1
|
Hoffmann L, Baier A, Jorde L, Kamel M, Schäfer JH, Schnelle K, Scholz A, Shvarev D, Wong JEMM, Parey K, Januliene D, Moeller A. The ABC transporter MsbA in a dozen environments. Structure 2025; 33:916-923.e4. [PMID: 40056915 DOI: 10.1016/j.str.2025.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 02/11/2025] [Indexed: 05/04/2025]
Abstract
High-resolution structure determination of membrane proteins typically requires reconstitution into artificial membrane mimics. The choice of the specific membrane substitute can strongly affect the protein's specific activity, stability, and conformational spectrum, potentially leading to errors or misinterpretation during analysis. The bacterial ATP-binding cassette transporter MsbA is a prominent example of such environment-specific bias. Here, we present a systematic analysis of the conformational spectrum of MsbA, stabilized in a dozen environments, using cryoelectron microscopy (cryo-EM), and show pronounced feedback between the membrane mimetics and the transporter. Detergents generally favor wide inward-facing conformations while nanodiscs induce narrower conformations. Notably, only in three tested environments, MsbA samples the full movement of the nucleotide-binding domains, including narrow and wide conformations. We expect this study to serve as a blueprint for other membrane proteins, even where a structural reaction to the hydrophobic environment is not directly visible but still critical for the proteins' function.
Collapse
Affiliation(s)
- Lea Hoffmann
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Anika Baier
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Lara Jorde
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Michael Kamel
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Jan-Hannes Schäfer
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Kilian Schnelle
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Alischa Scholz
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Dmitry Shvarev
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Jaslyn E M M Wong
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany
| | - Kristian Parey
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Dovile Januliene
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Arne Moeller
- Osnabrück University, Department of Biology/Chemistry, Structural Biology Section, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany.
| |
Collapse
|
2
|
Szalai VA, Bergonzo C, Lyon RB, Kelman Z, Schmidt T, Grishaev A. Structure and Dynamics of Monoclonal Antibody Domains Using Spins, Scattering, and Simulations. ChemMedChem 2025; 20:e202400917. [PMID: 39804085 DOI: 10.1002/cmdc.202400917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year).[1] Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic. We have employed the NIST monoclonal antibody (NISTmAb) reference material as our development platform for use with spin-labeled affinity protein (SLAP) reagents. Using double electron-electron resonance (DEER) spectroscopy, we have determined inter-spin distance distributions in SLAP complexes of both the isolated Fc domain and the intact NISTmAb. Our SLAP reagents offer a general and extendable technology, compatible with any non-isotopically labeled immunoglobulin G class mAb. Integrating molecular simulations with the DEER and solution X-ray scattering measurements, we enable simultaneous determination of structural distributions and dynamics of mAb-based biologics.
Collapse
Affiliation(s)
- Veronika A Szalai
- Physical Measurement Laboratory, National Institute of Standards & Technology, Gaithersburg, MD, 20899, United States
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, United States
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, United States
| | - Rachel B Lyon
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, United States
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, United States
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, United States
| | - Thomas Schmidt
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520, United States
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, United States
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland, 20899, United States
| |
Collapse
|
3
|
Zoghbi ME, Nouel Barreto A, Hernandez AL. Conformational equilibrium of an ABC transporter analyzed by luminescence resonance energy transfer. Biophys J 2025; 124:1117-1131. [PMID: 39973007 PMCID: PMC11993921 DOI: 10.1016/j.bpj.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025] Open
Abstract
Humans have three known ATP-binding cassette (ABC) transporters in the inner mitochondrial membrane (ABCB7, ABCB8, and ABCB10). ABCB10, the most studied of them thus far, is essential for normal red blood cell development and protection against oxidative stress, and it was recently found to export biliverdin, a heme degradation product with antioxidant properties. The molecular mechanism underlying the function of ABC transporters remains controversial. Their nucleotide binding domains (NBDs) must dimerize to hydrolyze ATP, but capturing the transporters in such conformation for structural studies has been experimentally difficult, especially for ABCB10 and related eukaryotic transporters. Purified transporters are commonly studied in detergent micelles, or after their reconstitution in nanodiscs, usually at nonphysiological temperature and using nonhydrolyzable ATP analogs or mutations that prevent ATP hydrolysis. Here, we have used luminescence resonance energy transfer to evaluate the effect of experimental conditions on the NBD dimerization of ABCB10. Our results indicate that all conditions used for determination of currently available ABCB10 structures have failed to induce NBD dimerization. ABCB10 in detergent responded only to MgATP at 37°C, whereas reconstituted protein shifted toward dimeric NBDs more easily, including in response to MgAMP-PNP and even present NBD dimerization with MgATP at room temperature. The nanodisc's size affects the nucleotide-free conformational equilibrium of ABCB10 and the response to ATP in the absence of magnesium, but for all analyzed sizes (scaffold proteins MSP1D1, MSP1E3D1, and MSP2N2), a conformation with dimeric NBDs is clearly preferred during active ATP hydrolysis (MgATP, 37°C). These results highlight the sensitivity of this human ABC transporter to experimental conditions and the need for a more cautious interpretation of structural models obtained under far from physiological conditions. A dimeric NBD conformation that has been elusive in previous studies seems to be dominant during MgATP hydrolysis at physiological temperature.
