1
|
Ledogar JA, Benazzi S, Smith AL, Dechow PC, Wang Q, Cook RW, Neaux D, Ross CF, Grosse IR, Wright BW, Weber GW, Byron C, Wroe S, Strait DS. Bite force production and the origin of Homo. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241879. [PMID: 40271135 PMCID: PMC12014231 DOI: 10.1098/rsos.241879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
The divergence of Homo from gracile australopiths has been described as a trend of decreasing dentognathic size and robusticity, precipitated by stone tool use and/or a shift to softer foods, including meat. Yet, mechanical evidence supporting this narrative is sparse, and isotopic and archaeological data have led to the suggestion that a shift away from a gracile australopith-like diet would not have occurred in the most basal members of Homo but rather only with the appearance of Homo erectus, implying that the origin of our genus is not rooted in dietary change. Here, we provide mechanical evidence that Homo habilis exhibits an australopith-like pattern of facial strain during biting but, unlike most australopiths, was not suited for a diet that required forceful processing by the molar teeth. Homo habilis was at elevated risk of distractive jaw joint forces during those bites, constraining muscle recruitment so as to avoid generating uncomfortable/dangerous levels of tension in the joint. Modern humans have similar limitations. This suggests that selection on skeletal traits favouring forceful postcanine processing was relaxed by the earliest stages in the evolution of our genus, implying that dietary or food processing changes played an important role in the emergence of Homo.
Collapse
Affiliation(s)
- Justin A. Ledogar
- Department of Biomedical Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Emilia-Romagna, Italy
| | - Amanda L. Smith
- Department of Fundamental Biomedical Sciences, Touro University California, Vallejo, CA, USA
| | - Paul C. Dechow
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Rebecca W. Cook
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Ian R. Grosse
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Barth W. Wright
- Department of Surgery, University of Kansas Medical Center, KS, USA
| | - Gerhard W. Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Craig Byron
- Department of Biology, Mercer University, Macon, GA, USA
| | - Stephen Wroe
- Department of Zoology, University of New England, Armidale, New South Wales, Australia
| | - David S. Strait
- Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- DFG Center for Advanced Studies ‘Words, Bones, Genes, Tools’, University of Tübingen, Tubingen, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Taylor AB, Holmes MA, Laird MF, Terhune CE. Jaw-Muscle Structure and Function in Primates: Insights Into Muscle Performance and Feeding-System Behaviors. Evol Anthropol 2025; 34:e22053. [PMID: 39964129 PMCID: PMC11834762 DOI: 10.1002/evan.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
The jaw-adductor muscles drive the movements and forces associated with primate feeding behaviors such as biting and chewing as well as social signaling behaviors such as wide-mouth canine display. The past several decades have seen a rise in research aimed at the anatomy and physiology of primate chewing muscles to better understand the functional and evolutionary significance of the primate masticatory apparatus. This review summarizes variation in jaw-adductor fiber types and muscle architecture in primates, focusing on physiological, architectural, and behavioral performance variables such as specific tension, fatigue resistance, muscle and bite force, and muscle stretch and gape. Paranthropus and Australopithecus are used as one paleontological example to showcase the importance of these data for addressing paleobiological questions. The high degree of morphological variation related to sex, age, muscle, and species suggests future research should bracket ranges of performance variables rather than focus on single estimates of performance.
Collapse
Grants
- P51 OD011132 NIH HHS
- The study was supported by the Emory National Primate Research Center (grant no. ORIP/OD P51OD011132) and the National Science Foundation (grant nos. BCS-0452160, BCS-0552285, BCS-0635649, BCS-0833394, BCS-0962677, BCS-1440516, BCS-1440541, BCS-1440542, BCS-1440545, BCS-1627206, BCS-1719743, BCS-1725925, BCS-1944642, BCS-1944915, BCS-1945767, and BCS-2316863).
