1
|
König JK, Fitzgerald JM, Malic E. Magneto-Optics of Anisotropic Exciton Polaritons in Two-Dimensional Perovskites. NANO LETTERS 2025; 25:8519-8526. [PMID: 40358924 PMCID: PMC12123678 DOI: 10.1021/acs.nanolett.5c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Layered two-dimensional (2D) organic-inorganic perovskite semiconductors support strongly confined excitons that offer significant potential for ultrathin polaritonic devices due to their tunability and huge oscillator strength. The application of a magnetic field has proven to be an invaluable tool for investigating the exciton fine structure observed in these materials, yet the combination of an in-plane magnetic field and the strong coupling regime has remained largely unexplored. In this work, we combine microscopic theory with a rigorous solution of Maxwell's equations to model the magneto-optics of exciton polaritons in 2D perovskites. We predict that the brightened dark exciton state can enter the strong coupling regime. Furthermore, the magnetic-field-induced mixing of polarization selection rules and the breaking of in-plane symmetry lead to highly anisotropic polariton branches. This study contributes to a better understanding of the exciton fine structure in 2D perovskites and demonstrates the cavity control of anisotropic and polarization-sensitive exciton polaritons.
Collapse
Affiliation(s)
- Jonas K. König
- Fachbereich Physik, Philipps-Universität, Marburg35032, Germany
| | | | - Ermin Malic
- Fachbereich Physik, Philipps-Universität, Marburg35032, Germany
| |
Collapse
|
2
|
Jankowski WJ, Thompson JJP, Monserrat B, Slager RJ. Excitonic topology and quantum geometry in organic semiconductors. Nat Commun 2025; 16:4661. [PMID: 40389414 PMCID: PMC12089288 DOI: 10.1038/s41467-025-59257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025] Open
Abstract
Excitons drive the optoelectronic properties of organic semiconductors which underpin devices including solar cells and light-emitting diodes. Here we show that excitons can exhibit topologically non-trivial states protected by inversion symmetry and identify a family of organic semiconductors realising the predicted excitonic topological phases. We also demonstrate that the topological phase can be controlled through experimentally realisable strains and chemical functionalisation of the material. Appealing to quantum Riemannian geometry, we predict that topologically non-trivial excitons have a lower bound on their centre-of-mass spatial spread, which can significantly exceed the size of a unit cell. Furthermore, we show that the dielectric environment allows control over the excitonic quantum geometry. The discovery of excitonic topology and excitonic Riemannian geometry in organic materials brings together two mature fields and suggests many new possibilities for a range of future optoelectronic applications.
Collapse
Affiliation(s)
| | - Joshua J P Thompson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Bartomeu Monserrat
- TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Robert-Jan Slager
- TCM Group, Cavendish Laboratory, Department of Physics, Cambridge, UK.
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
3
|
Niu X, Li Y, Lu H, Wang Z, Zhang Y, Shao T, Wang H, Gull S, Sun B, Zhang HL, Chen Y, Wang K, Du Y, Long G. Chiral europium halides with high-performance magnetic field tunable red circularly polarized luminescence at room temperature. Nat Commun 2025; 16:2525. [PMID: 40082417 PMCID: PMC11906753 DOI: 10.1038/s41467-025-57620-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Chiral organic-inorganic hybrid metal halides as promising circularly polarized luminescence (CPL) emitter candidates hold great potential for high-definition displays and future spin-optoelectronics. The recent challenge lies primarily in developing high-performance red CPL emitters. Here, coupling the f-f transition characteristics of trivalent europium ions (Eu3+) with chirality, we construct the chiral Eu-based halides, (R/S-3BrMBA)3EuCl6, which exhibit strong and predictable red emission with large photoluminescence quantum yield (59.8%), narrow bandwidth (≈2 nm), long lifetime (≈2 ms), together with large dissymmetry factor |glum| of 1.84 × 10-2. Compared with the previously reported chiral metal halides, these chiral Eu-based halides show the highest red CPL brightness. Furthermore, the degree of photoluminescence polarization in (R/S-3BrMBA)3EuCl6 can be manipulated by the external magnetic field. Particularly, benefiting from the field-generated Zeeman splitting and spin mixing at exciton states, an anomalously positive magneto-photoluminescence was observed at room temperature. This work provides an efficient strategy for constructing both high-performance and pure-red CPL emitters. It also opens the door for chiral rare-earth halides toward chiral optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Xinyi Niu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yang Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Zhaoyu Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China.