Collapse
Affiliation(s)
- Maria E Zoghbi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California Merced, Merced, California; Health Sciences Research Institute, University of California Merced, Merced, California.
| | - Annabella Nouel Barreto
- Quantitative Systems Biology Graduate Program, University of California Merced, Merced, California
| | - Alex L Hernandez
- Chemistry and Biochemistry Graduate Program, University of California Merced, Merced, California
| |
Collapse
|
4
|
Gobet A, Moissonnier L, Zarkadas E, Magnard S, Bettler E, Martin J, Terreux R, Schoehn G, Orelle C, Jault JM, Falson P, Chaptal V. Rhodamine6G and Hœchst33342 narrow BmrA conformational spectrum for a more efficient use of ATP. Nat Commun 2025; 16:1745. [PMID: 39966360 PMCID: PMC11836358 DOI: 10.1038/s41467-025-56849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Multidrug ABC transporters harness the energy of ATP binding and hydrolysis to translocate substrates out of the cell and detoxify them. While this involves a well-accepted alternating access mechanism, molecular details of this interplay are still elusive. Rhodamine6G binding on a catalytic inactive mutant of the homodimeric multidrug ABC transporter BmrA triggers a cooperative binding of ATP on the two identical nucleotide-binding-sites, otherwise michaelian. Here, we investigate this asymmetric behavior via a structural-enzymology approach, solving cryoEM structures of BmrA at defined ATP ratios, highlighting the plasticity of BmrA as it undergoes the transition from inward to outward facing conformations. Analysis of continuous heterogeneity within cryoEM data and structural dynamics, reveals that Rhodamine6G narrows the conformational spectrum explored by the nucleotide-binding domains. We observe the same behavior for the other drug Hœchst33342. Following on these findings, the effect of drug-binding showed an ATPase stimulation and a maximal transport activity of the wild-type protein at the concentration-range where the cooperative transition occurs. Altogether, these findings provide a description of the influence of drug binding on the ATP-binding sites through a change in conformational dynamics.
Collapse
Affiliation(s)
- A Gobet
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus C, Denmark
| | - L Moissonnier
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - E Zarkadas
- Université Grenoble Alpes, CNRS, CEA, EMBL, ISBG, Grenoble, France
| | - S Magnard
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - E Bettler
- ECMO team, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305 CNRS University Lyon-1, 7 passage du Vercors, Lyon, France
| | - J Martin
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR 5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - R Terreux
- ECMO team, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305 CNRS University Lyon-1, 7 passage du Vercors, Lyon, France
| | - G Schoehn
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - C Orelle
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - J M Jault
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France
| | - P Falson
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France.
| | - V Chaptal
- Molecular Microbiology & Structural Biochemistry Unit. UMR5086 CNRS University Lyon-1. 7 passage du Vercors, Lyon, France.
| |
Collapse
|
5
|
Shah A, Wort JL, Ma Y, Pliotas C. Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling. Curr Opin Chem Biol 2025; 84:102564. [PMID: 39709893 DOI: 10.1016/j.cbpa.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), combined with site-directed spin-labelling, represents a powerful tool for the investigation of biomacromolecules, emerging as a keystone approach in structural biology. Increasingly, PDS is applied to study highly complex integral membrane protein systems, such as mechanosensitive ion channels, transporters, G-protein coupled receptors, ion pumps, and outer membrane proteins elucidating their dynamics and revealing conformational ensembles. Indeed, PDS offers a platform to study intermediate or lowly-populated states that are otherwise invisible to other modern methods, such as X-ray crystallography, cryo-EM, and hydrogen-deuterium exchange-mass spectrometry. Importantly, advances in spin labelling strategies welcome a new era of membrane protein investigation under near-native or in-cell conditions. Here, we review recent integral membrane protein PDS applications, and highlight well-suited, emerging spin labelling strategies that show promise for future studies.
