiers, or prey). Although conservation and public perception of keystones primarily focuses on large vertebrate consumers, our analysis reveals that researchers have defined a wide diversity of keystone species, with large variation in associated ecosystem processes. Future research may confront ambiguity in the definition of keystone status, as well as clarify the type, abundance, and quality of data required to assign the term. Identifying keystones with increased rigor would not only enrich the literature but also inform intervention to safeguard threatened keystones and their associated influences on ecosystems.
Collapse
Affiliation(s)
- Ishana Shukla
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Kaitlyn M. Gaynor
- Departments of Botany and ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Boris Worm
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBritish ColumbiaCanada
- Raincoast Conservation FoundationDenny IslandBritish ColumbiaCanada
| |
Collapse
|
8
|
Johnson-Bice SM, Gable TD, Homkes AT, Windels SK, Bump JK, Bruggink JG. Logging, linear features, and human infrastructure shape the spatial dynamics of wolf predation on an ungulate neonate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2911. [PMID: 37602927 DOI: 10.1002/eap.2911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
Humans are increasingly recognized as important players in predator-prey dynamics by modifying landscapes. This trend has been well-documented for large mammal communities in North American boreal forests: logging creates early seral forests that benefit ungulates such as white-tailed deer (Odocoileus virginianus), while the combination of infrastructure development and resource extraction practices generate linear features that allow predators such as wolves (Canis lupus) to travel and forage more efficiently throughout the landscape. Disturbances from recreational activities and residential development are other major sources of human activity in boreal ecosystems that may further alter wolf-ungulate dynamics. Here, we evaluate the influence that several major types of anthropogenic landscape modifications (timber harvest, linear features, and residential infrastructure) have on where and how wolves hunt ungulate neonates in a southern boreal forest ecosystem in Minnesota, USA. We demonstrate that each major anthropogenic disturbance significantly influences wolf predation of white-tailed deer fawns (n = 427 kill sites). In contrast with the "human shield hypothesis" that posits prey use human-modified areas as refuge, wolves killed fawns closer to residential buildings than expected based on spatial availability. Fawns were also killed within recently-logged areas more than expected. Concealment cover was higher at kill sites than random sites, suggesting wolves use senses other than vision, probably olfaction, to detect hidden fawns. Wolves showed strong selection for hunting along linear features, and kill sites were also closer to linear features than expected. We hypothesize that linear features facilitated wolf predation on fawns by allowing wolves to travel efficiently among high-quality prey patches (recently logged areas, near buildings), and also increase encounter rates with olfactory cues that allow them to detect hidden fawns. These findings provide novel insight into the strategies predators use to hunt ungulate neonates and the many ways human activity alters wolf-ungulate neonate predator-prey dynamics, which have remained elusive due to the challenges of locating sites where predators kill small prey. Our research has important management and conservation implications for wolf-ungulate systems subjected to anthropogenic pressures, particularly as the range of overlap between wolves and deer expands and appears to be altering food web dynamics in boreal ecosystems.
Collapse
Affiliation(s)
- Sean M Johnson-Bice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas D Gable
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Austin T Homkes
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Steve K Windels
- Voyageurs National Park, International Falls, Minnesota, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - John G Bruggink
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
9
|
Russo NJ, Davies AB, Blakey RV, Ordway EM, Smith TB. Feedback loops between 3D vegetation structure and ecological functions of animals. Ecol Lett 2023; 26:1597-1613. [PMID: 37419868 DOI: 10.1111/ele.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
Ecosystems function in a series of feedback loops that can change or maintain vegetation structure. Vegetation structure influences the ecological niche space available to animals, shaping many aspects of behaviour and reproduction. In turn, animals perform ecological functions that shape vegetation structure. However, most studies concerning three-dimensional vegetation structure and animal ecology consider only a single direction of this relationship. Here, we review these separate lines of research and integrate them into a unified concept that describes a feedback mechanism. We also show how remote sensing and animal tracking technologies are now available at the global scale to describe feedback loops and their consequences for ecosystem functioning. An improved understanding of how animals interact with vegetation structure in feedback loops is needed to conserve ecosystems that face major disruptions in response to climate and land-use change.