Collapse
Affiliation(s)
- Andrea B. Taylor
- Department of Foundational Biomedical SciencesTouro University CaliforniaVallejoCaliforniaUSA
| | - Megan A. Holmes
- Department of Family Medicine and Community HealthDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Myra F. Laird
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Claire E. Terhune
- Department of AnthropologyUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
3
|
Cofran Z, Boughner JC. "Smile-Obates": Permanent Dental Development in the White-Handed Gibbon (Hylobates lar carpenteri). AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70019. [PMID: 40108830 DOI: 10.1002/ajpa.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Tooth formation is not as well known as eruption among the Hylobatidae. To expand knowledge of variability in dental development in hylobatids, we described the relative timing of upper and lower permanent tooth initiation, mineralization, and completion in the white-handed gibbon (Hylobates lar carpenteri). MATERIALS AND METHODS Using a wild-shot, known-sex sample of H. lar carpenteri, we micro-CT scanned 44 crania with permanent teeth forming, including a subset of 16 skulls with mandibles. We used these data to assess crypt, crown, and root formation. Each tooth received a dental score from 0 (no crypt initiation) to 12 (root apices closed). We used principal component and cluster analyses, among other tests, to examine variance and covariance among scores. RESULTS First molar and central incisor formation was advanced over the rest of the dentition, while the premolars and second molar developed concurrently with one another. The canine crown initiated before the third molar yet reached root apical closure last. Overall patterns among dental scores were similar between upper and lower jaws, but the formation of lower anterior and premolar teeth was advanced by up to three formation stages. These patterns appeared invariant with respect to sex or pathology. DISCUSSION H. lar carpenteri is characterized by relatively advanced central incisor formation, catch-up growth of the lateral incisor, and protracted canine development. Adjacent molar crown formation timing is staggered, as in other primates. The development of the relatively large canines in these short-faced apes highlights the myriad influences and competing demands on tooth formation and emergence.
Collapse
Affiliation(s)
- Zachary Cofran
- Anthropology Department, Vassar College, Poughkeepsie, New York, USA
| | - Julia C Boughner
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Zollikofer CPE, Beyrand V, Lordkipanidze D, Tafforeau P, Ponce de León MS. Dental evidence for extended growth in early Homo from Dmanisi. Nature 2024; 635:906-911. [PMID: 39537931 PMCID: PMC11602720 DOI: 10.1038/s41586-024-08205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Human life history is characterized by an extended period of immaturity during which there is a disjunction between cerebral and somatic growth rates1. This mode of ontogeny is thought to be essential for the acquisition of advanced cognitive capabilities in a socially complex environment while the brain is still growing2. Key information about when and how this pattern evolved can be gleaned from the teeth of fossil hominins because dental development informs about the pace of life history3-5. Here we show that the first evolutionary steps towards an extended growth phase occurred in the genus Homo at least 1.77 million years ago, before any substantial increase in brain size. We used synchrotron phase-contrast tomography6 to track the microstructural development of the dentition of a subadult early Homo individual from Dmanisi, Georgia. The individual died at the age of 11.4 ± 0.6 years, shortly before reaching dental maturity. Tooth growth rates were high, similar to rates in living great apes. However, the Dmanisi individual showed a human-like delayed formation of the posterior relative to the anterior dentition, and a late growth spurt of the dentition as a whole. The unique combination of great-ape-like and human-like features of dental ontogeny suggests that early Homo had evolved an extended growth phase before a general slow-down in life history, possibly related to biocultural reproduction7 rather than brain growth.