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Matsushima T, Qin C, Teng T, Kamatham N, Sosa Vargas L, Kreher D, Heinrich B, Ishii T, Terakawa S, Leyden MR, Sandanayaka ASD, Bencheikh F, Miyata K, Onda K, Kanemitsu Y, Mathevet F, Adachi C. Efficient Electroluminescence from Organic Fluorophore-Containing Perovskite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408775. [PMID: 39420688 DOI: 10.1002/adma.202408775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Indexed: 10/19/2024]
Abstract
Two-dimensional perovskites containing an organic fluorophore can be a unique emitter for light-emitting diodes (LEDs). However, external quantum efficiencies (EQEs) of fluorophore-containing perovskite LEDs reported thus far are still very low. In this study, these are able to boost the EQE to ≈10% by choosing an organic fluorophore with appropriate energy levels for the perovskite structure organization. In the fluorophore-containing perovskite LEDs, carrier transport and exciton formation take place in the perovskite's metal halide framework, thereby avoiding the direct formation of nonradiative triplet excitons on the organic fluorophores. Subsequently, the bright triplet excitons formed in the metal halide framework are transferred to form the radiative singlet states of the organic fluorophores, leading to efficient electroluminescence (EL) from the organic fluorophores regularly dispersed inside the perovskite structure. Unexpectedly higher light-outcoupling efficiency, which is caused by the light scattering in the polycrystalline perovskite layer, will be another reason for efficient EL. These findings will contribute toward the fabrication of LED-based products with high performance at a low cost.
Collapse
Affiliation(s)
- Toshinori Matsushima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Energy Systems Design (CESD), WPI-I2CNER, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science, 5625 Renmin Street, Changchun, 130022, China
| | - Teng Teng
- Institut Parisien de Chimie Moléculaire (IPCM) - UMR 8232, CNRS - Sorbonne Université, Paris, F-75005, France
| | - Narayanaswamy Kamatham
- Institut Parisien de Chimie Moléculaire (IPCM) - UMR 8232, CNRS - Sorbonne Université, Paris, F-75005, France
- Department of Chemistry, SRM University AP, Tamil Nadu, Andhra Pradesh, 522240, India
| | - Lydia Sosa Vargas
- Institut Parisien de Chimie Moléculaire (IPCM) - UMR 8232, CNRS - Sorbonne Université, Paris, F-75005, France
| | - David Kreher
- Institut Parisien de Chimie Moléculaire (IPCM) - UMR 8232, CNRS - Sorbonne Université, Paris, F-75005, France
| | - Benoit Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) - UMR 7504, CNRS - Université de Strasbourg, Strasbourg, 67034, France
| | - Tomohiro Ishii
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Shinobu Terakawa
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Matthew R Leyden
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Atula S D Sandanayaka
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Fatima Bencheikh
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Gokasho Uji-city, Kyoto, 611-0011, Japan
| | - Fabrice Mathevet
- Institut Parisien de Chimie Moléculaire (IPCM) - UMR 8232, CNRS - Sorbonne Université, Paris, F-75005, France
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Zuri S, Kronik L, Lifshitz E. Intrinsic Rashba Effect in Stable Configurations of Two-Dimensional (PEA) 2PbI 4. J Phys Chem Lett 2024; 15:11637-11642. [PMID: 39536171 DOI: 10.1021/acs.jpclett.4c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Halide perovskites (HPs) are crystalline solids that feature a unique softness, absent in conventional semiconducting materials. In recent years, this softness has been pivotal to many properties in these materials, in both static and dynamic regimes. Here, we focus on the two-dimensional (2D) (PEA)2PbI4 crystal. We employ extensive density functional theory calculations and structural analysis to uncover a rich mosaic of ground-state configurations, identifying several stable configurations with distinct electronic properties. Our study uncovers an intrinsic Rashba effect within a structure traditionally considered as globally centrosymmetric, presenting a challenge to conventional understanding in the field. The observed effect emerges from a local symmetry-breaking induced by specific spatial orientations of the organic PEA molecules. This intrinsic Rashba effect, observed in select configurations, underscores the nuanced symmetrical complexities of 2D HPs and highlights their potential for spin-related applications. Additionally, our investigation demonstrates the exceptional flexibility of 2D HPs, as evidenced by an observed significant tolerance toward single-molecule rotations. This flexibility suggests potential pathways for smoother transitions between different molecular domains within these materials. Overall, our findings emphasize the intricate interplay between the organic/inorganic counterparts and the electronic properties in 2D HPs, paving the way for further exploration and exploitation of their unique characteristics in various optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Shahar Zuri
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Information Center and the Grand Technion Energy Program, Technion, Haifa 3200003, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Helen Diller Quantum Information Center and the Grand Technion Energy Program, Technion, Haifa 3200003, Israel
| |
Collapse
|
6
|
Luo Z, Yi X, Jiang Y, Luo N, Liu B, Zhong Y, Tan Q, Jiang Q, Liu X, Chen S, Lu Y, Pan A. Efficient Energy Transfer Enabled by Dark States in van der Waals Heterostructures. ACS NANO 2024; 18:31215-31224. [PMID: 39470132 DOI: 10.1021/acsnano.4c09403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS2/CsPbBr3 van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr3 to significantly improve the photoelectric performance of monolayer WS2. We first propose the scenario of resonant ET between the dark state of CsPbBr3 and WS2, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr3 is identified as a long-range donor-bridge-acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS2. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.