Collapse
Affiliation(s)
- Anokhi Shah
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Joshua L Wort
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Yue Ma
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Christos Pliotas
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
6
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
7
|
Nouel Barreto A, Cuello LG, Zoghbi ME. ABC transporter activity is affected by the size of lipid nanodiscs. FEBS Lett 2025; 599:502-511. [PMID: 39748569 PMCID: PMC11848018 DOI: 10.1002/1873-3468.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Lipid nanodiscs have become a widely used approach for studying membrane proteins thanks to several advantages they offer. They have been especially useful for studying ABC transporters, despite the growing concern about the possible restriction of the conformational changes of the transporters due to the small size of the discs. Here, we performed a systematic study to determine the effect of the nanodisc size on the ATPase activity of model ABC transporters from human, plant, and bacteria. Our data confirm that the activity of the transporters and their response to regulatory molecules is affected by the nanodisc size. Our findings suggest the use of larger membrane scaffold proteins (MSPs), such as MSP2N2 nanodiscs, to minimize alterations caused by the commonly used small MSP1D1.
Collapse
Affiliation(s)
| | - Luis G. Cuello
- Department of Cell Physiology and Molecular BiophysicsTexas Tech University Health Sciences CenterLubbockTXUSA
| | - Maria E. Zoghbi
- Department of Molecular and Cell Biology, School of Natural SciencesUniversity of California MercedCAUSA
- Health Sciences Research InstituteUniversity of California MercedCAUSA
| |
Collapse
|
8
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Mocanu EM, Ben-Ishay Y, Topping L, Fisher SR, Hunter RI, Su XC, Butler SJ, Smith GM, Goldfarb D, Lovett JE. Robustness and Sensitivity of Gd(III)-Gd(III) Double Electron-Electron Resonance (DEER) Measurements: Comparative Study of High-Frequency EPR Spectrometer Designs and Spin Label Variants. APPLIED MAGNETIC RESONANCE 2025; 56:591-611. [PMID: 40297741 PMCID: PMC12033185 DOI: 10.1007/s00723-024-01741-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/30/2025]
Abstract
In this paper, we explore the robustness and sensitivity of Gd(III)-Gd(III) double electron-electron resonance (DEER) distance measurements in proteins for different spectrometer designs and three spin labels. To do this a protein was labeled at the same two positions with Gd(III) spin labels and measurements were performed on two home-built high-frequency (W-band, ~ 95 GHz) EPR spectrometers with different design approaches, and a commercial 150 W Q-band (34 GHz) spectrometer. The first W-band measurement approach uses a conventional, narrow band single mode cavity, while the second uses a broadband non-resonant induction mode sample holder. Both systems incorporate advanced arbitrary waveform generators (AWGs) that give flexibility over excitation bandwidth. We use three DOTA-like Gd(III) spin labels, Gd.C12, Gd.DO3A and Gd.L1, conjugated to the calmodulin protein. We compare measurements taken by including or excluding the Gd(III) central transition excitation. The advantages and disadvantages of the EPR spectrometers for the measurement of Gd(III)-Gd(III) DEER are discussed in terms of the robustness of the resulting distance distribution width, absolute and concentration sensitivity, sample handling, ease of use, and flexibility of measurement. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-024-01741-0.
