1
|
Chen SC, Musat F, Richnow HH, Krüger M. Microbial diversity and oil biodegradation potential of northern Barents Sea sediments. J Environ Sci (China) 2024; 146:283-297. [PMID: 38969457 DOI: 10.1016/j.jes.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 07/07/2024]
Abstract
The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655, Hannover, Germany
| |
Collapse
|
2
|
Nguyen NL, Pawłowska J, Zajaczkowski M, Weiner AKM, Cordier T, Grant DM, De Schepper S, Pawłowski J. Taxonomic and abundance biases affect the record of marine eukaryotic plankton communities in sediment DNA archives. Mol Ecol Resour 2024; 24:e14014. [PMID: 39188124 DOI: 10.1111/1755-0998.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Environmental DNA (eDNA) preserved in marine sediments is increasingly being used to study past ecosystems. However, little is known about how accurately marine biodiversity is recorded in sediment eDNA archives, especially planktonic taxa. Here, we address this question by comparing eukaryotic diversity in 273 eDNA samples from three water depths and the surface sediments of 24 stations in the Nordic Seas. Analysis of 18S-V9 metabarcoding data reveals distinct eukaryotic assemblages between water and sediment eDNA. Only 40% of Amplicon Sequence Variants (ASVs) detected in water were also found in sediment eDNA. Remarkably, the ASVs shared between water and sediment accounted for 80% of total sequence reads suggesting that a large amount of plankton DNA is transported to the seafloor, predominantly from abundant phytoplankton taxa. However, not all plankton taxa were equally archived on the seafloor. The plankton DNA deposited in the sediments was dominated by diatoms and showed an underrepresentation of certain nano- and picoplankton taxa (Picozoa or Prymnesiophyceae). Our study offers the first insights into the patterns of plankton diversity recorded in sediment in relation to seasonality and spatial variability of environmental conditions in the Nordic Seas. Our results suggest that the genetic composition and structure of the plankton community vary considerably throughout the water column and differ from what accumulates in the sediment. Hence, the interpretation of sedimentary eDNA archives should take into account potential taxonomic and abundance biases when reconstructing past changes in marine biodiversity.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Joanna Pawłowska
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Marek Zajaczkowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Danielle M Grant
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Stijn De Schepper
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Jan Pawłowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
3
|
Cohen NR, Krinos AI, Kell RM, Chmiel RJ, Moran DM, McIlvin MR, Lopez PZ, Barth AJ, Stone JP, Alanis BA, Chan EW, Breier JA, Jakuba MV, Johnson R, Alexander H, Saito MA. Microeukaryote metabolism across the western North Atlantic Ocean revealed through autonomous underwater profiling. Nat Commun 2024; 15:7325. [PMID: 39183190 PMCID: PMC11345423 DOI: 10.1038/s41467-024-51583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.
Collapse
Affiliation(s)
- Natalie R Cohen
- University of Georgia Skidaway Institute of Oceanography, Savannah, GA, 31411, USA.
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| | - Arianna I Krinos
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, 02543, USA
| | - Riss M Kell
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Gloucester Marine Genomics Institute, Gloucester, MA, 01930, USA
| | - Rebecca J Chmiel
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Dawn M Moran
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Matthew R McIlvin
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
| | | | | | | | - Eric W Chan
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - John A Breier
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Michael V Jakuba
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
- Arizona State University, Tempe, AZ, USA
| | - Harriet Alexander
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| |
Collapse
|
4
|
Morard R, Darling KF, Weiner AKM, Hassenrück C, Vanni C, Cordier T, Henry N, Greco M, Vollmar NM, Milivojevic T, Rahman SN, Siccha M, Meilland J, Jonkers L, Quillévéré F, Escarguel G, Douady CJ, de Garidel-Thoron T, de Vargas C, Kucera M. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol Rev Camb Philos Soc 2024; 99:1218-1241. [PMID: 38351434 DOI: 10.1111/brv.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 07/06/2024]
Abstract
The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Kate F Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Warnemünde, 18119, Germany
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, 75016, France
| | - Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, Barcelona, 37-49, Spain
| | - Nele M Vollmar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Tamara Milivojevic
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Julie Meilland
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Frédéric Quillévéré
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR CNRS 5276 LGL-TPE, Villeurbanne, F-69622, France
| | - Gilles Escarguel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
- Institut Universitaire de France, Paris, France
| | | | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, Roscoff, 29680, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| |
Collapse
|
5
|
