1
|
Chang CY, Huang SH, Chen CY, Jian CB, Chang CC, Chang YY, Jung M, Lee HM, Cheng B. Monocyte-adhesive peptidyl liposomes for harnessing monocyte homing to tumor tissues. J Control Release 2025; 382:113672. [PMID: 40185332 DOI: 10.1016/j.jconrel.2025.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In current drug delivery strategies, the efficiency of most carriers still largely depends on their ability to passively infiltrate target tissues. To overcome this limitation, we developed monocyte-adhesive peptidyl liposomes, termed monocyte-mediated drug carriers (MMDCs). These carriers are designed to exploit the innate chemotactic properties of monocytes, which actively home to diseased tissues. MMDCs were shown to effectively hitchhike on circulating monocytes (THP-1 cells) under physiological flow conditions. Their targeting specificity was further demonstrated in a 3D microfluidic culture system consisting of human breast cancer spheroids (MDA-MB-231) embedded in a collagen matrix, overlaid with a human endothelial cell-derived barrier. MMDCs underwent trans-endothelial migration via monocyte hitchhiking and selectively recognized collagen matrices containing MDA-MB-231 cells, but not those embedded with non-cancerous cells. In vitro assays revealed that doxorubicin encapsulated in MMDCs was released into the extracellular environment following phagocytosis of the carriers by THP-1-derived macrophages. In a xenograft mouse model, MMDCs exhibited high tumor-targeting efficiency. By harnessing the homing capability of monocytes, MMDCs significantly improved drug biodistribution at the disease site, thereby enhancing the therapeutic efficacy of the encapsulated agents.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Shih-Hsun Huang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | | | - Cheng-Bang Jian
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taiwan
| | - Ching-Chung Chang
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
3
|
Yu H, Yu J, Yao G. Recent Advances in Aptamers-Based Nanosystems for Diagnosis and Therapy of Cardiovascular Diseases: An Updated Review. Int J Nanomedicine 2025; 20:2427-2443. [PMID: 40034222 PMCID: PMC11873322 DOI: 10.2147/ijn.s507715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
The increasing global prevalence of cardiovascular diseases highlights the urgent need for innovative diagnostic and therapeutic strategies. Aptamers, small single-stranded nucleic acid molecules with exceptional specificity and affinity for target biomolecules, have emerged as promising tools for precise diagnostics and targeted therapies. Their selective binding capabilities provide valuable insights into the molecular mechanisms underlying cardiovascular conditions. When integrated into nanosystems, aptamers enhance the delivery, bioavailability, and stability of diagnostic and therapeutic agents, addressing challenges of solubility and degradation. This integration enables more targeted drug delivery, advanced imaging techniques, and improved therapeutic interventions, ultimately improving the management of cardiovascular diseases. Recent advancements in aptamer selection methodologies, coupled with their unique three-dimensional structures, have significantly expanded their application potential in cardiovascular health. By combining aptamers with nanosystems, novel approaches to cardiovascular disease diagnosis and treatment are emerging, promising enhanced efficacy, safety, and precision. This review explores recent progress in the development and application of aptamer-based nanosystems in cardiovascular diagnostics and therapies.
Collapse
Affiliation(s)
- Hongqin Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Jie Yu
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| | - Gang Yao
- Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People’s Republic of China
| |
Collapse
|
4
|
Long Q, Rabi K, Cai Y, Li L, Huang S, Qian B, Zhong Y, Qi Z, Zhang Y, Huang K, Wang X, Chang L, Xie W, Jiang H, Zhang H, Zhang J, Ren T, Wang Z, Teesalu T, Wu C, Lu L, Zhu Z, Chu Y, Santos HA, Liu Z, Zhao Q, Ye X. Identification of splenic IRF7 as a nanotherapy target for tele-conditioning myocardial reperfusion injury. Nat Commun 2025; 16:1909. [PMID: 39994192 PMCID: PMC11850716 DOI: 10.1038/s41467-025-57048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The sequestration of nanoparticles by mononuclear phagocyte system is a challenge for the use of nanotherapy for treating cardiovascular diseases due to the conventionally perceived loss of therapeutic potency. Here, we revitalize cardiovascular nanotherapy by unlocking an alternative route in which nanomedicines are redirected to the spleen, leveraging its potential as a highly efficient and targeted site for remote conditioning, or tele-conditioning myocardial reperfusion injury. The theoretical foundation underpinning is the splenogenic nature of recruited monocytes upon myocardial reperfusion in the acute stage, which is confirmed through murine heterotopic spleen transplantation. Single-cell RNA-seq analysis identifies IRF7 as a pivotal mediator in the spleen-heart communication network that is initially induced in the spleen and orchestrates functional changes in myocardial macrophages. Spleen-related induction of IRF7 is also valid in human myocardial reperfusion scenarios. In addition, in a murine preclinical model of male mice, temporal inhibition of splenic IRF7 through the designed spleen-targeting erythrosome engineered with the targeting peptide RP182, termed as STEER nanoparticles, mitigates the acute-stage innate immune responses and improves the cardiac function in the long term. In contrast, systemic inhibition, genetic knockout of IRF7 or absolute depletion of splenic monocytes does not have therapeutic benefits, indicating the superiority of nanoparticle-based targeted treatment. These findings establish the spleen as a naturally favored site for nanoparticle-based treatments, offering promising avenues for managing myocardial reperfusion injury.