Collapse
Affiliation(s)
- Elena M. Mocanu
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS UK
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU UK
| | - S. Ronan Fisher
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS UK
| | - Robert I. Hunter
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS UK
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU UK
| | - Graham M. Smith
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS UK
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Janet E. Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS UK
| |
Collapse
|
10
|
Joseph B. Protein-Protein Interaction and Conformational Change in the Alpha-Helical Membrane Transporter BtuCD-F in the Native Cellular Envelope. Chembiochem 2025; 26:e202400858. [PMID: 39551706 DOI: 10.1002/cbic.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
Alpha-helical membrane proteins perform numerous critical functions essential for the survival of living organisms. Traditionally, these proteins are extracted from membranes using detergent solubilization and reconstitution into liposomes or nanodiscs. However, these processes often obscure the effects of nanoconfinement and the native environment on the structure and conformational heterogeneity of the target protein. We demonstrate that pulsed dipolar electron spin resonance spectroscopy, combined with the Gd3+-nitroxide spin pair, enables the selective observation of the vitamin B12 importer BtuCD-F in its native cellular envelope. Despite the high levels of non-specific labeling in the envelope, this orthogonal approach combined with the long phase-memory time for the Gd3+ spin enables the observation of the target protein complex at a few micromolar concentrations with high resolution. In the native envelope, vitamin B12 induces a distinct conformational shift at the BtuCD-BtuF interface, which is not observed in the micelles. This approach offers a general strategy for investigating protein-protein and protein-ligand/drug interactions and conformational changes of the alpha-helical membrane proteins in their native envelope context.
Collapse
Affiliation(s)
- Benesh Joseph
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
11
|
Yue Z, Li Y, Cai H, Yao H, Li D, Ni A, Li T. Structure-based design of covalent nanobody binders for a thermostable green fluorescence protein. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719878 DOI: 10.3724/abbs.2024233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies. In this study, we report the crystal structure of TGP in complex with Sb92, a synthetic nanobody identified from a previous in vitro screening, revealing Sb92's precise three-dimensional epitope. This structural insight, alongside the previously characterized Sb44-TGP complex, allows us to rationally design disulfide bonds between the antigen and the antibody for tighter interactions. Using biochemical analysis, we identify two bridged complexes (TGP A18C-Sb44 V100C and TGP E118C-Sb92 S57C), with the TGP-Sb92 disulfide pair showing high resistance to reducing agents. Our study expands the toolkit available for TGP and should encourage its wider applications.
Collapse
Affiliation(s)
- Zhihao Yue
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongmin Cai
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hebang Yao
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dianfan Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aimin Ni
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Cheng CC, Tsai RF, Lin CK, Tan KT, Kalendra V, Simenas M, Lin CW, Chiang YW. In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes. JACS AU 2024; 4:3766-3770. [PMID: 39483229 PMCID: PMC11522923 DOI: 10.1021/jacsau.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes. Our findings demonstrate successful delivery and high-quality DEER data for BsYetJ in both Gram-negative E. coli and Gram-positive B. subtilis membranes. The delivered BsYetJ retains its ability to transport calcium ions. DEER analysis reveals distinct conformational states of BsYetJ in different membrane environments, highlighting the influence of lipid composition on the protein structure. This nanodelivery method overcomes traditional limitations, enabling the study of membrane proteins in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Chu-Chun Cheng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Ruei-Fong Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Che-Kai Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Kui-Thong Tan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Chun-Wei Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
13
|
Dajka M, Rath T, Morgner N, Joseph B. Dynamic basis of lipopolysaccharide export by LptB 2FGC. eLife 2024; 13:RP99338. [PMID: 39374147 PMCID: PMC11458178 DOI: 10.7554/elife.99338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.
Collapse
Affiliation(s)
- Marina Dajka
- Department of Physics, Freie Universität BerlinBerlinGermany
| | - Tobias Rath
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Benesh Joseph
- Department of Physics, Freie Universität BerlinBerlinGermany
| |
Collapse
|
14
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Meron S, Peleg S, Shenberger Y, Hofmann L, Gevorkyan-Airapetov L, Ruthstein S. Tracking Disordered Extracellular Domains of Membrane Proteins in the Cell with Cu(II)-Based Spin Labels. J Phys Chem B 2024; 128:8908-8914. [PMID: 39231533 PMCID: PMC11421077 DOI: 10.1021/acs.jpcb.4c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these structures are missing information on the disordered extracellular domains of hCtr1. Extracellular domains are sensing or interacting with the environment outside of the cell and therefore play an essential role in any transmembrane protein. Especially in hCtr1, the extracellular domain functions as a gating mechanism for copper ions. Here, we performed EPR experiments revealing structural information about the extracellular N-terminal domain of the full-length hCtr1 in vitro and in situ in insect cells and cell membrane fragments. The comparison revealed that the extracellular domains of the in situ and native membrane hCtr1 are further apart than the structure of the purified protein. These method-related differences highlight the significance of studying membrane proteins in their native environment.
