1
|
Park G, Grey JA, Mourkioti F, Han WM. 3D Mechanical Confinement Directs Muscle Stem Cell Fate and Function. Adv Biol (Weinh) 2025; 9:e2400717. [PMID: 40040295 PMCID: PMC12001014 DOI: 10.1002/adbi.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Muscle stem cells (MuSCs) play a crucial role in skeletal muscle regeneration, residing in a niche that undergoes dimensional and mechanical changes throughout the regeneration process. This study investigates how 3D confinement and stiffness encountered by MuSCs during the later stages of regeneration regulate their function, including stemness, activation, proliferation, and differentiation. An asymmetric 3D hydrogel bilayer platform is engineered with tunable physical constraints to mimic the regenerating MuSC niche. These results demonstrate that increased 3D confinement maintains Pax7 expression, reduces MuSC activation and proliferation, inhibits differentiation, and is associated with smaller nuclear size and decreased H4K16ac levels, suggesting that mechanical confinement modulates both nuclear architecture and epigenetic regulation. MuSCs in unconfined 2D environments exhibit larger nuclei and higher H4K16ac expression compared to those in more confined 3D conditions, leading to progressive activation, expansion, and myogenic commitment. This study highlights the importance of 3D mechanical cues in MuSC fate regulation, with 3D confinement acting as a mechanical brake on myogenic commitment, offering novel insights into the mechano-epigenetic mechanisms that govern MuSC behavior during muscle regeneration.
Collapse
Affiliation(s)
- GaYoung Park
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Josh A. Grey
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of CellDevelopmentand Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Institute for Regenerative MedicineIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Foteini Mourkioti
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Institute for Regenerative MedicineMusculoskeletal ProgramPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Woojin M. Han
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of CellDevelopmentand Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Institute for Regenerative MedicineIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
2
|
Cai G, Zhao W, Zhu T, Oliveira AL, Yao X, Zhang Y. Effects of protein conformational transition accompanied with crosslinking density cues in silk fibroin hydrogels on the proliferation and chondrogenesis of encapsulated stem cells. Regen Biomater 2025; 12:rbaf019. [PMID: 40290449 PMCID: PMC12033033 DOI: 10.1093/rb/rbaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/01/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025] Open
Abstract
Silk fibroin (SF) hydrogels possess excellent biocompatibility and biomimetic properties of the extracellular matrix. Among them, the mild chemical crosslinked SF hydrogels show great application potential in the fields of 3D cell culture and tissue repairing and thus have attracted widespread attention. However, the mobility of hydrophobic chain segments of SF molecules in these chemical crosslinked hydrogels can easily cause the molecules to undergo a self-assembly process from random coil to β-sheet conformation due to its lower energy state, thus inducing an inevitable conformational transition process. This process further leads to dynamic changes of important material features, such as the hydrogel pore size and mechanical properties, which can probably bring some non-negligible and unknown impacts on cell behaviors and their biomedical applications. In this study, a typical mild crosslinking system composed of horseradish peroxidase and hydrogen peroxide was chosen to prepare SF hydrogels. A feasible protein conformational transition rate controlling strategy based on hydrogel crosslinking density regulation was also proposed. Our results demonstrate that the lower the hydrogel crosslinking density, the faster the conformational transition rate. Subsequently, SF hydrogels with different conformational transition rates were successfully constructed to investigate the impact of the protein conformational transition rate accompanied with initial crosslinking density on the proliferation and chondrogenic differentiation of encapsulated stem cells. Results comprehensively illustrated that the conformational transition process could effectively regulate cell behavior. The hydrogel with an appropriate conformational transition rate obviously promoted the proliferation and chondrogenesis of encapsulated stem cells, while too fast or too slow transition processes slowed down these cell activities. These findings are hopefully to provide valuable guidance for the development and efficient usage of SF hydrogels in the fields of 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Guolong Cai
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Weikun Zhao
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Tianhao Zhu
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Xiang Yao
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
3
|
Wang J, Han Z, Zhang L, Ding R, Ding C, Chen K, Wang Z. Two dimensional MoS 2 accelerates mechanically controlled polymerization and remodeling of hydrogel. Nat Commun 2025; 16:1689. [PMID: 39956812 PMCID: PMC11830778 DOI: 10.1038/s41467-025-57068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Self-remodeling material can change their physical properties based on mechanical environment. Recently, mechanically controlled polymerization using mechanoredox catalyst enabled composite materials to undergo a permanent structural change, thereby enhancing their mechanical strength. However, a significant delay in material's response was observed due to the sluggish activation of the bulk catalyst for polymerization. Herein, we report a fast, mechanically controlled radical polymerization of water soluble monomers using 2D MoS2 as the mechanoredox catalyst, studied under various mechanical stimuli, including ultrasound, ball milling and low frequency vibrations. Our strategy enables complete polymerization within several minutes of work. This accelerated process can be utilized to create composite hydrogels with the ability to alter their mechanical and electrical properties in response to mechanical stimuli. This strategy has potential for applications in smart materials such as hydrogel sensors, artificial muscles, and implantable biomaterials.
Collapse
Affiliation(s)
- Jian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhijun Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Longfei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Ran Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Chengqiang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Kai Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, China.
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Piantino M, Muller Q, Nakadozono C, Yamada A, Matsusaki M. Towards more realistic cultivated meat by rethinking bioengineering approaches. Trends Biotechnol 2025; 43:364-382. [PMID: 39271415 DOI: 10.1016/j.tibtech.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Cultivated meat (CM) refers to edible lab-grown meat that incorporates cultivated animal cells. It has the potential to address some issues associated with real meat (RM) production, including the ethical and environmental impact of animal farming, and health concerns. Recently, various biomanufacturing methods have been developed to attempt to recreate realistic meat in the laboratory. We therefore overview recent achievements and challenges in the production of CM. We also discuss the issues that need to be addressed and suggest additional recommendations and potential criteria to help to bridge the gap between CM and RM from an engineering standpoint.