Schoenle A, Scepanski D, Floß A, Büchel P, Koblitz AK, Scherwaß A, Arndt H, Waldvogel AM. The dilemma of underestimating freshwater biodiversity: morphological and molecular approaches. BMC Ecol Evol 2024; 24:69. [PMID: 38802764 PMCID: PMC11131255 DOI: 10.1186/s12862-024-02261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Anthropogenic impacts on freshwater habitats are causing a recent biodiversity decline far greater than that documented for most terrestrial ecosystems. However, knowledge and description of freshwater biodiversity is still limited, especially targeting all size classes to uncover the distribution of biodiversity between different trophic levels. We assessed the biodiversity of the Lower Rhine and associated water bodies in the river's flood plain including the river's main channel, oxbows and gravel-pit lakes, spanning from the level of protists up to the level of larger invertebrate predators and herbivores organized in size classes (nano-, micro, meio- and macrofauna). Morphological diversity was determined by morphotypes, while the molecular diversity (amplicon sequencing variants, ASVs) was assessed through eDNA samples with metabarcoding targeting the V9 region of the 18S rDNA. RESULTS Considering all four investigated size classes, the percentage of shared taxa between both approaches eDNA (ASVs with 80-100% sequence similarity to reference sequences) and morphology (morphotypes), was always below 15% (5.4 ± 3.9%). Even with a more stringent filtering of ASVs (98-100% similarity), the overlap of taxa could only reach up to 43% (18.3 ± 12%). We observed low taxonomic resolution of reference sequences from freshwater organisms in public databases for all size classes, especially for nano-, micro-, and meiofauna, furthermore lacking metainformation if species occur in freshwater, marine or terrestrial ecosystems. CONCLUSIONS In our study, we provide a combination of morphotype detection and metabarcoding that particularly reveals the diversity in the smaller size classes and furthermore highlights the lack of genetic resources in reference databases for this diversity. Especially for protists (nano- and microfauna), a combination of molecular and morphological approaches is needed to gain the highest possible community resolution. The assessment of freshwater biodiversity needs to account for its sub-structuring in different ecological size classes and across compartments in order to reveal the ecological dimension of diversity and its distribution.
Collapse
Affiliation(s)
- Alexandra Schoenle
- Ecological Genomics, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Dominik Scepanski
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Alexander Floß
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Pascal Büchel
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kathrin Koblitz
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Anja Scherwaß
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Hartmut Arndt
- General Ecology, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany.
| | - Ann-Marie Waldvogel
- Ecological Genomics, Department of Biology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Fu Y, Qu Z, Wang Y, Sun P, Jiao N, Xu D. Biogeographical and biodiversity patterns of planktonic microeukaryotes along the tropical western to eastern Pacific Ocean transect revealed by metabarcoding. Microbiol Spectr 2024; 12:e0242423. [PMID: 38488393 PMCID: PMC10986530 DOI: 10.1128/spectrum.02424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Microeukaryotic plankton (0.2-200 µm), which are morphologically and genetically highly diverse, play a crucial role in ocean productivity and carbon consumption. The Pacific Ocean (PO), one of the world's largest oligotrophic regions, remains largely unexplored in terms of the biogeography and biodiversity of microeukaryotes based on large-scale sampling. We investigated the horizontal distribution of microeukaryotes along a 16,000 km transect from the west to the east of the PO. The alpha diversity indices showed a distinct decreasing trend from west to east, which was highly correlated with water temperature. The microeukaryotic community, which was clustered into the western, central, and eastern PO groups, displayed a significant distance-decay relationship. Syndiniales, a lineage of parasitic dinoflagellates, was ubiquitously distributed along the transect and dominated the community in terms of both sequence and zero-radius operational taxonomic unit (ZOTU) proportions. The prevailing dominance of Syndiniales-affiliated ZOTUs and their close associations with dinoflagellates, diatoms, and radiolarians, as revealed by SparCC correlation analysis, suggested that parasitism may be an important trophic strategy in the surface waters of the PO. Geographical distance and temperature were the most important environmental factors that significantly correlated with community structure. Overall, our study sheds more light on the distribution pattern of both alpha and beta diversities of microeukaryotic communities and highlighted the importance of parasitisms by Syndiniales across the tropical PO.IMPORTANCEUnderstanding the biogeographical and biodiversity patterns of microeukaryotic communities is essential to comprehending their roles in biogeochemical cycling. In this study, planktonic microeukaryotes were collected along a west-to-east Pacific Ocean transect (ca. 16,000 km). Our study revealed that the alpha diversity indices were highly correlated with water temperature, and the microeukaryotic communities displayed a distinct geographical distance-driven pattern. The predominance of the parasitic dinoflagellate lineage Syndiniales and their close relationship with other microeukaryotic groups suggest that parasitism may be a crucial survival strategy for microeukaryotes in the surface waters of the Pacific Ocean. Our findings expand our understanding of the biodiversity and biogeographical pattern of microeukaryotes and highlight the significance of parasitic Syndiniales in the surface ocean.