Collapse
Affiliation(s)
- Shelly Meron
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Shahaf Peleg
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Yulia Shenberger
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lukas Hofmann
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lada Gevorkyan-Airapetov
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| |
Collapse
|
16
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
17
|
De Vecchis D, Schäfer LV. Coupling the role of lipids to the conformational dynamics of the ABC transporter P-glycoprotein. Biophys J 2024; 123:2522-2536. [PMID: 38909280 PMCID: PMC11365111 DOI: 10.1016/j.bpj.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is a multidrug efflux pump that is overexpressed in a variety of cancers and associated with the drug-resistance phenomenon. P-gp structures were previously determined in detergent and in nanodiscs, in which different transmembrane helix conformations were found, "straight" and "kinked," respectively, indicating a possible role of the lipid environment on the P-gp structural ensemble. Here, we investigate the dynamic conformational ensembles and protein-lipid interactions of two human P-gp inward-open conformers, straight and kinked, employing all-atom molecular dynamics (MD) simulations in asymmetric multicomponent lipid bilayers that mimic the highly specialized hepatocyte membrane in which P-gp is expressed. The two conformers are found to differ in terms of the accessibility of the substrate cavity. The MD simulations show how cholesterol and different lipid species wedge, snorkel, and partially enter into the cavity of the straight P-gp conformer solved in detergent. However, access to the cavity of the kinked P-gp conformer solved in nanodiscs is restricted. Furthermore, the volume and dynamic fluctuations of the substrate cavity largely differ between the two P-gp conformers and are modulated by the presence (or absence) of cholesterol in the membrane and/or of ATP. From the mechanistic perspective, the findings indicate that the straight conformer likely precedes the kinked conformer in the functional working cycle of P-gp, with the latter conformation representing a post substrate-bound state. The inaccessibility of the main transmembrane cavity in the kinked conformer might be crucial in preventing substrate disengagement and transport withdrawal. Remarkably, in our unbiased MD simulations, one transmembrane helix (TM10) of the straight conformer underwent a spontaneous transition to a kinked conformation, underlining the relevance of both conformations in a native phospholipid environment and revealing structural descriptors defining the transition between the two P-gp conformers.
Collapse
Affiliation(s)
- Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
18
|
Zhang T, Lyu J, Yang B, Yun SD, Scott E, Zhao M, Laganowsky A. Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids. Nat Commun 2024; 15:5946. [PMID: 39009687 PMCID: PMC11251056 DOI: 10.1038/s41467-024-50350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Bowei Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Unwin N. Influence of lipid bilayer on the structure of the muscle-type nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 2024; 121:e2319913121. [PMID: 38683987 PMCID: PMC11087746 DOI: 10.1073/pnas.2319913121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The muscle-type nicotinic acetylcholine receptor is a transmitter-gated ion channel residing in the plasma membrane of electrocytes and striated muscle cells. It is present predominantly at synaptic junctions, where it effects rapid depolarization of the postsynaptic membrane in response to acetylcholine released into the synaptic cleft. Previously, cryo-EM of intact membrane from Torpedo revealed that the lipid bilayer surrounding the junctional receptor has a uniquely asymmetric and ordered structure, due to a high concentration of cholesterol. It is now shown that this special lipid environment influences the transmembrane (TM) folding of the protein. All five submembrane MX helices of the membrane-intact junctional receptor align parallel to the surface of the cholesterol-ordered lipids in the inner leaflet of the bilayer; also, the TM helices in the outer leaflet are splayed apart. However in the structure obtained from the same protein after extraction and incorporation in nanodiscs, the MX helices do not align to a planar surface, and the TM helices arrange compactly in the outer leaflet. Realignment of the MX helices of the nanodisc-solved structure to a planar surface converts their adjoining TM helices into an obligatory splayed configuration, characteristic of the junctional receptor. Thus, the form of the receptor sustained by the special lipid environment of the synaptic junction is the one that mediates fast synaptic transmission; whereas, the nanodisc-embedded protein may be like the extrajunctional form, existing in a disordered lipid environment.