Collapse
Affiliation(s)
- Christoph P E Zollikofer
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| | - Vincent Beyrand
- Department of Informatics, University of Zurich, Zurich, Switzerland
- European Synchrotron Radiation Facility, Grenoble, France
| | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Georgia
- Tbilisi State University, Tbilisi, Georgia
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| | - Marcia S Ponce de León
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| |
Collapse
|
5
|
Polvadore TA, Yoakum CB, Taylor PM, Holmes MA, Laird MF, Chalk-Wilayto J, Kanno CM, de Oliveira JA, Terhune CE. Ontogenetic biomechanics of tufted (Sapajus) and untufted (Cebus) capuchin mandibles. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25006. [PMID: 39049552 DOI: 10.1002/ajpa.25006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES Cortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross-sectional properties throughout capuchin ontogeny and compare captive versus wild, semi-provisioned groups. Tufted capuchins (Sapajus spp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebus spp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adult Sapajus mandibles can resist higher bending/shear/torsional loads. MATERIALS AND METHODS This study utilized microCT scans of 22 Cebus and 45 Sapajus from early infancy to adulthood from three sample populations: one captive Cebus, one captive Sapajus, and one semi-provisioned, free-ranging Sapajus. Mandibular cross-sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one-way ANOVAs were performed to assess differences between and within the sample populations. RESULTS Mandible robusticity increases across ontogeny for all three sample populations. Sapajus were better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi-provisioned, free-ranging Sapajus tend to show increased abilities to resist bending and torsional loading but not shear loading compared to captive Sapajus. DISCUSSION This study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free-ranging sample populations.
Collapse
Affiliation(s)
- Taylor A Polvadore
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States
| | - Caitlin B Yoakum
- Department of Anatomy, Arkansas College of Osteopathic Medicine, Arkansas Colleges of Health Education, Fort Smith, Arkansas, United States
| | - Parker M Taylor
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan A Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, North Carolina, United States
| | - Myra F Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Janine Chalk-Wilayto
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, United States
| | - Cláudia Misue Kanno
- Research Center "Núcleo de Procriação de Macacos-Prego", Araçatuba Dental School, Universidade Estadual Paulista-UNESP, Araçatuba, Brazil
| | - José Américo de Oliveira
- Research Center "Núcleo de Procriação de Macacos-Prego", Araçatuba Dental School, Universidade Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
6
|
Smith BH. Mammalian Life History: Weaning and Tooth Emergence in a Seasonal World. BIOLOGY 2024; 13:612. [PMID: 39194550 DOI: 10.3390/biology13080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The young of toothed mammals must have teeth to reach feeding independence. How tooth eruption integrates with gestation, birth and weaning is examined in a life-history perspective for 71 species of placental mammals. Questions developed from high-quality primate data are then addressed in the total sample. Rather than correlation, comparisons focus on equivalence, sequence, the relation to absolutes (six months, one year), the distribution of error and adaptive extremes. These mammals differ widely at birth, from no teeth to all deciduous teeth emerging, but commonalities appear when infants transit to independent feeding. Weaning follows completion of the deciduous dentition, closest in time to emergence of the first permanent molars and well before second molars emerge. Another layer of meaning appears when developmental age is counted from conception because the total time to produce young feeding independently comes up against seasonal boundaries that are costly to cross for reproductive fitness. Mammals of a vast range of sizes and taxa, from squirrel monkey to moose, hold conception-to-first molars in just under one year. Integrating tooth emergence into life history gives insight into living mammals and builds a framework for interpreting the fossil record.
Collapse
Affiliation(s)
- B Holly Smith
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
7
|
Holmes MA, Terhune CE, Chalk-Wilayto J, Yoakum CB, Taylor P, Ramirez R, Solís MP, Polvadore TA, Ross CF, Taylor AB, Fogaca MD, Laird MF. Ontogenetic changes in jaw leverage and skull shape in tufted and untufted capuchins. J Morphol 2024; 285:e21705. [PMID: 38704727 DOI: 10.1002/jmor.21705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. Unlike Cebus, Sapajus have a mechanically challenging diet and behavioral observations of juvenile Sapajus suggest these foods are exploited early in development. Landmarks were placed on three-dimensional surface models of an ontogenetic series of Sapajus and Cebus skulls (n = 53) and used to generate shape data and jaw-leverage estimates across the tooth row for three jaw-closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different between Sapajus and Cebus throughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater in Sapajus compared to Cebus when calculated at the permanent dentition. We used two-block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates. Sapajus, but not Cebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show that Sapajus and Cebus exhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape in Sapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods in Sapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology.