Collapse
Affiliation(s)
- Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ying Jiang
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Nannan Luo
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Bingjie Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yangguang Zhong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qin Tan
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Qi Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- School of Physics and Electronics, Hunan Normal University, Changsha 410082, P R China
| |
Collapse
|
7
|
Zhang S, Ma K, Yuan B, Yang J, Lu Y, Sun D, Park JY, Wei Z, Mannodi-Kanakkithodi A, Yu Y, Huang L, Pennycook TJ, Dou L. Deterministic Synthesis of a Two-Dimensional MAPbI 3 Nanosheet and Twisted Structure with Moiré Superlattice. J Am Chem Soc 2024; 146:27861-27870. [PMID: 39327910 DOI: 10.1021/jacs.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of extremely thin 2D halide perovskites and the exploration of their interlayer interactions have garnered significant attention in current research. A recent advancement we have made involves the development of a successful technique for generating ultrathin MAPbI3 nanosheets with controlled thickness and an exposed intrinsic surface. This innovative method relies on utilizing the Ruddlesden-Popper (RP) phase perovskite (BA2MAn-1PbnI3n+1) as a template. However, the precise reaction mechanism remains incompletely understood. In this work, we systematically examined the dynamic evolution of the phase conversion process, with a specific focus on the influence of inorganic slab (composed of [PbI6]4- octahedrons) numbers on regulating the thickness and quality of the resulting MAPbI3 nanosheets. Additionally, the atomic structure is directly visualized using the transmission electron microscopy (TEM) method, confirming its exceptional quality. To illustrate interfacial interactions in ultrathin structures, artificial moiré superlattices are constructed through a physical transfer approach, revealing multiple localized high-symmetry stacks within a distinctive square moiré pattern. These findings establish a novel framework for investigating the physics of interfacial interactions in ionic semiconducting crystals.
Collapse
Affiliation(s)
- Shuchen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yuan
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy J Pennycook
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Krahne R, Schleusener A, Faraji M, Li LH, Lin ML, Tan PH. Phonon Directionality Impacts Electron-Phonon Coupling and Polarization of the Band-Edge Emission in Two-Dimensional Metal Halide Perovskites. NANO LETTERS 2024; 24:11124-11131. [PMID: 39171793 PMCID: PMC11378763 DOI: 10.1021/acs.nanolett.4c03543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two-dimensional metal halide perovskites are highly versatile for light-driven applications due to their exceptional variety in material composition, which can be exploited for the tunability of mechanical and optoelectronic properties. The band-edge emission is defined by the structure and composition of both organic and inorganic layers, and electron-phonon coupling plays a crucial role in the recombination dynamics. However, the nature of the electron-phonon coupling and what kind of phonons are involved are still under debate. Here we investigate the emission, reflectance, and phonon response from single two-dimensional lead iodide microcrystals with angle-resolved polarized spectroscopy. We find an intricate dependence of the emission polarization with the vibrational directionality in the materials, which reveals that several bands of low-frequency phonons with nonorthogonal directionality contribute to the band-edge emission. Such complex electron-phonon coupling requires adequate models to predict the thermal broadening of the emission and provides opportunities to design polarization properties.
Collapse
Affiliation(s)
- Roman Krahne
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Alexander Schleusener
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
| | - Mehrdad Faraji
- Optoelectronics Research Line, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Lin-Han Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
9
|
Lou X, Li Y, Lei H, Zhang Y, Zhou H, Shi E, Zhu H. Robust and Efficient Out-of-Plane Exciton Transport in Two-Dimensional Perovskites via Ultrafast Förster Energy Transfer. ACS NANO 2024. [PMID: 39041395 DOI: 10.1021/acsnano.4c06336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Two-dimensional (2D) perovskites, comprising inorganic semiconductor layers separated by organic spacers, hold promise for light harvesting and optoelectronic applications. Exciton transport in these materials is pivotal for device performance, often necessitating deliberate alignment of the inorganic layers with respect to the contacting layers to facilitate exciton transport. While much attention has focused on in-plane exciton transport, little has been paid to out-of-plane interlayer transport, which presumably is sluggish and unfavorable. Herein, by time-resolved photoluminescence, we unveil surprisingly efficient out-of-plane exciton transport in 2D perovskites, with diffusion coefficients (up to ∼0.1 cm2 s-1) and lengths (∼100 nm) merely a few times smaller or comparable to their in-plane counterparts. We unambiguously confirm that the out-of-plane exciton diffusion coefficient corresponds to a subpicosecond interlayer exciton transfer, governed by the Förster resonance energy transfer (FRET) mechanism. Intriguingly, in contrast to temperature-sensitive intralayer band-like transport, the interlayer exciton transport exhibits negligible temperature dependence, implying a lowest-lying bright exciton state in 2D perovskites, irrespective of spacer molecules. The robust and ultrafast interlayer exciton transport alleviates the constraints on crystal orientation that are crucial for the design of 2D perovskite-based light harvesting and optoelectronic devices.