Collapse
Affiliation(s)
- Nigel Unwin
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
20
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. Proc Natl Acad Sci U S A 2024; 121:e2319476121. [PMID: 38621120 PMCID: PMC11047089 DOI: 10.1073/pnas.2319476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Cristian Rocha-Roa
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Stefano Vanni
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
21
|
Jandu RS, Yu H, Zhao Z, Le HT, Kim S, Huan T, Duong van Hoa F. Capture of endogenous lipids in peptidiscs and effect on protein stability and activity. iScience 2024; 27:109382. [PMID: 38577106 PMCID: PMC10993126 DOI: 10.1016/j.isci.2024.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Compared to protein-protein and protein-nucleic acid interactions, our knowledge of protein-lipid interactions remains limited. This is primarily due to the inherent insolubility of membrane proteins (MPs) in aqueous solution. The traditional use of detergents to overcome the solubility barrier destabilizes MPs and strips away certain lipids that are increasingly recognized as crucial for protein function. Recently, membrane mimetics have been developed to circumvent the limitations. In this study, using the peptidisc, we find that MPs in different lipid states can be isolated based on protein purification and reconstitution methods, leading to observable effects on MP activity and stability. Peptidisc also enables re-incorporating specific lipids to fine-tune the protein microenvironment and assess the impact on downstream protein associations. This study offers a first look at the illusive protein-lipid interaction specificity, laying the path for a systematic evaluation of lipid identity and contributions to membrane protein function.
Collapse
Affiliation(s)
- Rupinder Singh Jandu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hai Tuong Le
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sehyeon Kim
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Pal S, Nare Z, Rao VA, Smith BO, Morrison I, Fitzgerald EA, Scott A, Bingham MJ, Pesnot T. Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS). ChemMedChem 2024; 19:e202300590. [PMID: 38372199 DOI: 10.1002/cmdc.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
We report the development of BioPhysical and Active Learning Screening (BioPALS); a rapid and versatile hit identification protocol combining AI-powered virtual screening with a GCI-driven biophysical confirmation workflow. Its application to the BRPF1b bromodomain afforded a range of novel micromolar binders with favorable ADMET properties. In addition to the excellent in silico/in vitro confirmation rate demonstrated with BRPF1b, binding kinetics were determined, and binding topologies predicted for all hits. BioPALS is a lean, data-rich, and standardized approach to hit identification applicable to a wide range of biological targets.
Collapse
Affiliation(s)
- Sandeep Pal
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Zandile Nare
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Vincenzo A Rao
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Brian O Smith
- University of Glasgow, School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, G12 8QQ, Glasgow, UK
| | - Ian Morrison
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | | | - Andrew Scott
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Matilda J Bingham
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Thomas Pesnot
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| |
Collapse
|
23
|
Cina NP, Klug CS. Conformational investigation of the asymmetric periplasmic domains of E. coli LptB 2FGC using SDSL CW EPR spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:141-158. [PMID: 38645307 PMCID: PMC11025719 DOI: 10.1007/s00723-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 04/23/2024]
Abstract
The majority of pathogenic Gram-negative bacteria benefit from intrinsic antibiotic resistance, attributed primarily to the lipopolysaccharide (LPS) coating of the bacterial envelope. To effectively coat the bacterial cell envelope, LPS is transported from the inner membrane by the LPS transport (Lpt) system, which comprises seven distinct Lpt proteins, LptA-G, that form a stable protein bridge spanning the periplasm to connect the inner and outer membranes. The driving force of this process, LptB2FG, is an asymmetric ATP binding cassette (ABC) transporter with a novel architecture and function that ejects LPS from the inner membrane and facilitates transfer to the periplasmic bridge. Here, we utilize site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy to probe conformational differences between the periplasmic domains of LptF and LptG. We show that LptC solely interacts with the edge β-strand of LptF and does not directly interact with LptG. We also quantify the interaction of periplasmic LptC with LptF. Additionally, we show that LPS cannot enter the protein complex externally, supporting the unidirectional LPS transport model. Furthermore, we present our findings that the presence of LPS within the LptB2FGC binding cavity and the membrane reconstitution environment affect the structural orientation of the periplasmic domains of LptF and LptG, but overall are relatively fixed with respect to one another. This study will provide insight into the structural asymmetry associated with the newly defined type VI ABC transporter class.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
24
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
25
|
Novischi SYP, Karoly-Lakatos A, Chok K, Bonifer C, Becker-Baldus J, Glaubitz C. Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR. Commun Biol 2024; 7:43. [PMID: 38182790 PMCID: PMC10770068 DOI: 10.1038/s42003-023-05617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The ABC transporter MsbA plays a critical role in Gram-negative bacteria in the regulation of the outer membrane by translocating core-LPS across the inner membrane. Additionally, a broad substrate specificity for lipophilic drugs has been shown. The allosteric interplay between substrate binding in the transmembrane domains and ATP binding and turnover in the nucleotide-binding domains must be mediated via the NBD/TMD interface. Previous studies suggested the involvement of two intracellular loops called coupling helix 1 and 2 (CH1, CH2). Here, we demonstrate by solid-state NMR spectroscopy that substantial chemical shift changes within both CH1 and CH2 occur upon substrate binding, in the ATP hydrolysis transition state, and upon inhibitor binding. CH2 is domain-swapped within the MsbA structure, and it is noteworthy that substrate binding induces a larger response in CH2 compared to CH1. Our data demonstrate that CH1 and CH2 undergo structural changes as part of the TMD-NBD cross-talk.