Collapse
Affiliation(s)
- Marie Piantino
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Quentin Muller
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Chika Nakadozono
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Shimadzu Analytical Innovation Research Laboratories, Osaka University, Osaka, Japan; Shimadzu Corporation, Kyoto, Japan
| | - Asuka Yamada
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Toppan Holdings Inc., Business Development Division, Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Wang D, Wu J, Xu Z, Jia J, Lai Y, He Z. Increased Matrix Stiffness Promotes Slow Muscle Fibre Regeneration After Skeletal Muscle Injury. J Cell Mol Med 2025; 29:e70423. [PMID: 39969079 PMCID: PMC11837045 DOI: 10.1111/jcmm.70423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
The global prevalence of skeletal muscle diseases has progressively escalated in recent years. This study aimed to explore the potential role of matrix stiffness in the repair mechanisms following skeletal muscle injury. We observed an increase in muscle stiffness, a significant rise in the number of type I muscle fibres and a notable elevation in mRNA expression levels of Myh7/2 alongside a decrease in Myh1/4 on day 3 post tibialis anterior muscle injury. To replicate these in vivo changes, C2C12 cells were cultured under high matrix stiffness conditions, and compared to those on low matrix stiffness, the C2C12 cells cultured on high matrix stiffness showed increased expression levels of Myh7/2 mRNA and production levels of MYH7/2, indicating differentiation into slow-twitch muscle fibre types. Furthermore, up-regulation of DRP1 phosphorylation along with elevated F-actin fluorescence intensity and RHOA and ROCK1 production indicates that high matrix stiffness induces cytoskeletal remodelling to regulate mitochondrial fission processes. Our data also revealed up-regulation in mRNA expression level for Actb, phosphorylation level for DRP1, mitochondrial quantity and MYH7/2 production level. Importantly, these effects were effectively reversed by the application of ROCK inhibitor Y-27632, highlighting that targeting cytoskeletal dynamics can modulate myogenic differentiation pathways within C2C12 cells. These findings provide valuable insights into how matrix stiffness influences fibre type transformation during skeletal muscle injury repair while suggesting potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Physical EducationAnhui University of TechnologyMaanshanAnhuiChina
| | - Jiahong Wu
- Department of MedicineSun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Zeyu Xu
- Department of MedicineSun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Jinning Jia
- Department of PathologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Yimei Lai
- Department of PathologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| | - Zhihua He
- Institute of UrologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
6
|
Yu H, Dou S, Wang H, Sun Y, Qu J, Liu T, Liu X, Wei C, Gao H. Role of m 6A methyltransferase METTL3 in keratoconus pathogenesis. Exp Eye Res 2025; 251:110207. [PMID: 39681235 DOI: 10.1016/j.exer.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Keratoconus (KC) is the most common ectatic corneal disease with unknown pathogenesis. This study aimed to investigate the role of methyltransferase-like enzyme 3 (METTL3) in KC pathogenesis. In the present study, we examined the levels of METTL3 and other N6-methyladenosine (m6A) modification-related proteins in KC samples and human stromal keratocyte (HTK) cells stimulated by mechanical stretch (MS) using Western blotting and immunohistochemistry. The level of m6A RNA methylation was quantified using the m6A RNA methylation assay kit. Genetic (Mettl3 knockdown mice) and pharmacological (STM2457) approaches were employed to investigate the effect of METTL3 on the expression of metalloproteinases (MMPs) in MS-treated corneal stromal cells (CSCs) via Western blotting and real-time polymerase chain reaction. Moreover, YAP signaling activity was assessed to explore the relationship between METTL3 and MMPs in MS-treated CSCs. Increased expression of METTL3 and decreased expression of METTL14, WTAP, and YTHDF2 were detected in KC samples and MS-stimulated HTK cells. Correspondingly, the m6A levels in KC specimens and MS-stimulated CSCs were significantly higher than those in controls but were significantly reduced when METTL3 activity was genetically and pharmacologically blocked. Inhibition of METTL3 significantly reduced the expression of MMP1 and MMP3 in mechanically stretched CSCs and reduced YAP activity. Furthermore, pharmacologically inhibiting YAP signaling in MS-stimulated HTK cells significantly reduced MMP1 and MMP3 expression. Our findings highlight the pathogenic role of METTL3 in KC. Further investigation is required to investigate the underlying mechanism.
Collapse
Affiliation(s)
- Huimin Yu
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Huijin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Yaru Sun
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Junpeng Qu
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, 250021, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China; School of Public Health, Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
7
|
Chang TL, Borelli AN, Cutler AA, Olwin BB, Anseth KS. Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells. Acta Biomater 2025; 192:48-60. [PMID: 39615561 PMCID: PMC11949280 DOI: 10.1016/j.actbio.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Quiescent skeletal muscle satellite cells (SCs) located on myofibers activate in response to muscle injury to regenerate muscle; however, identifying the role of specific matrix signals on SC behavior in vivo is difficult. Therefore, we developed a viscoelastic hydrogel with tunable properties to encapsulate myofibers while maintaining stem cell niche polarity and SC-myofiber interactions to investigate how matrix signals, including viscoelasticity and the integrin-binding ligand arginyl-glycyl-aspartic acid (RGD), influence SC behavior during muscle regeneration. Viscoelastic hydrogels support myofiber culture while preserving SC stemness for up to 72 hours post-encapsulation, minimizing myofiber hypercontraction and SC hyperproliferation compared to Matrigel. Pax7 is continuously expressed in SCs on myofibers embedded in hydrogels with higher stress relaxation while SCs differentiate when embedded in elastic hydrogels. Increasing RGD concentrations activates SCs and translocates YAP/TAZ to the nucleus as revealed by photo-expansion microscopy. Deleting YAP/TAZ abrogates RGD-mediated activation of SCs, and thus, YAP/TAZ mediates RGD ligand-induced SC activation and subsequent proliferation. STATEMENT OF SIGNIFICANCE: Satellite cells (SCs) are responsible for muscle maintenance and regeneration, but how the extracellular matrix regulates SC function is less understood and would benefit from new biomaterial models that can recapitulate the complexity of SC niche in vitro. Upon isolation of myofibers, SCs exit quiescence, becoming activated. To circumvent this issue, we developed a viscoelastic hydrogel for encapsulating myofibers, which maintains SC quiescence and limits differentiation, allowing the study of RGD effects. We showed that increasing RGD concentration promotes activation and suppresses differentiation. Finally, to allow high resolution imaging for resolving the subcellular localization of YAP/TAZ transcriptional co-activators, we applied photo-expansion microscopy and gel-to-gel transfer techniques to quantify YAP/TAZ nuclear-cytoplasmic ratio, revealing that RGD-mediated activation relies on YAP/TAZ nuclear translocation.