Collapse
Affiliation(s)
- Xue Lou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haixin Lei
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yao Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Hongzhi Zhou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haiming Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
10
|
Swift MW, Sercel PC, Efros AL, Lyons JL, Norris DJ. Identification of Semiconductor Nanocrystals with Bright Ground-State Excitons. ACS NANO 2024. [PMID: 39037050 DOI: 10.1021/acsnano.4c02905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
While semiconductor nanocrystals provide versatile fluorescent materials for light-emitting devices, their brightness suffers from the "dark exciton"─an optically inactive electronic state into which nanocrystals relax before emitting. Recently, a theoretical mechanism, the Rashba effect, was discovered that can overcome this limitation by inverting the lowest-lying levels and creating a bright excitonic ground state. However, no methodology is available to systematically identify materials that exhibit this inversion, hindering the development of superbright nanocrystals and their devices. Here, based on a detailed understanding of the Rashba mechanism, we demonstrate a procedure that reveals previously unknown "bright-exciton" nanocrystals. We first define physical criteria to reduce over 500,000 known solids to 173 targets. Higher-level first-principles calculations then refine this list to 28 candidates. From these, we select five with high oscillator strength and develop effective-mass models to determine the nature of their lowest excitonic state. We confirm that four of the five solids yield bright ground-state excitons in nanocrystals. Thus, our results provide a badly needed roadmap for experimental investigation of bright-exciton nanomaterials.
Collapse
Affiliation(s)
- Michael W Swift
- Center for Computational Materials Science, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Peter C Sercel
- Center for Hybrid Organic-Inorganic Semiconductors for Energy, Golden, Colorado 80401, United States
| | - Alexander L Efros
- Center for Computational Materials Science, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - John L Lyons
- Center for Computational Materials Science, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
11
|
Liu Y, Zhou H, Lin L, Sun HB. Tunable single emitter-cavity coupling strength through waveguide-assisted energy quantum transfer. LIGHT, SCIENCE & APPLICATIONS 2024; 13:171. [PMID: 39025842 PMCID: PMC11258325 DOI: 10.1038/s41377-024-01508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The emitter-cavity strong coupling manifests crucial significance for exploiting quantum technology, especially in the scale of individual emitters. However, due to the small light-matter interaction cross-section, the single emitter-cavity strong coupling has been limited by its harsh requirement on the quality factor of the cavity and the local density of optical states. Herein, we present a strategy termed waveguide-assisted energy quantum transfer (WEQT) to improve the single emitter-cavity coupling strength by extending the interaction cross-section. Multiple ancillary emitters are optically linked by a waveguide, providing an indirect coupling channel to transfer the energy quantum between target emitter and cavity. An enhancement factor of coupling strengthg ̃ / g > 10 can be easily achieved, which dramatically release the rigorous design of cavity. As an extension of concept, we further show that the ancillae can be used as controlling bits for a photon gate, opening up new degrees of freedom in quantum manipulation.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhou
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
| | - Hong-Bo Sun
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Li S, Xu X, Kocoj CA, Zhou C, Li Y, Chen D, Bennett JA, Liu S, Quan L, Sarker S, Liu M, Qiu DY, Guo P. Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite. Nat Commun 2024; 15:2573. [PMID: 38519487 PMCID: PMC10959982 DOI: 10.1038/s41467-024-46851-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.
Collapse
Affiliation(s)
- Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Xian Xu
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Chenyu Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Joseph A Bennett
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Sunhao Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Lina Quan
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Suchismita Sarker
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Diana Y Qiu
- Energy Sciences Institute, Yale University, West Haven, CT, USA.
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
- Energy Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
13
|
Posmyk K, Zawadzka N, Łucja Kipczak, Dyksik M, Surrente A, Maude DK, Kazimierczuk T, Babiński A, Molas MR, Bumrungsan W, Chooseng C, Paritmongkol W, Tisdale WA, Baranowski M, Plochocka P. Bright Excitonic Fine Structure in Metal-Halide Perovskites: From Two-Dimensional to Bulk. J Am Chem Soc 2024; 146:4687-4694. [PMID: 38324275 PMCID: PMC10885139 DOI: 10.1021/jacs.3c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The optical response of two-dimensional (2D) perovskites, often referred to as natural quantum wells, is primarily governed by excitons, whose properties can be readily tuned by adjusting the perovskite layer thickness. We have investigated the exciton fine structure splitting in the archetypal 2D perovskite (PEA)2(MA)n-1PbnI3n+1 with varying numbers of inorganic octahedral layers n = 1, 2, 3, and 4. We demonstrate that the in-plane excitonic states exhibit splitting and orthogonally oriented dipoles for all confinement regimes. The evolution of the exciton states in an external magnetic field provides further insights into the g-factors and diamagnetic coefficients. With increasing n, we observe a gradual evolution of the excitonic parameters characteristic of a 2D to three-dimensional transition. Our results provide valuable information concerning the evolution of the optoelectronic properties of 2D perovskites with the changing confinement strength.