Collapse
Affiliation(s)
- Yingjun Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Zhishuai Qu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Ying Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Cadena LR, Edgcomb V, Lukeš J. Gazing into the abyss: A glimpse into the diversity, distribution, and behaviour of heterotrophic protists from the deep-sea floor. Environ Microbiol 2024; 26:e16598. [PMID: 38444221 DOI: 10.1111/1462-2920.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Barrenechea Angeles I, Nguyen NL, Greco M, Tan KS, Pawlowski J. Assigning the unassigned: A signature-based classification of rDNA metabarcodes reveals new deep-sea diversity. PLoS One 2024; 19:e0298440. [PMID: 38422100 PMCID: PMC10903905 DOI: 10.1371/journal.pone.0298440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.
Collapse
Affiliation(s)
- Inès Barrenechea Angeles
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ngoc-Loi Nguyen
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| | - Koh Siang Tan
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics Ltd., Plan-les-Ouates, Switzerland
| |
Collapse
|
9
|
Liu L, Wang H, Luo Z, Chen J. Biogeographic patterns of micro-eukaryotic generalists and specialists and their effects on regional α-diversity at inter-oceanic scale. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106261. [PMID: 37981448 DOI: 10.1016/j.marenvres.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Inter-oceanic scale studies allow us to understand the global spread of micro-organisms in marine ecosystems. In this study, micro-eukaryotic communities in marine surface sediment were collected from tropical to Arctic sites. We found that micro-eukaryotic generalists had much higher intraspecific variation than specialists which allow them to distribute more widely through higher spatiotemporal asynchrony and complementary niche preferences among conspecific taxa. Moreover, comparing to the host-associated protozoa and small metazoa, the algae and free-living protozoa with higher intraspecific variation allow them to have wider distribution ranges. Species abundance also played an important role in driving the distribution ranges of generalists and specialists. The generalists had important effects on regional α-diversity even at an inter-oceanic scale which led to the micro-eukaryotic species richness in polar sites to be mainly influenced by the regional generalists but not the local specialists. In particular, more than 97% of algal species in polar sites were shared with the tropical and subtropical sites (including toxic dinoflagellate). Overall, our study suggests that the effects of global change and human activities on the vulnerable high latitude habitats may lead to biotic homogenization for the whole microbial community (not only the dispersal of some harmful algae) through the potential long-distance spread of generalists.
Collapse
Affiliation(s)
- Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China.
| | - Hongwei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China.
| | - Jianfeng Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; Marine Engineering Research and Development Center of Jinjiang Science and Education Park, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
10
|
Ban H, Endo H, Kuwata A, Ogata H. Global Distribution and Diversity of Marine Parmales. Microbes Environ 2024; 39:ME23093. [PMID: 38522927 PMCID: PMC10982110 DOI: 10.1264/jsme2.me23093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 03/26/2024] Open
Abstract
Parmales (Bolidophyceae) is a minor eukaryotic phytoplankton group, sister to diatoms, which exists as two distinct forms of unicellular organisms: silicified cells and naked flagellates. Since their discovery, many field studies on Parmales have been performed; however, their global distribution has not yet been examined in detail. We herein compiled more than 3,000 marine DNA metabarcoding datasets targeting the V4 region of the 18S rRNA gene from the EukBank database. By linking this large dataset with the latest morphological and genetic information, we provide updated estimates on the diversity and distribution of Parmales in the global ocean at a fine taxonomic resolution. Parmalean amplicon sequence variants (ASVs) were detected in nearly 90% of the samples analyzed. However, the relative abundance of parmaleans in the eukaryotic community was less than 0.2% on average, and the estimated true richness of parmalean ASVs was approximately 316 ASVs, confirming their low abundance and diversity. A phylogenetic ana-lysis divided these algae into four clades, and three known morphotypes of silicified cells were classified into three different clades. The abundance of Parmales is generally high in the poles and decreases towards the tropics, and individual clades/subclades show further distinctions in their distribution. Collectively, the present results suggest clade/subclade-specific adaptation to different ecological niches.
Collapse
Affiliation(s)
- Hiroki Ban
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| | - Akira Kuwata
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 3–27–5 Shinhama-cho, Shiogama, Miyagi, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan
| |
Collapse
|
11
|
Junger PC, Sarmento H, Giner CR, Mestre M, Sebastián M, Morán XAG, Arístegui J, Agustí S, Duarte CM, Acinas SG, Massana R, Gasol JM, Logares R. Global biogeography of the smallest plankton across ocean depths. SCIENCE ADVANCES 2023; 9:eadg9763. [PMID: 37939185 PMCID: PMC10631730 DOI: 10.1126/sciadv.adg9763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton β-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.