Collapse
Affiliation(s)
- Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bradley B Olwin
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
8
|
Ohnsorg ML, Hushka EA, Anseth KS. Photoresponsive Chemistries for User-Directed Hydrogel Network Modulation to Investigate Cell-Matrix Interactions. Acc Chem Res 2025; 58:47-60. [PMID: 39665396 DOI: 10.1021/acs.accounts.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Synthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics in vitro, biomaterial matrices have been developed with tailorable properties that can be modulated in situ in the presence of cells. While numerous macromolecules can serve as a basis in the design of a synthetic ECM, our group has exploited multi-arm poly(ethylene glycol) (PEG) macromolecules because of the ease of functionalization, many complementary bio-click reactions to conjugate biological signals, and ultimately, the ability to create well-defined systems to investigate cell-matrix interactions. To date, significant strides have been made in developing bio-responsive and transient synthetic ECM materials that degrade, relax stress, or strain-stiffen in response to cell-mediated stimuli through ECM-cleaving enzymes or integrin-mediated ECM adhesions. However, our group has also designed hydrogels incorporating different photoresponsive moieties, and these moieties facilitate user-defined spatiotemporal modulation of the extracellular microenvironment in vitro. The application of light allows one to break, form, and rearrange network bonds in the presence of cells to alter the biomechanical and biochemical microenvironment to investigate cell-matrix interactions in real-time. Such photoresponsive materials have facilitated fundamental discoveries in the biological pathways related to outside-in signaling, which guide important processes related to tissue development, homeostasis, disease progression, and regeneration. This review focuses on the phototunable chemical toolbox that has been used by Anseth and co-workers to modulate hydrogel properties post-network formation through: bond-breaking chemistries, such as o-nitrobenzyl and coumarin methyl ester photolysis; bond-forming chemistries, such as azadibenzocyclooctyne photo-oligomerization and anthracene dimerization; and bond-rearranging chemistries, such as allyl sulfide addition-fragmentation chain transfer and reversible ring opening polymerization of 1,2-dithiolanes. By using light to modulate the cellular microenvironment (in 2D, 3D, and even 4D), innovative experiments can be designed to study mechanosensing of single cells or multicellular constructs, pattern adhesive ligands to spatially control cell-integrin binding or modulate on-demand the surrounding cell niche to alter outside-in signaling in a temporally controlled manner. To date, these photochemically defined materials have been used for the culture, differentiation, and directed morphogenesis of primary cells and stem cells, co-cultured cells, and even multicellular constructs (e.g., organoids).Herein, we present examples of how this photochemical toolbox has been used under physiological reaction conditions with spatiotemporal control to answer important biological questions and address medical needs. Specifically, our group has exploited these materials to study mesenchymal stem cell mechanosensing and differentiation, the activation of fibroblasts in the context of valve and cardiac fibrosis, muscle stem cell response to matrix changes during injury and aging, and predictable symmetry breaking during intestinal organoid development. The materials and reactions described herein are diverse and enable the design and implementation of an array of hydrogels that can serve as cell delivery systems, tissue engineering scaffolds, or even in vitro models for studying disease or screening for new drug treatments.