Collapse
Affiliation(s)
- Katarzyna Posmyk
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| | - Natalia Zawadzka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Alessandro Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Duncan K Maude
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| | - Tomasz Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
| | - Wakul Bumrungsan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Chanisara Chooseng
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Watcharaphol Paritmongkol
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble, Toulouse 31400, France
| |
Collapse
|
14
|
Leppert L. Excitons in metal-halide perovskites from first-principles many-body perturbation theory. J Chem Phys 2024; 160:050902. [PMID: 38341699 DOI: 10.1063/5.0187213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 02/13/2024] Open
Abstract
Metal-halide perovskites are a structurally, chemically, and electronically diverse class of semiconductors with applications ranging from photovoltaics to radiation detectors and sensors. Understanding neutral electron-hole excitations (excitons) is key for predicting and improving the efficiency of energy-conversion processes in these materials. First-principles calculations have played an important role in this context, allowing for a detailed insight into the formation of excitons in many different types of perovskites. Such calculations have demonstrated that excitons in some perovskites significantly deviate from canonical models due to the chemical and structural heterogeneity of these materials. In this Perspective, I provide an overview of calculations of excitons in metal-halide perovskites using Green's function-based many-body perturbation theory in the GW + Bethe-Salpeter equation approach, the prevalent method for calculating excitons in extended solids. This approach readily considers anisotropic electronic structures and dielectric screening present in many perovskites and important effects, such as spin-orbit coupling. I will show that despite this progress, the complex and diverse electronic structure of these materials and its intricate coupling to pronounced and anharmonic structural dynamics pose challenges that are currently not fully addressed within the GW + Bethe-Salpeter equation approach. I hope that this Perspective serves as an inspiration for further exploring the rich landscape of excitons in metal-halide perovskites and other complex semiconductors and for method development addressing unresolved challenges in the field.
Collapse
Affiliation(s)
- Linn Leppert
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
15
|
Dyksik M, Beret D, Baranowski M, Duim H, Moyano S, Posmyk K, Mlayah A, Adjokatse S, Maude DK, Loi MA, Puech P, Plochocka P. Polaron Vibronic Progression Shapes the Optical Response of 2D Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305182. [PMID: 38072637 PMCID: PMC10870061 DOI: 10.1002/advs.202305182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm-1 (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm-1 (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.
Collapse
Affiliation(s)
- Mateusz Dyksik
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
| | - Dorian Beret
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Michal Baranowski
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
| | - Herman Duim
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Sébastien Moyano
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Katarzyna Posmyk
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| | - Adnen Mlayah
- LAASUniversity of ToulouseCNRS, UPS, 7 Avenue du Colonel RocheToulouse31031France
| | - Sampson Adjokatse
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Duncan K. Maude
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| | - Maria Antonietta Loi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Pascal Puech
- CEMES‐UPR8011CNRSUniversity of Toulouse29 rue Jeanne MarvigToulouse31500France
| | - Paulina Plochocka
- Department of Experimental PhysicsFaculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWroclaw50370Poland
- Laboratoire National des Champs Magnétiques IntensesEMFL, CNRS UPR 3228University Toulouse, University Toulouse 3, INSA‐T, University Grenoble AlpesGrenoble and ToulouseFrance
| |
Collapse
|
16
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
17
|
Higashimura C, Yumoto G, Yamada T, Nakamura T, Harata F, Hirori H, Wakamiya A, Kanemitsu Y. Spontaneous Polarization Induced Optical Responses in a Two-Dimensional Ferroelectric Halide Perovskite. J Phys Chem Lett 2023; 14:8360-8366. [PMID: 37703207 DOI: 10.1021/acs.jpclett.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Two-dimensional (2D) halide perovskites exhibit unique structural and optical properties because large organic molecular cations distort the perovskite structure and the excitons confined in the 2D layers are stable. Here, we report the temperature dependences of the absorption spectra, second harmonic generation (SHG) intensity, and lattice constants of 2D perovskite (BA)2(EA)2Pb3I10 single crystals, where BA is n-butylammonium and EA is ethylammonium. We found that the Urbach tail of the absorption spectrum significantly changes at around 200 K and that the change is correlated with the SHG intensity and the in-plane lattice distortion. We concluded that a random distribution of spontaneous polarizations in the ferroelectric phase modifies the linewidth of the band-edge exciton transition and is the cause of the anomalous temperature dependence of the steepness parameter of the Urbach tail.