Collapse
Affiliation(s)
- Pedro C. Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Caterina R. Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Mireia Mestre
- Centro COPAS-COASTAL, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Marta Sebastián
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Xosé Anxelu G. Morán
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón/Xixón, Asturias 33212, Spain
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35214, Spain
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Silvia G. Acinas
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
12
|
Holt CC, Hehenberger E, Tikhonenkov DV, Jacko-Reynolds VKL, Okamoto N, Cooney EC, Irwin NAT, Keeling PJ. Multiple parallel origins of parasitic Marine Alveolates. Nat Commun 2023; 14:7049. [PMID: 37923716 PMCID: PMC10624901 DOI: 10.1038/s41467-023-42807-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Hakai Institute, Heriot Bay, British Columbia, Canada.
| | - Elisabeth Hehenberger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
| | | | - Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Merton College, University of Oxford, Oxford, UK
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Yang Y, Rivera Pérez CA, Richter-Heitmann T, Nimzyk R, Friedrich MW, Reich M. Effects of oxygen availability on mycobenthic communities of marine coastal sediments. Sci Rep 2023; 13:15218. [PMID: 37709848 PMCID: PMC10502103 DOI: 10.1038/s41598-023-42329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
In coastal marine sediments, oxygen availability varies greatly, and anoxic conditions can develop quickly over low spatial resolution. Although benthic fungi are important players in the marine carbon cycle, little is known about their adaptation to fluctuating availability of oxygen as terminal electron acceptor. Here, we study which part of a mycobenthic community from oxic coastal sediments can thrive under temporarily anoxic conditions. We test whether phylogeny or certain fungal traits promote plasticity in respect to changes in oxygen availability. Therefore, we incubated mycobenthos under oxic and anoxic conditions, performed ITS2 Illumina tag-sequencing and an additional meta-analysis on a literature survey. Half of all OTUs showed a plasticity towards changing oxygen availability and exhibited different strategies towards anoxic conditions, with rapid response within hours or a delayed one after several days. The strategy of dimorphism and facultative yeasts were significantly linked to OTU occurrence in anoxic conditions, while phylogeny and other traits had less effect. Our results suggest that different fungal niches are formed over the duration of prolonged anoxic conditions. The taxon-specific proliferation seems to be regulated by the fine-tuning of various traits and factors. It is essential to take these results into account when conducting conceptual work on the functionality of the marine benthos.
Collapse
Affiliation(s)
- Yanyan Yang
- Molecular Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Carmen Alicia Rivera Pérez
- Molecular Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
- Biodiversity and Evolution of Plants, Institute of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Rolf Nimzyk
- Microbial Ecophysiology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marlis Reich
- Molecular Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany.
| |
Collapse
|
14
|
Simon-Lledó E, Amon DJ, Bribiesca-Contreras G, Cuvelier D, Durden JM, Ramalho SP, Uhlenkott K, Arbizu PM, Benoist N, Copley J, Dahlgren TG, Glover AG, Fleming B, Horton T, Ju SJ, Mejía-Saenz A, McQuaid K, Pape E, Park C, Smith CR, Jones DOB. Carbonate compensation depth drives abyssal biogeography in the northeast Pacific. Nat Ecol Evol 2023; 7:1388-1397. [PMID: 37488225 PMCID: PMC10482686 DOI: 10.1038/s41559-023-02122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.
Collapse
Affiliation(s)
| | - Diva J Amon
- SpeSeas, D'Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Daphne Cuvelier
- Institute of Marine Sciences-Okeanos, University of the Azores, Horta, Portugal
| | | | - Sofia P Ramalho
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Katja Uhlenkott
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Pedro Martinez Arbizu
- German Centre for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | | | - Jonathan Copley
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | - Thomas G Dahlgren
- NORCE Climate and Environment, Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Bethany Fleming
- National Oceanography Centre, Southampton, UK
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | | | - Se-Jong Ju
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | | | | | - Ellen Pape
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Chailinn Park
- Korea Institute of Ocean Science and Technology, Busan, South Korea
- Ocean Science Major, University of Science and Technology, Daejeon, South Korea
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Manoa, Honolulu, HI, USA
| | | |
Collapse
|
15
|
Dünn M, Arndt H. Distribution Patterns of Benthic Protist Communities Depending on Depth Revealed by Environmental Sequencing-From the Sublittoral to the Deep Sea. Microorganisms 2023; 11:1664. [PMID: 37512837 PMCID: PMC10385078 DOI: 10.3390/microorganisms11071664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Protists are key components of the microbial food web in marine pelagic systems because they link algal and bacterial production to higher trophic levels. However, their functioning and bathymetric distribution in benthic deep-sea ecosystems are still only poorly understood. However, biogeographical patterns of communities can be coupled to the functioning of ecosystems and are therefore important to understand ecological and evolutionary processes. In this study, we investigated the diversity and distribution of benthic protist communities from the sublittoral down to the deep seafloor (50-2000 m) around three islands of the Azores in the North Atlantic Ocean. Using amplicon sequencing of the V9 region (18S rDNA) of 21 samples, we found that protist community compositions from different depths were significantly different. Three assemblages were separated along the following depths: 50 m, 150-500 m and 1000-2000 m, which indicate that deep-sea areas surrounding islands might act as isolating barriers for benthic protist species. A limited gene flow between the communities could favor speciation processes, leading to the unique protist communities found at the different investigated islands.