Collapse
Affiliation(s)
- Nicholas J Russo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Andrew B Davies
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rachel V Blakey
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Freund DR, Gable TD, Johnson-Bice SM, Homkes AT, Windels SK, Bump JK. The ethology of wolves foraging on freshwater fish in a boreal ecosystem. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230210. [PMID: 37234502 PMCID: PMC10206451 DOI: 10.1098/rsos.230210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Through global positioning system (GPS) collar locations, remote cameras, field observations and the first wild wolf to be GPS-collared with a camera collar, we describe when, where and how wolves fish in a freshwater ecosystem. From 2017 to 2021, we recorded more than 10 wolves (Canis lupus) hunting fish during the spring spawning season in northern Minnesota, USA. Wolves ambushed fish in creeks at night when spawning fish were abundant, available and vulnerable in shallow waters. We observed wolves specifically targeting sections of rivers below beaver (Castor canadensis) dams, suggesting that beavers may indirectly facilitate wolf fishing behaviour. Wolves also cached fish on shorelines. We documented these findings across five different social groups at four distinct waterways, suggesting that wolf fishing behaviour may be widespread in similar ecosystems but has probably remained difficult to study given its annual brevity. Spawning fish may serve as a valuable pulsed resource for packs because the spring spawning season coincides with low primary prey (deer Odocoileus virginianus) availability and abundance, and when packs have higher energetic demands owing to newly born pups. We demonstrate the flexibility and adaptability of wolf hunting and foraging behaviour, and provide insight into how wolves can survive in a myriad of ecosystems.
Collapse
Affiliation(s)
- Danielle R. Freund
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Thomas D. Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Sean M. Johnson-Bice
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Austin T. Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| | - Steve K. Windels
- Voyageurs National Park, National Park Service, 360 Highway 11 East, International Falls, 56649 MN, USA
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
11
|
Leach CB, Weitzman BP, Bodkin JL, Esler D, Esslinger GG, Kloecker KA, Monson DH, Womble JN, Hooten MB. Revealing the extent of sea otter impacts on bivalve prey through multi-trophic monitoring and mechanistic models. J Anim Ecol 2023. [PMID: 37081640 DOI: 10.1111/1365-2656.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Sea otters are apex predators that can exert considerable influence over the nearshore communities they occupy. Since facing near extinction in the early 1900s, sea otters are making a remarkable recovery in Southeast Alaska, particularly in Glacier Bay, the largest protected tidewater glacier fjord in the world. The expansion of sea otters across Glacier Bay offers both a challenge to monitoring and stewardship and an unprecedented opportunity to study the top-down effect of a novel apex predator across a diverse and productive ecosystem. Our goal was to integrate monitoring data across trophic levels, space, and time to quantify and map the predator-prey interaction between sea otters and butter clams Saxidomus gigantea, one of the dominant large bivalves in Glacier Bay and a favoured prey of sea otters. We developed a spatially-referenced mechanistic differential equation model of butter clam dynamics that combined both environmental drivers of local population growth and estimates of otter abundance from aerial survey data. We embedded this model in a Bayesian statistical framework and fit it to clam survey data from 43 intertidal and subtidal sites across Glacier Bay. Prior to substantial sea otter expansion, we found that butter clam density was structured by an environmental gradient driven by distance from glacier (represented by latitude) and a quadratic effect of current speed. Estimates of sea otter attack rate revealed spatial heterogeneity in sea otter impacts and a negative relationship with local shoreline complexity. Sea otter exploitation of productive butter clam habitat substantially reduced the abundance and altered the distribution of butter clams across Glacier Bay, with potential cascading consequences for nearshore community structure and function. Spatial variation in estimated sea otter predation processes further suggests that community context and local environmental conditions mediate the top-down influence of sea otters on a given prey. Overall, our framework provides high-resolution insights about the interaction among components of this food web and could be applied to a variety of other systems involving invasive species, epidemiology or migration.