Collapse
Affiliation(s)
- S Y Phoebe Novischi
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Andrea Karoly-Lakatos
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Kerby Chok
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Christian Bonifer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
26
|
Di Cesare M, Kaplan E, Rendon J, Gerbaud G, Valimehr S, Gobet A, Ngo TAT, Chaptal V, Falson P, Martinho M, Dorlet P, Hanssen E, Jault JM, Orelle C. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains. J Biol Chem 2024; 300:105546. [PMID: 38072053 PMCID: PMC10821409 DOI: 10.1016/j.jbc.2023.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
Collapse
Affiliation(s)
- Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Elise Kaplan
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Julia Rendon
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | | | - Sepideh Valimehr
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Thu-Anh Thi Ngo
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
27
|
Gobet A, Moissonnier L, Chaptal V. CryoEM Data Analysis of Membrane Proteins. Practical Considerations on Amphipathic Belts, Ligands, and Variability Analysis. Methods Mol Biol 2024; 2715:471-483. [PMID: 37930545 DOI: 10.1007/978-1-0716-3445-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Membrane proteins data analysis by cryoEM shows some specificities, as can be found in other typical investigations such as biochemistry, biophysics, or X-ray crystallography. Membrane proteins are typically surrounded by an amphipathic belt that will have some degree of influence on the 3D reconstruction and analysis. In this chapter, we review our experience with the ABC transporter BmrA, as well as our statistical analysis of amphipathic belts around membrane proteins, to bring awareness on some particular features of membrane protein investigations by cryoEM.
Collapse
Affiliation(s)
- Alexia Gobet
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University Lyon 1, Lyon, France
| | - Loïck Moissonnier
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University Lyon 1, Lyon, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS University Lyon 1, Lyon, France.
| |
Collapse
|
28
|
Pierro A, Tamburrini KC, Leguenno H, Gerbaud G, Etienne E, Guigliarelli B, Belle V, Zambelli B, Mileo E. In-cell investigation of the conformational landscape of the GTPase UreG by SDSL-EPR. iScience 2023; 26:107855. [PMID: 37766968 PMCID: PMC10520941 DOI: 10.1016/j.isci.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.
Collapse
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ketty Concetta Tamburrini
- Aix Marseille Univ, CNRS, AFMB, 13009 Marseille, France
- INRAE, Aix Marseille Univ, BBF, 13009 Marseille, France
| | - Hugo Leguenno
- Aix Marseille Univ, CNRS, IMM, Microscopy Core Facility, 13009 Marseille, France
| | | | | | | | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | | |
Collapse
|
29
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555937. [PMID: 37693532 PMCID: PMC10491306 DOI: 10.1101/2023.09.01.555937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases". These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit-card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place, and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
30
|
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, Pliotas C. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202218783. [PMID: 38515502 PMCID: PMC10952338 DOI: 10.1002/ange.202218783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 03/23/2024]
Abstract
The β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.
Collapse
Affiliation(s)
- Samuel F. Haysom
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jonathan Machin
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - James M. Whitehouse
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jim E. Horne
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Katherine Fenn
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Yue Ma
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Hassane El Mkami
- School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsKY16 9SSUK
| | - Nils Böhringer
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
| | - Till F. Schäberle
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
- Natural Product DepartmentFraunhofer-Institute for Molecular Biology and Applied Ecology (IME)Ohlebergsweg 1235392GiessenGermany
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
31
|
Haysom SF, Machin J, Whitehouse JM, Horne JE, Fenn K, Ma Y, El Mkami H, Böhringer N, Schäberle TF, Ranson NA, Radford SE, Pliotas C. Darobactin B Stabilises a Lateral-Closed Conformation of the BAM Complex in E. coli Cells. Angew Chem Int Ed Engl 2023; 62:e202218783. [PMID: 37162386 PMCID: PMC10952311 DOI: 10.1002/anie.202218783] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
The β-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.