Collapse
Affiliation(s)
- Monica L Ohnsorg
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ella A Hushka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
9
|
Amitrano A, Yuan Q, Agarwal B, Sen A, Dance YW, Zuo Y, Phillip JM, Gu L, Konstantopoulos K. Extracellular fluid viscosity regulates human mesenchymal stem cell lineage and function. SCIENCE ADVANCES 2025; 11:eadr5023. [PMID: 39742493 PMCID: PMC11691697 DOI: 10.1126/sciadv.adr5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Human mesenchymal stem cells (hMSCs) respond to mechanical stimuli, including stiffness and viscoelasticity. To date, it is unknown how extracellular fluid viscosity affects hMSC function on substrates of different stiffness and viscoelasticity. While hMSCs assume an adipogenic phenotype on gels of low stiffness and prescribed stress relaxation times, elevated fluid viscosity is sufficient to bias hMSCs toward an osteogenic phenotype. Elevated viscosity induces Arp2/3-dependent actin remodeling, enhances NHE1 activity, and promotes hMSC spreading via up-regulation of integrin-linked kinase. The resulting increase in membrane tension triggers the activation of transient receptor potential cation vanilloid 4 to facilitate calcium influx, thereby stimulating RhoA/ROCK and driving YAP-dependent RUNX2 translocation to the nucleus, leading to osteogenic differentiation. hMSCs on soft gels at elevated relative to basal viscosity favor an M2 macrophage phenotype. This study establishes fluid viscosity as a key physical cue that imprints osteogenic memory in hMSCs and promotes an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qinling Yuan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bhawana Agarwal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anindya Sen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yoseph W. Dance
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi Zuo
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Deparment of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jude M. Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Luo Gu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Deparment of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| |
Collapse
|
10
|
Kim J, Lee MC, Jeon J, Rodríguez-delaRosa A, Endo Y, Kim DS, Madrigal-Salazar AD, Seo JW, Lee H, Kim KT, Moon JI, Park SG, Lopez-Pacheco MC, Alkhateeb AF, Sobahi N, Bassous N, Liu W, Lee JS, Kim S, Aykut DY, Nasr ML, Hussain MA, Lee SH, Kim WJ, Pourquié O, Sinha I, Shin SR. Combinational regenerative inductive effect of bio-adhesive hybrid hydrogels conjugated with hiPSC-derived myofibers and its derived EVs for volumetric muscle regeneration. Bioact Mater 2025; 43:579-602. [PMID: 40115877 PMCID: PMC11923440 DOI: 10.1016/j.bioactmat.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 03/23/2025] Open
Abstract
In regenerative medicine, extracellular vesicles (EVs) possess the potential to repair injured cells by delivering modulatory factors. However, the therapeutic effect of EVs in large-scale tissue defects, which are subject to prolonged timelines for tissue architecture and functional restoration, remains poorly understood. In this study, we introduce EVs and cell-tethering hybrid hydrogels composed of tyramine-conjugated gelatin (GelTA) that can be in-situ crosslinked with EVs derived from human induced pluripotent stem cell-derived myofibers (hiPSC-myofibers) and hiPSC-muscle precursor cells. This hybrid hydrogel sustains the release of EVs and provides a beneficial nano-topography and mechanical properties for creating a favorable extracellular matrix. Secreted EVs from the hiPSC-myofibers contain specific microRNAs, potentially improving myogenesis and angiogenesis. Herein, we demonstrate increased myogenic markers and fusion/differentiation indexes through the combinatory effects of EVs and integrin-mediated adhesions in the 3D matrix. Furthermore, we observe a unique impact of EVs, which aid in maintaining the viability and phenotype of myofibers under harsh environments. The hybrid hydrogel in-situ crosslinked with hiPSCs and EVs is facilely used to fabricate large-scale muscle constructs by the stacking of micro-patterned hydrogel domains. Later, we confirmed a combinational effect, whereby muscle tissue regeneration and functional restoration were improved, via an in vivo murine volumetric muscle loss model.
Collapse
Affiliation(s)
- Jiseong Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Goyang, 10326, Republic of Korea
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jieun Jeon
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Goyang, 10326, Republic of Korea
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02138, USA
| | - Yori Endo
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Andrea Donaxi Madrigal-Salazar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Guadalajara, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hyeseon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 03080, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 03080, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 03080, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mariana Carolina Lopez-Pacheco
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Guadalajara, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan, Jalisco, 45121, Mexico
| | - Abdulhameed F Alkhateeb
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Wenpeng Liu
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Seongsoo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dilara Yilmaz Aykut
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mahmoud Lotfi Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Medicine, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Goyang, 10326, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 03080, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02138, USA
| | - Indranil Sinha
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Xie N, Tian J, Li Z, Shi N, Li B, Cheng B, Li Y, Li M, Xu F. Invited Review for 20th Anniversary Special Issue of PLRev "AI for Mechanomedicine". Phys Life Rev 2024; 51:328-342. [PMID: 39489078 DOI: 10.1016/j.plrev.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mechanomedicine is an interdisciplinary field that combines different areas including biomechanics, mechanobiology, and clinical applications like mechanodiagnosis and mechanotherapy. The emergence of artificial intelligence (AI) has revolutionized mechanomedicine, providing advanced tools to analyze the complex interactions between mechanics and biology. This review explores how AI impacts mechanomedicine across four key aspects, i.e., biomechanics, mechanobiology, mechanodiagnosis, and mechanotherapy. AI improves the accuracy of biomechanical characterizations and models, deepens the understanding of cellular mechanotransduction pathways, and enables early disease detection through mechanodiagnosis. In addition, AI optimizes mechanotherapy that targets biomechanical features and mechanobiological markers by personalizing treatment strategies based on real-time patient data. Even with these advancements, challenges still exist, particularly in data quality and the ethical integration into AI in clinical practice. The integration of AI with mechanomedicine offers transformative potential, enabling more accurate diagnostics and personalized treatments, and discovering novel mechanobiological pathways.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Jin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061 China
| | - Bin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Moxiao Li
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Lin YH, Lou J, Xia Y, Chaudhuri O. Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. Adv Healthc Mater 2024; 13:e2402059. [PMID: 39407436 PMCID: PMC11617263 DOI: 10.1002/adhm.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity. In hydrogels with side-chain cross-linker (SCX), higher cross-linker concentrations enhance stiffness and decelerate stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio reduces stiffness and shortens relaxation time. In hydrogels with telechelic cross-linking, maximal stiffness and relaxation time occurs at intermediate cross-linker mixing ratio for both linear cross-linker (LX) and star cross-linker (SX), with higher cross-linker valency further enhancing these properties. Further, the ranges of stiffness and viscoelasticity accessible with the different cross-linker architectures are found to be distinct, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and SX hydrogels providing increased stiffness and slower stress relaxation versus LX hydrogels. This research underscores the pivotal role of cross-linker architecture in defining hydrogel stiffness and viscoelasticity, providing insights for designing DCC hydrogels with tailored mechanical properties for specific biomedical applications.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Junzhe Lou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
14
|
Madl CM, Wang YX, Holbrook CA, Su S, Shi X, Byfield FJ, Wicki G, Flaig IA, Blau HM. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc Natl Acad Sci U S A 2024; 121:e2406787121. [PMID: 39163337 PMCID: PMC11363279 DOI: 10.1073/pnas.2406787121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yu Xin Wang
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Colin A. Holbrook
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Shiqi Su
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| | - Xuechen Shi
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Fitzroy J. Byfield
- Department of Physiology, Perelman School of Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Gwendoline Wicki
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Iris A. Flaig
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, LausanneCH-1015, Switzerland
| | - Helen M. Blau
- Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
15
|
Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. Cell Metab 2024; 36:1175-1183. [PMID: 38670108 DOI: 10.1016/j.cmet.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Exercise has long been acknowledged for its powerful disease-preventing, health-promoting effects. However, the cellular and molecular mechanisms responsible for the beneficial effects of exercise are not fully understood. Inflammation is a component of the stress response to exercise. Recent work has revealed that such inflammation is not merely a symptom of exertion; rather, it is a key regulator of exercise adaptations, particularly in skeletal muscle. The purpose of this piece is to provide a conceptual framework that we hope will integrate exercise immunology with exercise physiology, muscle biology, and cellular immunology. We start with an overview of early studies in the field of exercise immunology, followed by an exploration of the importance of stromal cells and immunocytes in the maintenance of muscle homeostasis based on studies of experimental muscle injury. Subsequently, we discuss recent advances in our understanding of the functions and physiological relevance of the immune system in exercised muscle. Finally, we highlight a potential immunological basis for the benefits of exercise in musculoskeletal diseases and aging.