Collapse
Affiliation(s)
- Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Rabi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yu Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lihui Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaichen Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Chang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weichang Xie
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Ren
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichen Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands.
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Di Mauro V, Lauta FC, Modica J, Appleton SL, De Franciscis V, Catalucci D. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl Sci 2024; 9:260-277. [PMID: 38510714 PMCID: PMC10950404 DOI: 10.1016/j.jacbts.2023.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 03/22/2024]
Abstract
Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3-dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Veneto Institute of Molecular Medicine, Padua, Italy
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Jessica Modica
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Lucia Appleton
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Daniele Catalucci
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Udofa E, Zhao Z. In situ cellular hitchhiking of nanoparticles for drug delivery. Adv Drug Deliv Rev 2024; 204:115143. [PMID: 38008185 PMCID: PMC10841869 DOI: 10.1016/j.addr.2023.115143] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Since the inception of the concept of "magic bullet", nanoparticles have evolved to be one of the most effective carriers in drug delivery. Nanoparticles improve the therapeutic efficacy of drugs offering benefits to treating various diseases. Unlike free drugs which freely diffuse and distribute through the body, nanoparticles protect the body from the drug by reducing non-specific interactions while also improving the drug's pharmacokinetics. Despite acquiring some FDA approvals, further clinical application of nanoparticles is majorly hindered by its limited ability to overcome biological barriers resulting in uncontrolled biodistribution and high clearance. The use of cell-inspired systems has emerged as a promising approach to overcome this challenge as cells are biocompatible and have improved access to tissues and organs. One of such is the hitchhiking of nanoparticles to circulating cells such that they are recognized as 'self' components evading clearance and resulting in site-specific drug delivery. In this review, we discuss the concept of nanoparticle cellular hitchhiking, highlighting its advantages, the principles governing the process and the challenges currently limiting its clinical translation. We also discuss in situ hitchhiking as a tool for overcoming these challenges and the considerations to be taken to guide research efforts in advancing this promising technology.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Mehta P, Shende P. Evasion of opsonization of macromolecules using novel surface-modification and biological-camouflage-mediated techniques for next-generation drug delivery. Cell Biochem Funct 2023; 41:1031-1043. [PMID: 37933222 DOI: 10.1002/cbf.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.
Collapse
Affiliation(s)
- Parth Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| | - Pravin Shende
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Mumbai, India
| |
Collapse
|
9
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
10
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
12
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|
13
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
14
|
Hasan I, Roy S, Guo B, Du S, Tao W, Chang C. Recent progress in nanomedicines for imaging and therapy of brain tumors. Biomater Sci 2023; 11:1270-1310. [PMID: 36648496 DOI: 10.1039/d2bm01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, a malignant brain tumor is one of the most life-threatening diseases with poor prognosis, high risk of recurrence, and low survival rate for patients because of the existence of the blood-brain barrier (BBB) and the lack of efficient diagnostic and therapeutic paradigms. So far, many researchers have devoted their efforts to innovating advanced drugs to efficiently cross the BBB and selectively target brain tumors for optimal imaging and therapy outcomes. Herein, we update the most recent developments in nanomedicines for the diagnosis and treatment of brain tumors in preclinical mouse models. The special focus is on burgeoning drug delivery carriers to improve the specificity of visualization and to enhance the efficacy of brain tumor treatment. Also, we highlight the challenges and perspectives for the future development of brain tumor theranostics. This review is expected to receive wide attention from researchers, professors, and students in various fields to participate in future advancements in preclinical research and clinical translation of brain tumor nanomedicines.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Wei Tao
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
15
|
Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20220045. [PMID: 37323617 PMCID: PMC10191055 DOI: 10.1002/exp.20220045] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials are promising carriers to improve the bioavailability and therapeutic efficiency of drugs by providing preferential drug accumulation at their sites of action, but their delivery efficacy is severely limited by a series of biological barriers, especially the mononuclear phagocytic system (MPS)-the first and major barrier encountered by systemically administered nanomaterials. Herein, the current strategies for evading the MPS clearance of nanomaterials are summarized. First, engineering nanomaterials methods including surface modification, cell hitchhiking, and physiological environment modulation to reduce the MPS clearance are explored. Second, MPS disabling methods including MPS blockade, suppression of macrophage phagocytosis, and macrophages depletion are examined. Last, challenges and opportunities in this field are further discussed.