Collapse
Affiliation(s)
- Manon Dünn
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Hartmut Arndt
- Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
16
|
Abstract
Much of the higher-order phylogeny of eukaryotes is well resolved, but the root remains elusive. We assembled a dataset of 183 eukaryotic proteins of archaeal ancestry to test this root. The resulting phylogeny identifies four lineages of eukaryotes currently classified as "Excavata" branching separately at the base of the tree. Thus, Parabasalia appear as the first major branch of eukaryotes followed sequentially by Fornicata, Preaxostyla, and Discoba. All four excavate branch points receive full statistical support from analyses with commonly used evolutionary models, a protein structure partition model that we introduce here, and various controls for deep phylogeny artifacts. The absence of aerobic mitochondria in Parabasalia, Fornicata, and Preaxostyla suggests that modern eukaryotes arose under anoxic conditions, probably much earlier than expected, and without the benefit of mitochondrial respiration.
Collapse
|
17
|
Wu S, Dong Y, Stoeck T, Wang S, Fan H, Wang Y, Zhuang X. Geographic characteristics and environmental variables determine the diversities and assembly of the algal communities in interconnected river-lake system. WATER RESEARCH 2023; 233:119792. [PMID: 36868116 DOI: 10.1016/j.watres.2023.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Algal blooms in lakes are a major hazard worldwide. Although various geographical and environmental patterns affect algal communities during river-lake transit, a thorough understanding of what patterns shape the algal communities is still rarely researched, particularly in complex interconnected river-lake systems. In this study, focusing on the most typical interconnected river-lake system in China, the Dongting Lake, we collected paired water and sediment samples in summer, when algal biomass and growth rate are at high levels. Based on 23S rRNA gene sequencing, we investigated the heterogeneity and the differences in assembly mechanisms of planktonic and benthic algae in Dongting Lake. Planktonic algae contained more Cyanobacteria and Cryptophyta, while sediment harbored higher proportions of Bacillariophyta and Chlorophyta. For planktonic algae, stochastic dispersal dominated the assembly of the communities. Upstream rivers and confluences were important sources of planktonic algae in lakes. Meanwhile, for benthic algae, deterministic environmental filtering shaped the communities, and the proportion of benthic algae exploded with increasing N:P ratio and Cu concentration until reaching thresholds of 1.5 and 0.013 g/kg respectively, and then started falling, showing non-linear responses. This study revealed the variability of different aspects of algal communities in different habitats, traced the main sources of planktonic algae, and identified the thresholds for benthic algal shifts in response to environmental filters. Hence, upstream and downstream monitoring as well as thresholds of environmental factors should be considered in further aquatic ecological monitoring or regulatory programs of harmful algal blooms in these complex systems.
Collapse
Affiliation(s)
- Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thorsten Stoeck
- Department of Ecology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Zhou T, Zhao F, Xu K. Information Scale Correction for Varying Length Amplicons Improves Eukaryotic Microbiome Data Integration. Microorganisms 2023; 11:microorganisms11040949. [PMID: 37110372 PMCID: PMC10146031 DOI: 10.3390/microorganisms11040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The integration and reanalysis of big data provide valuable insights into microbiome studies. However, the significant difference in information scale between amplicon data poses a key challenge in data analysis. Therefore, reducing batch effects is crucial to enhance data integration for large-scale molecular ecology data. To achieve this, the information scale correction (ISC) step, involving cutting different length amplicons into the same sub-region, is essential. In this study, we used the Hidden Markov model (HMM) method to extract 11 different 18S rRNA gene v4 region amplicon datasets with 578 samples in total. The length of the amplicons ranged from 344 bp to 720 bp, depending on the primer position. By comparing the information scale correction of amplicons with varying lengths, we explored the extent to which the comparability between samples decreases with increasing amplicon length. Our method was shown to be more sensitive than V-Xtractor, the most popular tool for performing ISC. We found that near-scale amplicons exhibited no significant change after ISC, while larger-scale amplicons exhibited significant changes. After the ISC treatment, the similarity among the data sets improved, especially for long amplicons. Therefore, we recommend adding ISC processing when integrating big data, which is crucial for unlocking the full potential of microbial community studies and advancing our knowledge of microbial ecology.