Collapse
Affiliation(s)
- Chika Higashimura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Go Yumoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fuyuki Harata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideki Hirori
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
18
|
Ren L, Robert C, Glazov M, Semina M, Amand T, Lombez L, Lagarde D, Taniguchi T, Watanabe K, Marie X. Control of the Bright-Dark Exciton Splitting Using the Lamb Shift in a Two-Dimensional Semiconductor. PHYSICAL REVIEW LETTERS 2023; 131:116901. [PMID: 37774277 DOI: 10.1103/physrevlett.131.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/19/2023] [Indexed: 10/01/2023]
Abstract
We investigate the exciton fine structure in atomically thin WSe_{2}-based van der Waals heterostructures where the density of optical modes at the location of the semiconductor monolayer can be tuned. The energy splitting Δ between the bright and dark exciton is measured by photoluminescence spectroscopy. We demonstrate that Δ can be tuned by a few meV as a result of a significant Lamb shift of the optically active exciton that arises from emission and absorption of virtual photons triggered by the vacuum fluctuations of the electromagnetic field. We also measure strong variations of the bright exciton radiative linewidth as a result of the Purcell effect. All these experimental results illustrate the strong sensitivity of the excitons to local vacuum field fluctuations. We find a very good agreement with a model that demonstrates the equivalence, for our system, of a classical electrodynamical transfer matrix formalism and quantum-electrodynamical approach. The bright-dark splitting control we demonstrate here in the weak light-matter coupling regime should apply to any semiconductor structures.
Collapse
Affiliation(s)
- L Ren
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - C Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - M Glazov
- Ioffe Institute, 26 Polytechnicheskaya, 194021 Saint Petersburg, Russia
| | - M Semina
- Ioffe Institute, 26 Polytechnicheskaya, 194021 Saint Petersburg, Russia
| | - T Amand
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - L Lombez
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - D Lagarde
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-00044, Japan
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-00044, Japan
| | - X Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France
| |
Collapse
|
19
|
Shinde A, Rajput PK, Makhija U, Tanwar R, Mandal P, Nag A. Emissive Dark Excitons in Monoclinic Two-Dimensional Hybrid Lead Iodide Perovskites. NANO LETTERS 2023; 23:6985-6993. [PMID: 37487113 DOI: 10.1021/acs.nanolett.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Typically, bright excitons (XB) emit light in two-dimensional (2D) layered hybrid perovskites. There are also dark excitons (XD), for which radiative recombination is spin-forbidden. Application of a magnetic field can somewhat relax the spin-rule, yielding XD emission. Can we obtain XD light emission in the absence of a magnetic field? Indeed, we observe unusually intense XD emission at ∼7 K for (Rac-MBA)2PbI4, (Rac-4-Br-MBA)2PbI4, and (R-4-Br-MBA)2PbI4 (Rac-MBA: racemic methylbenzylammonium), which crystallize in a lower symmetry monoclinic phase. For comparison, orthorhombic (R-MBA)2PbI4 does not exhibit XD emission. XD has a lower energy than XB, with energy difference ΔE. In monoclinic samples, ΔE ∼ 20 meV is large enough to suppress the thermal excitation of XD to XB, at temperatures <30 K. Consequently, XD recombines by emitting light with a long lifetime (∼205 ns). At higher temperatures, the emission switches to the spin-allowed XB (lifetime < 1 ns).
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Parikshit Kumar Rajput
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Urmila Makhija
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Riteeka Tanwar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
20
|
Harkort C, Kudlacik D, Kopteva NE, Yakovlev DR, Karzel M, Kirstein E, Hordiichuk O, Kovalenko MV, Bayer M. Spin-Flip Raman Scattering on Electrons and Holes in Two-Dimensional (PEA) 2 PbI 4 Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300988. [PMID: 37066731 DOI: 10.1002/smll.202300988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The class of Ruddlesden-Popper type (PEA)2 PbI4 perovskites comprises 2D structures whose optical properties are determined by excitons with a large binding energy of about 260 meV. It complements the family of other 2D semiconductor materials by having the band structure typical for lead halide perovskites, that can be considered as inverted compared to conventional III-V and II-VI semiconductors. Accordingly, novel spin phenomena can be expected for them. Spin-flip Raman scattering is used here to measure the Zeeman splitting of electrons and holes in a magnetic field up to 10 T. From the recorded data, the electron and hole Landé factors (g-factors) are evaluated, their signs are determined, and their anisotropies are measured. The electron g-factor value changes from +2.11 out-of-plane to +2.50 in-plane, while the hole g-factor ranges between -0.13 and -0.51. The spin flips of the resident carriers are arranged via their interaction with photogenerated excitons. Also the double spin-flip process, where a resident electron and a resident hole interact with the same exciton, is observed showing a cumulative Raman shift. Dynamic nuclear spin polarization induced by spin-polarized holes is detected in corresponding changes of the hole Zeeman splitting. An Overhauser field of the polarized nuclei acting on the holes as large as 0.6 T can be achieved.
Collapse
Affiliation(s)
- Carolin Harkort
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Dennis Kudlacik
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Natalia E Kopteva
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Dmitri R Yakovlev
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Marek Karzel
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Erik Kirstein
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| | - Oleh Hordiichuk
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
| |
Collapse
|
21
|
Posmyk K, Dyksik M, Surrente A, Zalewska K, Śmiertka M, Cybula E, Paritmongkol W, Tisdale WA, Plochocka P, Baranowski M. Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA) 2PbI 4 Two-Dimensional Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1119. [PMID: 36986013 PMCID: PMC10053047 DOI: 10.3390/nano13061119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden-Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton-phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice.