Collapse
Affiliation(s)
- Junjie Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'anChina
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China of the Ministry of EducationSchool of MedicineNorthwest UniversityXi'anChina
- Institute of Regenerative and Reconstructive MedicineMed‐X InstituteNational Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
16
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
17
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
18
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Famta P, Shah S, Jain N, Shahrukh S, Bala Singh S, Srivastava S. Strategic combinatorial delivery of Tranilast and Paclitaxel using differently functionalized PLGA Nanoparticles for Enhanced penetration and Accumulation in Breast Tumor. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Chen X, Ma Y, Xie Y, Pu J. Aptamer-based applications for cardiovascular disease. Front Bioeng Biotechnol 2022; 10:1002285. [PMID: 36312558 PMCID: PMC9606242 DOI: 10.3389/fbioe.2022.1002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (especially atherosclerosis) is a major cause of death worldwide, and novel diagnostic tools and treatments for this disease are urgently needed. Aptamers are single-stranded oligonucleotides that specifically recognize and bind to the targets by forming unique structures in vivo, enabling them to rival antibodies in cardiac applications. Chemically synthesized aptamers can be readily modified in a site-specific way, so they have been engineered in the diagnosis of cardiac diseases and anti-thrombosis therapeutics. Von Willebrand Factor plays a unique role in the formation of thrombus, and as an aptamer targeting molecule, has shown initial success in antithrombotic treatment. A combination of von Willebrand Factor and nucleic acid aptamers can effectively inhibit the progression of blood clots, presenting a positive diagnosis and therapeutic effect, as well as laying a novel theory and strategy to improve biocompatibility paclitaxel drug balloon or implanted stent in the future. This review summarizes aptamer-based applications in cardiovascular disease, including biomarker discovery and future management strategy. Although relevant applications are relatively new, the significant advancements achieved have demonstrated that aptamers can be promising agents to realize the integration of diagnosis and therapy in cardiac research.
Collapse
Affiliation(s)
| | | | | | - Jun Pu
- *Correspondence: Yuquan Xie, ; Jun Pu,
| |
Collapse
|
21
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
23
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
24
|
Tao Y, Lan X, Zhang Y, Xiao Y, Wang J, Chen H, Liu L, Liang XJ, Guo W. Navigations of the targeting pathway of nanomedicines towards tumor. Expert Opin Drug Deliv 2022; 19:985-996. [PMID: 35929954 DOI: 10.1080/17425247.2022.2110064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomedicines (NMs) have emerged as a promising approach for revolutionizing cancer treatment outcomes, mainly due to their benefits in the tumor targeted delivery of therapeutics. The preferential accumulation of NMs in tumor has been widely verified by macroscopical technologies. Accordingly, several classic and emerging targeting mechanisms have been proposed to support the tumor-specific delivery of NMs. The targeting mechanism has been a topic of intensive interest and controversy in the field of NMs development. Especially, the mechanisms by which NMs target tumor remain elusive. AREA COVERED This topical review mainly discussed the evolution of the targeting mechanisms, crucial issues associated with each mechanism, and confused debates among the mechanisms. The targeting mechanisms of tumor-specific NMs discussed here include the enhanced permeability and retention (EPR) effect, protein corona-mediated targeting delivery, circulating cell mediated transportation, and transcytosis. EXPERT OPINION It is of great significance for ultimate clinical translation to have more comprehensive considerations on the mechanism driving the pathway of NMs toward tumors. Our thoughts in this review are expected to provide comprehensive understanding on the mechanisms and elicit thorough explorations on new mechanism to renovate the knowledge framework of NMs delivery.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, College of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yuxuan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yafang Xiao
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, College of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Jinjin Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, College of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, College of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, College of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| |
Collapse
|
25
|
George TA, Hsu CC, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022; 14:930. [PMID: 35631516 PMCID: PMC9143269 DOI: 10.3390/pharmaceutics14050930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Myocardial infarction is a major cause of morbidity and mortality worldwide. Due to poor inherent regeneration of the adult mammalian myocardium and challenges with effective drug delivery, there has been little progress in regenerative therapies. Nanocarriers, including liposomes, nanoparticles, and exosomes, offer many potential advantages for the therapy of myocardial infarction, including improved delivery, retention, and prolonged activity of therapeutics. However, there are many challenges that have prevented the widespread clinical use of these technologies. This review aims to summarize significant principles and developments in the field, with a focus on nanocarriers using ligand-based or cell mimicry-based targeting. Lastly, a discussion of limitations and potential future direction is provided.