Collapse
Affiliation(s)
- Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Stewart ECD, Bribiesca‐Contreras G, Taboada S, Wiklund H, Ravara A, Pape E, De Smet B, Neal L, Cunha MR, Jones DOB, Smith CR, Glover AG, Dahlgren TG. Biodiversity, biogeography, and connectivity of polychaetes in the world's largest marine minerals exploration frontier. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
20
|
Kalu EI, Reyes-Prieto A, Barbeau MA. Community dynamics of microbial eukaryotes in intertidal mudflats in the hypertidal Bay of Fundy. ISME COMMUNICATIONS 2023; 3:21. [PMID: 36918616 PMCID: PMC10014957 DOI: 10.1038/s43705-023-00226-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Protists (microbial eukaryotes) are a critically important but understudied group of microorganisms. They are ubiquitous, represent most of the genetic and functional diversity among eukaryotes, and play essential roles in nutrient and energy cycling. Yet, protists remain a black box in marine sedimentary ecosystems like the intertidal mudflats in the Bay of Fundy. The harsh conditions of the intertidal zone and high energy nature of tides in the Bay of Fundy provide an ideal system for gaining insights into the major food web players, diversity patterns and potential structuring influences of protist communities. Our 18S rDNA metabarcoding study quantified seasonal variations and vertical stratification of protist communities in Bay of Fundy mudflat sediments. Three 'SAR' lineages were consistently dominant (in terms of abundance, richness, and prevalence), drove overall community dynamics and formed the core microbiome in sediments. They are Cercozoa (specifically thecate, benthic gliding forms), Bacillariophyta (mainly cosmopolitan, typically planktonic diatoms), and Dinophyceae (dominated by a toxigenic, bloom-forming species). Consumers were the dominant trophic functional group and were comprised mostly of eukaryvorous and bacterivorous Cercozoa, and omnivorous Ciliophora, while phototrophs were dominated by Bacillariophyta. The codominance of Apicomplexa (invertebrate parasites) and Syndiniales (protist parasites) in parasite assemblages, coupled with broader diversity patterns, highlighted the combined marine and terrestrial influences on microbial communities inhabiting intertidal sediments. Our findings, the most comprehensive in a hypertidal benthic system, suggest that synergistic interactions of both local and regional processes (notably benthic-pelagic coupling) may drive heterogenous microbial distribution in high-energy coastal systems.
Collapse
Affiliation(s)
- Eke I Kalu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | | | - Myriam A Barbeau
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
21
|
Sobczyk R, Serigstad B, Pabis K. High polychaete diversity in the Gulf of Guinea (West African continental margin): The influence of local and intermediate scale ecological factors on a background of regional patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160046. [PMID: 36356769 DOI: 10.1016/j.scitotenv.2022.160046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The Tropical East Atlantic is one of the least studied areas in the world's oceans, and thus a blank spot on the map of marine studies. Shaped by dynamic currents and shifting water masses, it is a key region in discussions about marine ecology, biodiversity, and zoogeography, while facing numerous, poorly understood, and unmonitored threats associated with climate change, acidification, and pollution. Polychaete diversity was assessed along four transects along the Ghana coast, from shallow to deep bottoms and distributed along the whole upwelling marine ecoregion. Despite high sampling effort, steep species accumulation curves demonstrated the necessity of further sampling in the region. We observed zonation of fauna by depth, and a decrease in species richness from 25 m to 1000 m depth. Polychaete communities were influenced by sediment type, presence of oxygen minimum zones, and local disturbances caused by elevated barium concentrations. Similar evenness along the depth gradient reflected the importance of rare species in the community structure. Differences in phylogenetic diversity, as reflected by taxonomic distinctness, were small, which suggested high ecosystem stability. The highly variable species richness at small scale (meters) showed the importance of ecological factors giving rise to microhabitat diversity, although we also noticed intermediate scale (50-300 km) differences affecting community structure. About 44 % of the species were rare (i.e. recorded only in three or fewer samples), highlighting the level of patchiness, while one fifth was distributed on all transects, therefore along the whole upwelling ecoregion, demonstrating the influence of the regional species pool on local communities at particular stations. Our study yielded 253 species, increasing the number of polychaetes known from this region by at least 50 %. This casts doubt on previous findings regarding Atlantic bioregionalization, biodiversity estimates and endemism, which appear to have been more pronouncedly affected by sampling bias than previously thought.