Collapse
Affiliation(s)
- P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Collins BC, Shapiro JB, Scheib MM, Musci RV, Verma M, Kardon G. Three-dimensional imaging studies in mice identify cellular dynamics of skeletal muscle regeneration. Dev Cell 2024; 59:1457-1474.e5. [PMID: 38569550 PMCID: PMC11153043 DOI: 10.1016/j.devcel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jacob B Shapiro
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mya M Scheib
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert V Musci
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mayank Verma
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Yamada A, Kitano S, Matsusaki M. Cellular memory function from 3D to 2D: Three-dimensional high density collagen microfiber cultures induce their resistance to reactive oxygen species. Mater Today Bio 2024; 26:101097. [PMID: 38827038 PMCID: PMC11140783 DOI: 10.1016/j.mtbio.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Cell properties generally change when the culture condition is changed. However, mesenchymal stem cells cultured on a hard material surface maintain their differentiation characteristics even after being cultured on a soft material surface. This phenomenon suggests the possibility of a cell culture material to memorize stem cell function even in changing cell culture conditions. However, there are no reports about cell memory function in three-dimensional (3D) culture. In this study, colon cancer cells were cultured with collagen microfibers (CMF) in 3D to evaluate their resistance to reactive oxygen species (ROS) in comparison with a monolayer (2D) culture condition and to understand the effect of 3D-culture on cell memory function. The ratio of ROS-negative cancer cells in 3D culture increased with increasing amounts of CMF and the highest amount of CMF was revealed to be 35-fold higher than that of the 2D condition. The ROS-negative cells ratio was maintained for 7 days after re-seeding in a 2D culture condition, suggesting a 3D-memory function of ROS resistance. The findings of this study will open up new opportunities for 3D culture to induce cell memory function.
Collapse
Affiliation(s)
- Asuka Yamada
- TOPPAN HOLDINGS INC. Business Development Division, Technical Research Institute, Takanodaiminami, Sugito-machi, Saitama 345-8508, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shiro Kitano
- TOPPAN HOLDINGS INC. Business Development Division, Technical Research Institute, Takanodaiminami, Sugito-machi, Saitama 345-8508, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Tracking of Nascent Matrix Deposition during Muscle Stem Cell Activation across Lifespan Using Engineered Hydrogels. Adv Biol (Weinh) 2024; 8:e2400091. [PMID: 38616175 DOI: 10.1002/adbi.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.
Collapse
Affiliation(s)
- Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin A Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleanor Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Kristensen MA, Rich KK, Mogensen TC, Damsgaard Jensen AM, Fex Svenningsen Å, Zhang M. Focal Traumatic Brain Injury Impairs the Integrity of the Basement Membrane of Hindlimb Muscle Fibers Revealed by Extracellular Matrix Immunoreactivity. Life (Basel) 2024; 14:543. [PMID: 38792565 PMCID: PMC11121831 DOI: 10.3390/life14050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI.
Collapse
Affiliation(s)
- Mette Albæk Kristensen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | - Karen Kalhøj Rich
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | - Tobias Christian Mogensen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
| | | | - Åsa Fex Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, DK-5230 Odense, Denmark
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark; (M.A.K.); (K.K.R.); (T.C.M.); (Å.F.S.)