Collapse
Affiliation(s)
- Thomashire A. George
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Chuan-Chih Hsu
- Department of Cardiovascular Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Annette Meeson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK;
| | - David J. Lundy
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
26
|
Liu S, Xu Y, Jiang X, Tan H, Ying B. Translation of aptamers toward clinical diagnosis and commercialization. Biosens Bioelectron 2022; 208:114168. [PMID: 35364525 DOI: 10.1016/j.bios.2022.114168] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
The dominance of antibodies in diagnostics has gradually changed following the discovery of aptamers in the early 1990s. Aptamers offer inherent advantages over traditional antibodies, including higher specificity, higher affinity, smaller size, greater stability, ease of manufacture, and low immunogenicity, rendering them the best candidates for point-of-care testing (POCT). In the past 20 years, the research community and pharmaceutical companies have made great efforts to promote the development of aptamer technology. Macugen® (pegaptanib) was the first aptamer drug approved by the US Food and Drug Administration (FDA), and various aptamer-based diagnostics show great promise in preclinical research and clinical trials. In this review, we introduce recent literature, ongoing clinical trials, commercial reagents of aptamer-based diagnostics, discuss the FDA regulatory mechanisms, and highlight the prospects and challenges in translating these studies into viable clinical diagnostic tools.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Hong Tan
- Department of General Surgery, Chengdu Integrated TCM&Western Medicine Hospital (Chengdu First People's Hospital), Chengdu, 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China.
| |
Collapse
|
27
|
Jian CB, Yu XE, Gao HD, Chen HA, Jheng RH, Chen CY, Lee HM. Liposomal PHD2 Inhibitors and the Enhanced Efficacy in Stabilizing HIF-1α. NANOMATERIALS 2022; 12:nano12010163. [PMID: 35010112 PMCID: PMC8746909 DOI: 10.3390/nano12010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2) inhibition, which stabilizes hypoxia-inducible factor (HIF)-1α and thus triggers adaptation responses to hypoxia in cells, has become an important therapeutic target. Despite the proven high potency, small-molecule PHD2 inhibitors such as IOX2 may require a nanoformulation for favorable biodistribution to reduce off-target toxicity. A liposome formulation for improving the pharmacokinetics of an encapsulated drug while allowing a targeted delivery is a viable option. This study aimed to develop an efficient loading method that can encapsulate IOX2 and other PHD2 inhibitors with similar pharmacophore features in nanosized liposomes. Driven by a transmembrane calcium acetate gradient, a nearly 100% remote loading efficiency of IOX2 into liposomes was achieved with an optimized extraliposomal solution. The electron microscopy imaging revealed that IOX2 formed nanoprecipitates inside the liposome’s interior compartments after loading. For drug efficacy, liposomal IOX2 outperformed the free drug in inducing the HIF-1α levels in cell experiments, especially when using a targeting ligand. This method also enabled two clinically used inhibitors—vadadustat and roxadustat—to be loaded into liposomes with a high encapsulation efficiency, indicating its generality to load other heterocyclic glycinamide PHD2 inhibitors. We believe that the liposome formulation of PHD2 inhibitors, particularly in conjunction with active targeting, would have therapeutic potential for treating more specifically localized disease lesions.
Collapse
Affiliation(s)
- Cheng-Bang Jian
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Xu-En Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Hua-De Gao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-An Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Ren-Hua Jheng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Correspondence: ; Tel.: +886-2-5572-8620
| |
Collapse
|
28
|
Affiliation(s)
- Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
29
|
Beh CY, Prajnamitra RP, Chen LL, Hsieh PCH. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021; 26:molecules26165052. [PMID: 34443638 PMCID: PMC8401254 DOI: 10.3390/molecules26165052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.
Collapse
|
30
|
Emerging Nano-Carrier Strategies for Brain Tumor Drug Delivery and Considerations for Clinical Translation. Pharmaceutics 2021; 13:pharmaceutics13081193. [PMID: 34452156 PMCID: PMC8399364 DOI: 10.3390/pharmaceutics13081193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment of brain tumors is challenging since the blood–brain tumor barrier prevents chemotherapy drugs from reaching the tumor site in sufficient concentrations. Nanomedicines have great potential for therapy of brain disorders but are still uncommon in clinical use despite decades of research and development. Here, we provide an update on nano-carrier strategies for improving brain drug delivery for treatment of brain tumors, focusing on liposomes, extracellular vesicles and biomimetic strategies as the most clinically feasible strategies. Finally, we describe the obstacles in translation of these technologies including pre-clinical models, analytical methods and regulatory issues.
Collapse
|