Collapse
Affiliation(s)
- Robert Sobczyk
- Department of Invertebrates Zoology and Hydrobiology, University of Lodz, Lodz, Poland.
| | - Bjorn Serigstad
- Center for Development Cooperation in Fisheries, Institute of Marine Research, Bergen, Norway
| | - Krzysztof Pabis
- Department of Invertebrates Zoology and Hydrobiology, University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Flegontova O, Flegontov P, Jachníková N, Lukeš J, Horák A. Water masses shape pico-nano eukaryotic communities of the Weddell Sea. Commun Biol 2023; 6:64. [PMID: 36653511 PMCID: PMC9849203 DOI: 10.1038/s42003-023-04452-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Polar oceans belong to the most productive and rapidly changing environments, yet our understanding of this fragile ecosystem remains limited. Here we present an analysis of a unique set of DNA metabarcoding samples from the western Weddell Sea sampled throughout the whole water column and across five water masses with different characteristics and different origin. We focus on factors affecting the distribution of planktonic pico-nano eukaryotes and observe an ecological succession of eukaryotic communities as the water masses move away from the surface and as oxygen becomes depleted with time. At the beginning of this succession, in the photic zone, algae, bacteriovores, and predators of small eukaryotes dominate the community, while another community develops as the water sinks deeper, mostly composed of parasitoids (syndinians), mesoplankton predators (radiolarians), and diplonemids. The strongly correlated distribution of syndinians and diplonemids along the depth and oxygen gradients suggests their close ecological link and moves us closer to understanding the biological role of the latter group in the ocean ecosystem.
Collapse
Affiliation(s)
- Olga Flegontova
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Nikola Jachníková
- grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Julius Lukeš
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Dominguez‐Huerta G, Wainaina JM, Zayed AA, Culley AI, Kuhn JH, Sullivan MB. The RNA virosphere: How big and diverse is it? Environ Microbiol 2023; 25:209-215. [PMID: 36511833 PMCID: PMC9852017 DOI: 10.1111/1462-2920.16312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Guillermo Dominguez‐Huerta
- Department of MicrobiologyOhio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColumbusOhioUSA
| | - James M. Wainaina
- Department of MicrobiologyOhio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColumbusOhioUSA
| | - Ahmed A. Zayed
- Department of MicrobiologyOhio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColumbusOhioUSA
| | - Alexander I. Culley
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMarylandUSA
| | - Matthew B. Sullivan
- Department of MicrobiologyOhio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColumbusOhioUSA
- Department of Civil, Environmental and Geodetic EngineeringOhio State UniversityColumbusOhioUSA
| |
Collapse
|
24
|
Knauber H, Silberberg JR, Brandt A, Riehl T. Evolution and biogeography of the Haploniscus belyaevi species complex (Isopoda: Haploniscidae) revealed by means of integrative taxonomy. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2099477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Henry Knauber
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Jona R. Silberberg
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Torben Riehl
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum, Section Crustacea, Senckenberganlage 25, Frankfurt, 60325, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| |
Collapse
|
25
|
Rogers AD, Appeltans W, Assis J, Ballance LT, Cury P, Duarte C, Favoretto F, Hynes LA, Kumagai JA, Lovelock CE, Miloslavich P, Niamir A, Obura D, O'Leary BC, Ramirez-Llodra E, Reygondeau G, Roberts C, Sadovy Y, Steeds O, Sutton T, Tittensor DP, Velarde E, Woodall L, Aburto-Oropeza O. Discovering marine biodiversity in the 21st century. ADVANCES IN MARINE BIOLOGY 2022; 93:23-115. [PMID: 36435592 DOI: 10.1016/bs.amb.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.
Collapse
Affiliation(s)
- Alex D Rogers
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom.
| | - Ward Appeltans
- Intergovernmental Oceanographic Commission of UNESCO, Oostende, Belgium
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lisa T Ballance
- Marine Mammal Institute, Oregon State University, Newport, OR, United States
| | | | - Carlos Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Kingdom of Saudi Arabia
| | - Fabio Favoretto
- Autonomous University of Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Lisa A Hynes
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Joy A Kumagai
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Patricia Miloslavich
- Scientific Committee on Oceanic Research (SCOR), College of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States; Departamento de Estudios Ambientales, Universidad Simón Bolívar, Venezuela & Scientific Committee for Oceanic Research (SCOR), Newark, DE, United States
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt am Main, Germany
| | | | - Bethan C O'Leary
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom; Department of Environment and Geography, University of York, York, United Kingdom
| | - Eva Ramirez-Llodra
- REV Ocean, Lysaker, Norway; Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Gabriel Reygondeau
- Yale Center for Biodiversity Movement and Global Change, Yale University, New Haven, CT, United States; Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Callum Roberts
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Yvonne Sadovy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong
| | - Oliver Steeds
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom
| | - Tracey Sutton
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Dania Beach, FL, United States
| | | | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Veracruz, Mexico
| | - Lucy Woodall
- Nekton Foundation, Begbroke Science Park, Oxford, United Kingdom; Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
26
|