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
20
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Vera KR, Bretherton RC, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588191. [PMID: 38645065 PMCID: PMC11030224 DOI: 10.1101/2024.04.04.588191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biomechanical contributions of the ECM underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered - particularly in a reversible manner - are extremely valuable for studying these mechanobiological phenomena. Herein, we introduce a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct bacterial transpeptidases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa - 6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network was achieved via mask-based and two-photon lithography; these stiffened patterned regions could be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, we investigated the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell (hMSC) morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory at the global transcriptome level via RNAseq. We expect this platform to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, as well as disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
21
|
Taale M, Schamberger B, Monclus MA, Dolle C, Taheri F, Mager D, Eggeler YM, Korvink JG, Molina‐Aldareguia JM, Selhuber‐Unkel C, Lantada AD, Islam M. Microarchitected Compliant Scaffolds of Pyrolytic Carbon for 3D Muscle Cell Growth. Adv Healthc Mater 2024; 13:e2303485. [PMID: 38150609 PMCID: PMC11469158 DOI: 10.1002/adhm.202303485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/29/2023]
Abstract
The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | | | - Christian Dolle
- Microscopy of Nanoscale Structures and Mechanisms (MNM)Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of TechnologyEngesserstr. 7D‐76131KarlsruheGermany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Dario Mager
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Yolita M. Eggeler
- Microscopy of Nanoscale Structures and Mechanisms (MNM)Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of TechnologyEngesserstr. 7D‐76131KarlsruheGermany
| | - Jan G. Korvink
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Jon M. Molina‐Aldareguia
- IMDEA Materials InstituteEric Kandel, 2Getafe28906Spain
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutierréz Abascal, 2Madrid28006Spain
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutierréz Abascal, 2Madrid28006Spain
| | - Monsur Islam
- IMDEA Materials InstituteEric Kandel, 2Getafe28906Spain
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
22
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
23
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
24
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
25
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Duran P, Yang BA, Plaster E, Eiken M, Loebel C, Aguilar CA. Quantification of local matrix deposition during muscle stem cell activation using engineered hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576326. [PMID: 38328131 PMCID: PMC10849481 DOI: 10.1101/2024.01.20.576326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.
Collapse
Affiliation(s)
- Pamela Duran
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eleanor Plaster
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Madeline Eiken
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
dos Santos AEA, Guadalupe JL, Albergaria JDS, Almeida IA, Moreira AMS, Copola AGL, de Araújo IP, de Paula AM, Neves BRA, Santos JPF, da Silva AB, Jorge EC, Andrade LDO. Random cellulose acetate nanofibers: a breakthrough for cultivated meat production. Front Nutr 2024; 10:1297926. [PMID: 38249608 PMCID: PMC10796801 DOI: 10.3389/fnut.2023.1297926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Overcoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway. In addition, we have successfully developed a novel process for stacking cell-loaded CAN sheets, enabling the production of a three-dimensional meat product. C2C12 and H9c2 loaded CAN sheets were stacked (up to four layers) to form a ~300-400 μm thick tissue 2 cm in length, organized in a mesh of uniaxial aligned cells. To further demonstrate the effectiveness of this methodology for cultivated meat purposes, we have generated thick and viable constructs using chicken muscle satellite cells (cSCs) and random CAN. This groundbreaking discovery offers a cost-effective and biomimetic solution for cultivating and differentiating muscle cells, forging a crucial link between tissue engineering and the pursuit of sustainable and affordable cultivated meat production.
Collapse
Affiliation(s)
- Ana Elisa Antunes dos Santos
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jorge Luís Guadalupe
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Douglas Silva Albergaria
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Itallo Augusto Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Maria Siqueira Moreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Gonçalves Lio Copola
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Isabella Paula de Araújo
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Ana Maria de Paula
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernardo Ruegger Almeida Neves
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo Ferreira Santos
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Aline Bruna da Silva
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
29
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Yaghi OK, Hanna BS, Langston PK, Michelson DA, Jayewickreme T, Marin-Rodero M, Benoist C, Mathis D. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat Immunol 2023; 24:2053-2067. [PMID: 37932455 PMCID: PMC10792729 DOI: 10.1038/s41590-023-01669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1β, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.
Collapse
Affiliation(s)
- Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Teshika Jayewickreme
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Miguel Marin-Rodero
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. RESEARCH SQUARE 2023:rs.3.rs-3673774. [PMID: 38077061 PMCID: PMC10705706 DOI: 10.21203/rs.3.rs-3673774/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
32
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565166. [PMID: 37961392 PMCID: PMC10635061 DOI: 10.1101/2023.11.01.565166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
33
|
Xia M, Wu M, Li Y, Liu Y, Jia G, Lou Y, Ma J, Gao Q, Xie M, Chen Y, He Y, Li H, Li W. Varying mechanical forces drive sensory epithelium formation. SCIENCE ADVANCES 2023; 9:eadf2664. [PMID: 37922362 PMCID: PMC10624343 DOI: 10.1126/sciadv.adf2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
The mechanical cues of the external microenvironment have been recognized as essential clues driving cell behavior. Although intracellular signals modulating cell fate during sensory epithelium development is well understood, the driving force of sensory epithelium formation remains elusive. Here, we manufactured a hybrid hydrogel with tunable mechanical properties for the cochlear organoids culture and revealed that the extracellular matrix (ECM) drives sensory epithelium formation through shifting stiffness in a stage-dependent pattern. As the driving force, moderate ECM stiffness activated the expansion of cochlear progenitor cell (CPC)-derived epithelial organoids by modulating the integrin α3 (ITGA3)/F-actin cytoskeleton/YAP signaling. Higher stiffness induced the transition of CPCs into sensory hair cells (HCs) through increasing the intracellular Ca2+ signaling mediated by PIEZO2 and then activating KLF2 to accomplish the cell specification . Our results identify the molecular mechanism of sensory epithelium formation guided by ECM mechanical force and contribute to developing therapeutic approaches for HC regeneration.