Collapse
Affiliation(s)
- Katarzyna Posmyk
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alessandro Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Zalewska
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Maciej Śmiertka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ewelina Cybula
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | | | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
22
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
23
|
Kirstein E, Zhukov EA, Yakovlev DR, Kopteva NE, Harkort C, Kudlacik D, Hordiichuk O, Kovalenko MV, Bayer M. Coherent Spin Dynamics of Electrons in Two-Dimensional (PEA) 2PbI 4 Perovskites. NANO LETTERS 2023; 23:205-212. [PMID: 36574606 DOI: 10.1021/acs.nanolett.2c03975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The versatile potential of lead halide perovskites and two-dimensional materials is merged in the Ruddlesden-Popper perovskites having outstanding optical properties. Here, the coherent spin dynamics in Ruddlesden-Popper (PEA)2PbI4 perovskites is investigated by picosecond pump-probe Kerr rotation in an external magnetic field. The Larmor spin precession of resident electrons with a spin dephasing time of 190 ps is identified. The longitudinal spin relaxation time in weak magnetic fields measured by the spin inertia method is as long as 25 μs. A significant anisotropy of the electron g-factor with the in-plane value of +2.45 and out-of-plane value of +2.05 is found. The exciton out-of-plane g-factor of +1.6 is measured by magneto-reflectivity. This work contributes to the understanding of the spin-dependent properties of two-dimensional perovskites and their spin dynamics.
Collapse
Affiliation(s)
- Erik Kirstein
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Evgeny A Zhukov
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Dmitri R Yakovlev
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
- Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
| | - Nataliia E Kopteva
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Carolin Harkort
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Dennis Kudlacik
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| | - Oleh Hordiichuk
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Manfred Bayer
- Experimental Physics 2, Department of Physics, TU Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
24
|
Dyksik M. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. Int J Mol Sci 2022; 23:ijms232012531. [PMID: 36293385 PMCID: PMC9604088 DOI: 10.3390/ijms232012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the current state of research concerning the determination of the effective mass in 2D layered perovskites is presented. The available experimental reports in which the reduced effective mass μ has been directly measured using magneto-absorption spectroscopy of interband Landau levels are reviewed. By comparing these results with DFT computational studies and various other methods, it is concluded that depending on the approach used, the μ found spans a broad range of values from as low as 0.05 up to 0.3 me. To facilitate quick and reliable estimation of μ, a model is proposed based solely on the available experimental data that bypass the complexity of interband Landau level spectroscopy. The model takes advantage of the μ value measured for (PEA)2PbI4 and approximates the reduced effective mass of the given 2D layered perovskites based on only two experimental parameters—the diamagnetic coefficient and the effective dielectric constant. The proposed model is tested on a broad range of 2D layered perovskites and captures well the main experimental and theoretical trends.
Collapse
Affiliation(s)
- Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
25
|
Wang S, Dyksik M, Lampe C, Gramlich M, Maude DK, Baranowski M, Urban AS, Plochocka P, Surrente A. Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr 3-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy. NANO LETTERS 2022; 22:7011-7019. [PMID: 36036573 PMCID: PMC9479212 DOI: 10.1021/acs.nanolett.2c01826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Indexed: 05/06/2023]
Abstract
The optimized exploitation of perovskite nanocrystals and nanoplatelets as highly efficient light sources requires a detailed understanding of the energy spacing within the exciton manifold. Dark exciton states are particularly relevant because they represent a channel that reduces radiative efficiency. Here, we apply large in-plane magnetic fields to brighten optically inactive states of CsPbBr3-based nanoplatelets for the first time. This approach allows us to access the dark states and directly determine the dark-bright splitting, which reaches 22 meV for the thinnest nanoplatelets. The splitting is significantly less for thicker nanoplatelets due to reduced exciton confinement. Additionally, the form of the magneto-PL spectrum suggests that dark and bright state populations are nonthermalized, which is indicative of a phonon bottleneck in the exciton relaxation process.