Collapse
Affiliation(s)
- Megan A Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Janine Chalk-Wilayto
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Caitlin B Yoakum
- Department of Anatomy, Arkansas College of Health Education, Fort Smith, Arkansas, USA
| | - Parker Taylor
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Rocio Ramirez
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, California, USA
| | - Megan P Solís
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
| | - Taylor A Polvadore
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Andrea B Taylor
- Department of Foundational Biomedical Sciences, Touro University California, Vallejo, California, USA
| | | | - Myra F Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Machado FA, Mongle CS, Slater G, Penna A, Wisniewski A, Soffin A, Dutra V, Uyeda JC. Rules of teeth development align microevolution with macroevolution in extant and extinct primates. Nat Ecol Evol 2023; 7:1729-1739. [PMID: 37652997 DOI: 10.1038/s41559-023-02167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.
Collapse
Affiliation(s)
- Fabio A Machado
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | - Graham Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Anna Wisniewski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Anna Soffin
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Vitor Dutra
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA
| | - Josef C Uyeda
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Braga J, Wood BA, Zimmer VA, Moreno B, Miller C, Thackeray JF, Zipfel B, Grine FE. Hominin fossils from Kromdraai and Drimolen inform Paranthropus robustus craniofacial ontogeny. SCIENCE ADVANCES 2023; 9:eade7165. [PMID: 37134165 PMCID: PMC10156105 DOI: 10.1126/sciadv.ade7165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ontogeny provides critical information about the evolutionary history of early hominin adult morphology. We describe fossils from the southern African sites of Kromdraai and Drimolen that provide insights into early craniofacial development in the Pleistocene robust australopith Paranthropus robustus. We show that while most distinctive robust craniofacial features appear relatively late in ontogeny, a few do not. We also find unexpected evidence of independence in the growth of the premaxillary and maxillary regions. Differential growth results in a proportionately larger and more postero-inferiorly rotated cerebral fossa in P. robustus infants than in the developmentally older Australopithecus africanus juvenile from Taung. The accumulated evidence from these fossils suggests that the iconic SK 54 juvenile calvaria is more likely early Homo than Paranthropus. It is also consistent with the hypothesis that P. robustus is more closely related to Homo than to A. africanus.
Collapse
Affiliation(s)
- José Braga
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, France
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Bernard A Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC 20052, USA
| | | | - Benjamin Moreno
- SARL IMA Solutions, 19 rue Jean Mermoz, 31100 Toulouse, France
| | - Catherine Miller
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - John F Thackeray
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Mongle CS, Nesbitt A, Machado FA, Smaers JB, Turner AH, Grine FE, Uyeda JC. A common mechanism drives the alignment between the micro- and macroevolution of primate molars. Evolution 2022; 76:2975-2985. [PMID: 36005286 DOI: 10.1111/evo.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
A central challenge for biology is to reveal how different levels of biological variation interact and shape diversity. However, recent experimental studies have indicated that prevailing models of evolution cannot readily explain the link between micro- and macroevolution at deep timescales. Here, we suggest that this paradox could be the result of a common mechanism driving a correlated pattern of evolution. We examine the proportionality between genetic variance and patterns of trait evolution in a system whose developmental processes are well understood to gain insight into how such alignment between morphological divergence and genetic variation might be maintained over macroevolutionary time. Primate molars present a model system by which to link developmental processes to evolutionary dynamics because of the biased pattern of variation that results from the developmental architecture regulating their formation. We consider how this biased variation is expressed at the population level, and how it manifests through evolution across primates. There is a strong correspondence between the macroevolutionary rates of primate molar divergence and their genetic variation. This suggests a model of evolution in which selection is closely aligned with the direction of genetic variance, phenotypic variance, and the underlying developmental architecture of anatomical traits.
Collapse
Affiliation(s)
- Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Division of Anthropology, American Museum of Natural History, New York, New York, 10024.,Turkana Basin Institute, Stony Brook University, Stony Brook, New York, 11794
| | - Allison Nesbitt
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - Fabio A Machado
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, New York, 11794.,Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061
| |
Collapse
|