Collapse
Affiliation(s)
- Mingyu Xia
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Mingxuan Wu
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoqian Liu
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Gaogan Jia
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiyun Lou
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaoyao Ma
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huawei Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Centre of Cochlear Implant, Shanghai 200031, China
| | - Wenyan Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Chen Z, Lv Z, Zhuang Y, Saiding Q, Yang W, Xiong W, Zhang Z, Chen H, Cui W, Zhang Y. Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300180. [PMID: 37230467 DOI: 10.1002/adma.202300180] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The aberrant mechanical microenvironment in degenerated tissues induces misdirection of cell fate, making it challenging to achieve efficient endogenous regeneration. Herein, a hydrogel microsphere-based synthetic niche with integrated cell recruitment and targeted cell differentiation properties via mechanotransduction is constructed . Through the incorporation of microfluidics and photo-polymerization strategies, fibronectin (Fn) modified methacrylated gelatin (GelMA) microspheres are prepared with the independently tunable elastic modulus (1-10Kpa) and ligand density (2 and 10 µg mL-1 ), allowing a wide range of cytoskeleton modulation to trigger the corresponding mechanobiological signaling. The combination of the soft matrix (2Kpa) and low ligand density (2 µg mL-1 ) can support the nucleus pulposus (NP)-like differentiation of intervertebral disc (IVD) progenitor/stem cells by translocating Yes-associated protein (YAP), without the addition of inducible biochemical factors. Meanwhile, platelet-derived growth factor-BB (PDGF-BB) is loaded onto Fn-GelMA microspheres (PDGF@Fn-GelMA) via the heparin-binding domain of Fn to initiate endogenous cell recruitment. In in vivo experiments, hydrogel microsphere-niche maintained the IVD structure and stimulated matrix synthesis. Overall, this synthetic niche with cell recruiting and mechanical training capabilities offered a promising strategy for endogenous tissue regeneration.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Nanchen Road 333, Shanghai, 200444, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
35
|
Luo X, Liu Z, Xu R. Adult tissue-specific stem cell interaction: novel technologies and research advances. Front Cell Dev Biol 2023; 11:1220694. [PMID: 37808078 PMCID: PMC10551553 DOI: 10.3389/fcell.2023.1220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Adult tissue-specific stem cells play a dominant role in tissue homeostasis and regeneration. Various in vivo markers of adult tissue-specific stem cells have been increasingly reported by lineage tracing in genetic mouse models, indicating that marked cells differentiation is crucial during homeostasis and regeneration. How adult tissue-specific stem cells with indicated markers contact the adjacent lineage with indicated markers is of significance to be studied. Novel methods bring future findings. Recent advances in lineage tracing, synthetic receptor systems, proximity labeling, and transcriptomics have enabled easier and more accurate cell behavior visualization and qualitative and quantitative analysis of cell-cell interactions than ever before. These technological innovations have prompted researchers to re-evaluate previous experimental results, providing increasingly compelling experimental results for understanding the mechanisms of cell-cell interactions. This review aimed to describe the recent methodological advances of dual enzyme lineage tracing system, the synthetic receptor system, proximity labeling, single-cell RNA sequencing and spatial transcriptomics in the study of adult tissue-specific stem cells interactions. An enhanced understanding of the mechanisms of adult tissue-specific stem cells interaction is important for tissue regeneration and maintenance of homeostasis in organisms.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
37
|
Falcucci T, Radke M, Sahoo JK, Hasturk O, Kaplan DL. Multifunctional silk vinyl sulfone-based hydrogel scaffolds for dynamic material-cell interactions. Biomaterials 2023; 300:122201. [PMID: 37348323 PMCID: PMC10366540 DOI: 10.1016/j.biomaterials.2023.122201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Biochemical and mechanical interactions between cells and the surrounding extracellular matrix influence cell behavior and fate. Mimicking these features in vitro has prompted the design and development of biomaterials, with continuing efforts to improve tailorable systems that also incorporate dynamic chemical functionalities. The majority of these chemistries have been incorporated into synthetic biomaterials, here we focus on modifications of silk protein with dynamic features achieved via enzymatic, "click", and photo-chemistries. The one-pot synthesis of vinyl sulfone modified silk (SilkVS) can be tuned to manipulate the degree of functionalization. The resultant modified protein-based material undergoes three different gelation mechanisms, enzymatic, "click", and light-induced, to generate hydrogels for in vitro cell culture. Further, the versatility of this chemical functionality is exploited to mimic cell-ECM interactions via the incorporation of bioactive peptides and proteins or by altering the mechanical properties of the material to guide cell behavior. SilkVS is well-suited for use in in vitro culture, providing a natural protein with both tunable biochemistry and mechanics.
Collapse
Affiliation(s)
- Thomas Falcucci
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - Margaret Radke
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | | | - Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA.
| |
Collapse
|
38
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552197. [PMID: 37609145 PMCID: PMC10441277 DOI: 10.1101/2023.08.08.552197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Lead contact
| |
Collapse
|
39
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
40
|
Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5161. [PMID: 37512435 PMCID: PMC10386333 DOI: 10.3390/ma16145161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The extracellular matrix (ECM) of natural cells typically exhibits dynamic mechanical properties (viscoelasticity and dynamic stiffness). The viscoelasticity and dynamic stiffness of the ECM play a crucial role in biological processes, such as tissue growth, development, physiology, and disease. Hydrogels with viscoelasticity and dynamic stiffness have recently been used to investigate the regulation of cell behavior and fate. This article first emphasizes the importance of tissue viscoelasticity and dynamic stiffness and provides an overview of characterization techniques at both macro- and microscale. Then, the viscoelastic hydrogels (crosslinked via ion bonding, hydrogen bonding, hydrophobic interactions, and supramolecular interactions) and dynamic stiffness hydrogels (softening, stiffening, and reversible stiffness) with different crosslinking strategies are summarized, along with the significant impact of viscoelasticity and dynamic stiffness on cell spreading, proliferation, migration, and differentiation in two-dimensional (2D) and three-dimensional (3D) cell cultures. Finally, the emerging trends in the development of dynamic mechanical hydrogels are discussed.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuofan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
41
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
42
|
Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W, Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Le Grand F, Vallecillo-García P, Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response of fibro-adipogenic progenitors. NPJ Regen Med 2023; 8:19. [PMID: 37019910 PMCID: PMC10076435 DOI: 10.1038/s41536-023-00291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFβ signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.