Collapse
Affiliation(s)
- Shuli Wang
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228,
Université Grenoble Alpes, Université
Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble
and 31400 Toulouse, France
| | - Mateusz Dyksik
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Carola Lampe
- Nanospectroscopy
Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München (LMU), Munich 80539 Germany
| | - Moritz Gramlich
- Nanospectroscopy
Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München (LMU), Munich 80539 Germany
| | - Duncan K. Maude
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228,
Université Grenoble Alpes, Université
Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble
and 31400 Toulouse, France
| | - Michał Baranowski
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alexander S. Urban
- Nanospectroscopy
Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
München (LMU), Munich 80539 Germany
| | - Paulina Plochocka
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228,
Université Grenoble Alpes, Université
Toulouse, Université Toulouse 3, INSA-T, 38042 Grenoble
and 31400 Toulouse, France
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alessandro Surrente
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
26
|
Low-dimensional Sn-based perovskites: Evolution and future prospects of solar cells. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Filip MR, Qiu DY, Del Ben M, Neaton JB. Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic-Inorganic Lead-Halide Perovskites. NANO LETTERS 2022; 22:4870-4878. [PMID: 35679538 PMCID: PMC9228398 DOI: 10.1021/acs.nanolett.2c01306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interlayer organic cations in quasi-two-dimensional halide perovskites are a versatile tuning vehicle for the optoelectronic properties of these complex systems, but chemical intuition for this design route is yet to be established. Here, we use density functional theory, the GW approximation, and the Bethe-Salpeter equation approach to understand the contribution of the organic cation to the quasiparticle band gap and exciton binding energy of layered perovskites. We show that organic cations in quasi-two-dimensional perovskites contribute significantly to the dielectric screening in these systems, countering quantum confinement effects on the quasiparticle band gap and the exciton binding energy. Using a simple electrostatics model inspired by parallel-plate capacitors, we decouple the organic cation and inorganic layer contributions to the effective dielectric constants and show that dielectric properties of layered perovskites are broadly tunable via the interlayer cation, providing a direct means of tuning photophysical properties for a variety of applications.
Collapse
Affiliation(s)
- Marina R. Filip
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Oxford OX1 3PU, United Kingdom
| | - Diana Y. Qiu
- School
of Engineering and Applied Science, Yale
University, New Haven, Connecticut 06511, United States
| | - Mauro Del Ben
- Computational
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nano Sciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Jang YJ, Kim JH. Two-dimensional transition metal dichalcogenides as an emerging platform for singlet fission solar cells. Chem Asian J 2022; 17:e202200265. [PMID: 35644937 DOI: 10.1002/asia.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission, a rapid exciton doubling process via inverse Auger recombination, is recognized as one of the most practical and feasible means for overcoming the Shockley-Queisser limit. Singlet fission solar cells are generally developed by integrating photon downconversion organic semiconductors into conventional photovoltaic devices to break the maximum photovoltaic response of the host semiconductors by virtue of extra triplet excitons. In this regard, proper matching of two different semiconductors and heterointerface engineering are both crucial for highly efficient singlet fission solar cells. Therefore, the aim of this study is to review the prerequisite conditions for efficient triplet transfer at the heterointerfaces and thus highlight the robust spin and valley degrees of freedom of transition metal dichalcogenides with the ultimate goal of stimulating research into next-generation singlet fission solar cells.
Collapse
Affiliation(s)
- Yu Jin Jang
- Sungkyunkwan University, Convergence Research Center for Energy and Environmental Sciences, KOREA, REPUBLIC OF
| | - Ji-Hee Kim
- Sungkyunkwan University, Department of Energy Science, 2066 Seoburo, Jangangu, Suwon, KOREA, REPUBLIC OF
| |
Collapse
|
29
|
Posmyk K, Zawadzka N, Dyksik M, Surrente A, Maude DK, Kazimierczuk T, Babiński A, Molas MR, Paritmongkol W, Mączka M, Tisdale WA, Płochocka P, Baranowski M. Quantification of Exciton Fine Structure Splitting in a Two-Dimensional Perovskite Compound. J Phys Chem Lett 2022; 13:4463-4469. [PMID: 35561248 PMCID: PMC9150119 DOI: 10.1021/acs.jpclett.2c00942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Applications of two-dimensional (2D) perovskites have significantly outpaced the understanding of many fundamental aspects of their photophysics. The optical response of 2D lead halide perovskites is dominated by strongly bound excitonic states. However, a comprehensive experimental verification of the exciton fine structure splitting and associated transition symmetries remains elusive. Here we employ low temperature magneto-optical spectroscopy to reveal the exciton fine structure of (PEA)2PbI4 (here PEA is phenylethylammonium) single crystals. We observe two orthogonally polarized bright in-plane free exciton (FX) states, both accompanied by a manifold of phonon-dressed states that preserve the polarization of the corresponding FX state. Introducing a magnetic field perpendicular to the 2D plane, we resolve the lowest energy dark exciton state, which although theoretically predicted, has systematically escaped experimental observation (in Faraday configuration) until now. These results corroborate standard multiband, effective-mass theories for the exciton fine structure in 2D perovskites and provide valuable quantification of the fine structure splitting in (PEA)2PbI4.
Collapse
Affiliation(s)
- Katarzyna Posmyk
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Natalia Zawadzka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Mateusz Dyksik
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse
3, INSA-T, Toulouse 31400, France
| | - Alessandro Surrente
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Duncan K. Maude
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse
3, INSA-T, Toulouse 31400, France
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Watcharaphol Paritmongkol
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Mirosław Mączka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Paulina Płochocka
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratoire
National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse
3, INSA-T, Toulouse 31400, France
| | - Michał Baranowski
- Department
of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|