Zou G, Niu L, Li Y, Zhang W, Wang L, Li Y, Zhang H, Wang L, Gao Y. Depth induced assembly discrepancy of multitrophic microbial communities affect microbial nitrogen transformation processes in river cross-sections. ENVIRONMENTAL RESEARCH 2022; 214:113913. [PMID: 35843280 DOI: 10.1016/j.envres.2022.113913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Understanding how the structures and functions of bacterial and microeukaryotic communities vary within cross-sections will improve managements aimed at restoring river ecological functions. However, no comprehensive investigation has examined how microbial community characteristics vary within cross-sections, which makes the accurate calculation and prediction of microbial metabolic processing of substances in rivers difficult. Here, the distributions, co-occurrence networks, and assemblies of bacterial and microeukaryotic communities and their feedback to nitrogen transformation in cross-sections of the Yangtze River were studied by coupling ecological theory, biogeochemistry, and DNA meta-barcoding methods. The study found that depth in cross-sections was the primary driving factor regulating the composition of sediment bacterial and microeukaryotic communities. Co-occurrence network analysis indicated that the effect of bacteria on the co-occurrence network decreased and the network become more simplified and instability with depth in river cross-sections. Quantified using the β-nearest taxon index, the H2 layer sediment (depth 10-20 m) displayed the largest variation in selection processes for microbial assemblies, while homogeneous selection and homogenizing dispersal contributed most to the bacterial and microeukaryotic assemblies in the H3 layer (depth >20 m). Cross-sectional depth and denitrification genes had a significant quadratic correlation, with the highest microbial nitrogen-removal potential occurring in the H2 layer sediment. Structural equation models showed that the sediment nitrogen distributions were regulated by distinct environmental pathways at different depths, and that the H2 layer sediment was primary driven by bacterial community. In this layer, river cross-sectional depth influenced nitrogen transformation by regulating the distribution of sediment particle sizes, which then influenced the assembly of the multitrophic microbial communities. This study will improve river management by clarifying the importance of cross-sectional depth to the ecological function of rivers.
Collapse
Affiliation(s)
- Guanhua Zou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Yuanyuan Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210024, PR China
| |
Collapse
|
27
|
Rangaswamy B, Ji CW, Kim WS, Park JW, Kim YJ, Kwak IS. Profiling Analysis of Filter Feeder Polypedilum (Chironomidae) Gut Contents Using eDNA Metabarcoding Following Contrasting Habitat Types-Weir and Stream. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10945. [PMID: 36078662 PMCID: PMC9517803 DOI: 10.3390/ijerph191710945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Chang Woo Ji
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
| | - Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Jae-Won Park
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Yong Jun Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
28
|
Javier Galindo L, López García P, Moreira D. First Molecular Characterization of the Elusive Marine Protist Meteora sporadica. Protist 2022; 173:125896. [DOI: 10.1016/j.protis.2022.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
|
29
|
Grattepanche JD, Jeffrey WH, Gast RJ, Sanders RW. Diversity of Microbial Eukaryotes Along the West Antarctic Peninsula in Austral Spring. Front Microbiol 2022; 13:844856. [PMID: 35651490 PMCID: PMC9149413 DOI: 10.3389/fmicb.2022.844856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
During a cruise from October to November 2019, along the West Antarctic Peninsula, between 64.32 and 68.37°S, we assessed the diversity and composition of the active microbial eukaryotic community within three size fractions: micro- (> 20 μm), nano- (20-5 μm), and pico-size fractions (5-0.2 μm). The communities and the environmental parameters displayed latitudinal gradients, and we observed a strong similarity in the microbial eukaryotic communities as well as the environmental parameters between the sub-surface and the deep chlorophyll maximum (DCM) depths. Chlorophyll concentrations were low, and the mixed layer was shallow for most of the 17 stations sampled. The richness of the microplankton was higher in Marguerite Bay (our southernmost stations), compared to more northern stations, while the diversity for the nano- and pico-plankton was relatively stable across latitude. The microplankton communities were dominated by autotrophs, mostly diatoms, while mixotrophs (phototrophs-consuming bacteria and kleptoplastidic ciliates, mostly alveolates, and cryptophytes) were the most abundant and active members of the nano- and picoplankton communities. While phototrophy was the dominant trophic mode, heterotrophy (mixotrophy, phagotrophy, and parasitism) tended to increase southward. The samples from Marguerite Bay showed a distinct community with a high diversity of nanoplankton predators, including spirotrich ciliates, and dinoflagellates, while cryptophytes were observed elsewhere. Some lineages were significantly related-either positively or negatively-to ice coverage (e.g., positive for Pelagophyceae, negative for Spirotrichea) and temperature (e.g., positive for Cryptophyceae, negative for Spirotrichea). This suggests that climate changes will have a strong impact on the microbial eukaryotic community.
Collapse
Affiliation(s)
| | - Wade H. Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL, United States
| | - Rebecca J. Gast
- Department of Biology, Woods Hole Oceanographic Institution, Pensacola, MA, United States
| | - Robert W. Sanders
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Tashyreva D, Simpson A, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. Diplonemids – A Review on “New“ Flagellates on the Oceanic Block. Protist 2022; 173:125868. [DOI: 10.1016/j.protis.2022.125868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|