Collapse
Affiliation(s)
- Georgios Kotsaris
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Taimoor H Qazi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Bioengineering, University of Pennsylvania, 19104, Philadelphia, USA
- Weldon School of Biomedical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Christian H Bucher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Hafsa Zahid
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computing IMPRS-BAC, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Vladimir Ugorets
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - William Jarassier
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | - Fabien Le Grand
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pedro Vallecillo-García
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
- Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
43
|
Gallardo FS, Córdova-Casanova A, Bock-Pereda A, Rebolledo DL, Ravasio A, Casar JC, Brandan E. Denervation Drives YAP/TAZ Activation in Muscular Fibro/Adipogenic Progenitors. Int J Mol Sci 2023; 24:ijms24065585. [PMID: 36982659 PMCID: PMC10059792 DOI: 10.3390/ijms24065585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.
Collapse
Affiliation(s)
- Felipe S. Gallardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Alexia Bock-Pereda
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Daniela L. Rebolledo
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, School of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
- Correspondence:
| |
Collapse
|
44
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
46
|
Farsheed AC, Thomas AJ, Pogostin BH, Hartgerink JD. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210378. [PMID: 36604310 PMCID: PMC10023392 DOI: 10.1002/adma.202210378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Indexed: 05/25/2023]
Abstract
3D printing has become one of the primary fabrication strategies used in biomedical research. Recent efforts have focused on the 3D printing of hydrogels to create structures that better replicate the mechanical properties of biological tissues. These pose a unique challenge, as soft materials are difficult to pattern in three dimensions with high fidelity. Currently, a small number of biologically derived polymers that form hydrogels are frequently reused for 3D printing applications. Thus, there exists a need for novel hydrogels with desirable biological properties that can be used as 3D printable inks. In this work, the printability of multidomain peptides (MDPs), a class of self-assembling peptides that form a nanofibrous hydrogel at low concentrations, is established. MDPs with different charge functionalities are optimized as distinct inks and are used to create complex 3D structures, including multi-MDP prints. Additionally, printed MDP constructs are used to demonstrate charge-dependent differences in cellular behavior in vitro. This work presents the first time that self-assembling peptides have been used to print layered structures with overhangs and internal porosity. Overall, MDPs are a promising new class of 3D printable inks that are uniquely peptide-based and rely solely on supramolecular mechanisms for assembly.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
47
|
Hirano K, Tsuchiya M, Shiomi A, Takabayashi S, Suzuki M, Ishikawa Y, Kawano Y, Takabayashi Y, Nishikawa K, Nagao K, Umemoto E, Kitajima Y, Ono Y, Nonomura K, Shintaku H, Mori Y, Umeda M, Hara Y. The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Sci Alliance 2023; 6:6/2/e202201783. [PMID: 36446523 PMCID: PMC9711862 DOI: 10.26508/lsa.202201783] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle satellite cells (MuSCs), myogenic stem cells in skeletal muscles, play an essential role in muscle regeneration. After skeletal muscle injury, quiescent MuSCs are activated to enter the cell cycle and proliferate, thereby initiating regeneration; however, the mechanisms that ensure successful MuSC division, including chromosome segregation, remain unclear. Here, we show that PIEZO1, a calcium ion (Ca2+)-permeable cation channel activated by membrane tension, mediates spontaneous Ca2+ influx to control the regenerative function of MuSCs. Our genetic engineering approach in mice revealed that PIEZO1 is functionally expressed in MuSCs and that Piezo1 deletion in these cells delays myofibre regeneration after injury. These results are, at least in part, due to a mitotic defect in MuSCs. Mechanistically, this phenotype is caused by impaired PIEZO1-Rho signalling during myogenesis. Thus, we provide the first concrete evidence that PIEZO1, a bona fide mechanosensitive ion channel, promotes proliferation and regenerative functions of MuSCs through precise control of cell division.
Collapse
Affiliation(s)
- Kotaro Hirano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,PRESTO, JST, Kawaguchi-shi, Saitama, Japan
| | - Akifumi Shiomi
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Seiji Takabayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Miki Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yudai Ishikawa
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuya Kawano
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yutaka Takabayashi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaori Nishikawa
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Eiji Umemoto
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Keiko Nonomura
- Division of Embryology, National Institute for Basic Biology, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, Okazaki, Japan.,Department of Life Science and Technology, Tokyo Tech, Yokohama, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
48
|
Togninalli M, Ho ATV, Madl CM, Holbrook CA, Wang YX, Magnusson KEG, Kirillova A, Chang A, Blau HM. Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors. NPJ Regen Med 2023; 8:4. [PMID: 36639373 PMCID: PMC9839750 DOI: 10.1038/s41536-023-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In contrast, the IL6 family member, Oncostatin M (OSM), decreases the proliferation rate after the first generation, while blocking myogenic commitment. These insights into the dynamics of MuSC regulation by niche cues were uniquely enabled by our Dual-FLIT approach. We anticipate that similar binary live cell readouts derived from Dual-FLIT will markedly expand our understanding of how niche factors control tissue regeneration in real time.
Collapse
Affiliation(s)
- Matteo Togninalli
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Functional and Adaptive Biology - UMR 8251 CNRS, Université Paris Cité, 75013, Paris, France
| | - Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Klas E G Magnusson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Anna Kirillova
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA.
| |
Collapse
|
49
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
50
|
Hayashi K, Matsuda M, Nakahata M, Takashima Y, Tanaka M. Stimulus-Responsive, Gelatin-Containing Supramolecular Nanofibers as Switchable 3D Microenvironments for Cells. Polymers (Basel) 2022; 14:polym14204407. [PMID: 36297985 PMCID: PMC9607093 DOI: 10.3390/polym14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young’s modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host–guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young’s modulus between 2–3 kPa and 0.2–0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Mami Matsuda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan
- Correspondence: (Y.T.); (M.T.)
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (Y.T.); (M.T.)
| |
Collapse
|