Collapse
Affiliation(s)
- Clinton B Leach
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin P Weitzman
- U.S. Fish and Wildlife Service, Marine Mammals Management, Anchorage, Alaska, USA
| | - James L Bodkin
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Daniel Esler
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | | | | | - Daniel H Monson
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Jamie N Womble
- Southeast Alaska Inventory and Monitoring Network, National Park Service, Juneau, Alaska, USA
- Glacier Bay Field Station, National Park Service, Juneau, Alaska, USA
| | - Mevin B Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
12
|
Sovie AR, Romanski MC, Orning EK, Marneweck DG, Nichols R, Moore S, Belant JL. Temporal variation in translocated Isle Royale wolf diet. Ecol Evol 2023; 13:e9873. [PMID: 36937055 PMCID: PMC10019911 DOI: 10.1002/ece3.9873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Wolves (Canis lupus) can exert top-down pressure and shape ecological communities through the predation of ungulates and beavers (Castor spp.). Therefore, understanding wolf foraging is critical to estimating their ecosystem-level effects. Specifically, if wolves are consumers that optimize tradeoffs between the cost and benefits of prey acquisition, changes in these factors may lead to prey-switching or negative-density dependent selection with potential consequences for community stability. For wolves, factors affecting cost and benefits include prey vulnerability, risk, reward, and availability, which can vary temporally. We described the wolf diet by the frequency of occurrence and percent biomass and characterized the diet using prey remains found in wolf scats on Isle Royale National Park, Michigan, USA, during May-October 2019 and 2020. We used logistic regression to estimate prey consumption over time. We predicted prey with temporal variation in cost (availability and/or vulnerability) such as adult moose (Alces alces), calf moose, and beaver (Castor canadensis) to vary in wolf diets. We analyzed 206 scats and identified 62% of remains as beaver, 26% as moose, and 12% as other species (birds, smaller mammals, and wolves). Adult moose were more likely to occur in wolf scats in May when moose are in poor condition following winter. The occurrence of moose calves peaked during June-mid-July following birth but before calf vulnerability declined as they matured. By contrast, beaver occurrence in wolf scat did not change over time, reflecting the importance of low-handling cost prey items for recently introduced lone or paired wolves. Our results demonstrate that the wolf diet is responsive to temporal changes in prey costs. Temporal fluctuation in diet may influence wolves' ecological role if prey respond to increased predation risk by altering foraging or breeding behavior.
Collapse
Affiliation(s)
- Adia R. Sovie
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Mark C. Romanski
- National Park ServiceIsle Royale National ParkHoughtonMichiganUSA
| | - Elizabeth K. Orning
- College of Environmental Science and ForestryState University of New YorkSyracuseNew YorkUSA
| | | | - Rachel Nichols
- Department of Biology and EnvironmentGrand Portage Band of Lake Superior ChippewaGrand PortageMinnesotaUSA
| | - Seth Moore
- Department of Biology and EnvironmentGrand Portage Band of Lake Superior ChippewaGrand PortageMinnesotaUSA
| | - Jerrold L. Belant
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
13
|
Zhao ST, Johnson-Bice SM, Roth JD. Foxes engineer hotspots of wildlife activity on the nutrient-limited Arctic tundra. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Kareiva P, Attwood SK, Bean K, Felix D, Marvier M, Miketa ML, Tate‐Pulliam E. A new era of wolf management demands better data and a more inclusive process. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Kareiva
- Aquarium of the Pacific Long Beach California United States
| | | | - Kim Bean
- Wolves of the Rockies Stevensville Montana United States
| | - Desiree Felix
- Aquarium of the Pacific Long Beach California United States
| | - Michelle Marvier
- Environmental Studies and Science Santa Clara University Santa Clara California United States
| | - Madison L. Miketa
- The Humane Society of the United States Washington, DC United States
| | | |
Collapse
|
15
|
Hernández DL, Bump JK. Predation of a Beaver (Castor canadensis) by a Gray Wolf (Canis lupus) during Winter. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-187.1.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Daniel L. Hernández
- Biology Department, Carleton College, 1 North College Street, Northfield, MN 55057
| | - Joseph K. Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota 2003 Upper Buford Circle, St. Paul, MN 5510
| |
Collapse
|
16
|
Berti E, Davoli M, Buitenwerf R, Dyer A, Hansen OLP, Hirt M, Svenning J, Terlau JF, Brose U, Vollrath F. The
r
package
enerscape
: A general energy landscape framework for terrestrial movement ecology. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emilio Berti
- EcoNetLab German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich‐Schiller‐University Jena Jena Germany
| | - Marco Davoli
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
- Section for Ecoinformatics & Biodiversity Department of Biology Aarhus University Aarhus C Denmark
| | - Robert Buitenwerf
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
- Section for Ecoinformatics & Biodiversity Department of Biology Aarhus University Aarhus C Denmark
| | - Alexander Dyer
- EcoNetLab German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich‐Schiller‐University Jena Jena Germany
| | - Oskar L. P. Hansen
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
| | - Myriam Hirt
- EcoNetLab German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich‐Schiller‐University Jena Jena Germany
| | - Jens‐Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Department of Biology Aarhus University Aarhus C Denmark
- Section for Ecoinformatics & Biodiversity Department of Biology Aarhus University Aarhus C Denmark
| | - Jördis F. Terlau
- EcoNetLab German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich‐Schiller‐University Jena Jena Germany
| | - Ulrich Brose
- EcoNetLab German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich‐Schiller‐University Jena Jena Germany
| | - Fritz Vollrath
- Department of Zoology University of Oxford Oxford UK
- Save the Elephants Nairobi Kenya
| |
Collapse
|
17
|
Kareiva P, Estes JA, Marvier M. Restore protected status for gray wolves. Science 2021; 373:632. [PMID: 34353943 DOI: 10.1126/science.abk2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- P Kareiva
- Aquarium of the Pacific, Long Beach, CA 90802, USA.
| | - J A Estes
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, CA 94060, USA
| | - M Marvier
- Department of Environmental Studies and Sciences, Santa Clara University, Santa Clara, CA 95053, USA
| |
Collapse
|
18
|
Smith DW, Peterson RO. Intended and unintended consequences of wolf restoration to Yellowstone and Isle Royale National Parks. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Gable TD, Homkes AT, Johnson-Bice SM, Windels SK, Bump JK. Wolves choose ambushing locations to counter and capitalize on the sensory abilities of their prey. Behav Ecol 2021. [DOI: 10.1093/beheco/araa147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Comprehensive knowledge of ambush behavior requires an understanding of where a predator expects prey to be, which is generally unknowable because ambush predators often hunt mobile prey that exhibit complex, irregular, or inconspicuous movements. Wolves (Canis lupus) are primarily cursorial predators, but they use ambush strategies to hunt beavers (Castor canadensis). Terrestrial beaver activity is predictable because beavers use well-defined, conspicuous habitat features repeatedly. Thus, studying where wolves wait-in-ambush for beavers provides a unique opportunity to understand how predators choose ambush locations in relation to prey activity. We searched 11 817 clusters of GPS locations from wolves in the Greater Voyageurs Ecosystem, International Falls, MN, and documented 748 ambushing sites and 214 instances where wolves killed beavers. Wolves chose ambush locations: 1) with olfactory concealment to avoid detection from the highly developed olfactory senses of beavers and 2) close (generally <5 m) to beaver habitat features to take advantage of beavers’ inability to visually detect motionless predators. Our work describes in detail the ambush strategies wolves use to hunt beavers and continues to overturn the traditional notion that wolves rely solely on cursorial hunting strategies. We also demonstrate that ambush predators can anticipate the movements and behavior of their prey due to a fundamental understanding of their prey’s sensory abilities. Wolves, therefore, and likely ambush predators in general, appear capable of simultaneously accounting for abiotic and biotic factors when choosing ambush locations, ultimately allowing them to counter and capitalize on the sensory abilities of their prey.
Collapse
Affiliation(s)
- Thomas D Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Austin T Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Sean M Johnson-Bice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve K Windels
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
- Voyageurs National Park, National Park Service, International Falls, MN, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
20
|
Abstract
The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions. Carnivore recovery is both good news for conservation and a challenge for management, particularly when recovery occurs in human-dominated landscapes. Therefore, we conclude by discussing several management considerations that, adapted to local contexts, may favor the recovery of apex predator populations and their ecological functions in nature.
Collapse
|