Collapse
Affiliation(s)
- Samuel F. Haysom
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jonathan Machin
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - James M. Whitehouse
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Jim E. Horne
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Katherine Fenn
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Yue Ma
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Hassane El Mkami
- School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsKY16 9SSUK
| | - Nils Böhringer
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
| | - Till F. Schäberle
- Institute for Insect BiotechnologyNatural Product ResearchJustus-Liebig-University GiessenOhlebergsweg 1235392GiessenGermany
- German Center for Infection Research (DZIF)Partner Site Giessen-Marburg-LangenOhlebergsweg 1235392GiessenGermany
- Natural Product DepartmentFraunhofer-Institute for Molecular Biology and Applied Ecology (IME)Ohlebergsweg 1235392GiessenGermany
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular BiologySchool of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic and Health Science CentreThe University of ManchesterManchesterM13 9PTUK
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
32
|
Majumder P, Ahmed S, Ahuja P, Athreya A, Ranjan R, Penmatsa A. Cryo-EM structure of antibacterial efflux transporter QacA from Staphylococcus aureus reveals a novel extracellular loop with allosteric role. EMBO J 2023; 42:e113418. [PMID: 37458117 PMCID: PMC10425836 DOI: 10.15252/embj.2023113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Efflux of antibacterial compounds is a major mechanism for developing antimicrobial resistance. In the Gram-positive pathogen Staphylococcus aureus, QacA, a 14 transmembrane helix containing major facilitator superfamily antiporter, mediates proton-coupled efflux of mono and divalent cationic antibacterial compounds. In this study, we report the cryo-EM structure of QacA, with a single mutation D411N that improves homogeneity and retains efflux activity against divalent cationic compounds like dequalinium and chlorhexidine. The structure of substrate-free QacA, complexed to two single-domain camelid antibodies, was elucidated to a resolution of 3.6 Å. The structure displays an outward-open conformation with an extracellular helical hairpin loop (EL7) between transmembrane helices 13 and 14, which is conserved in a subset of DHA2 transporters. Removal of the EL7 hairpin loop or disrupting the interface formed between EL7 and EL1 compromises efflux activity. Chimeric constructs of QacA with a helical hairpin and EL1 grafted from other DHA2 members, LfrA and SmvA, restore activity in the EL7 deleted QacA revealing the allosteric and vital role of EL7 hairpin in antibacterial efflux in QacA and related members.
Collapse
Affiliation(s)
- Puja Majumder
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
Memorial‐Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
St. Jude Children's Research HospitalMemphisTNUSA
| | - Pragya Ahuja
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Arunabh Athreya
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rakesh Ranjan
- ICAR‐National Research Centre on CamelJorbeerBikanerIndia
| | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
33
|
Teucher M, Kucher S, Timachi MH, Wilson CB, Śmiłowicz D, Stoll R, Metzler-Nolte N, Sherwin MS, Han S, Bordignon E. Spectroscopically Orthogonal Spin Labels in Structural Biology at Physiological Temperatures. J Phys Chem B 2023; 127:6668-6674. [PMID: 37490415 PMCID: PMC10405217 DOI: 10.1021/acs.jpcb.3c04497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.
Collapse
Affiliation(s)
- Markus Teucher
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Svetlana Kucher
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
- Department
of Physical Chemistry, University of Geneva, Genève 1211, Switzerland
| | - M. Hadi Timachi
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - C. Blake Wilson
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Dariusz Śmiłowicz
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Raphael Stoll
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Nils Metzler-Nolte
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
| | - Mark S. Sherwin
- Department
of Physics, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Songi Han
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Enrica Bordignon
- Faculty
of Chemistry and Biochemistry, Ruhr University
of Bochum, Bochum 44801, Germany
- Department
of Physical Chemistry, University of Geneva, Genève 1211, Switzerland
| |
Collapse
|
34
|
Thangaratnarajah C, Nijland M, Borges-Araújo L, Jeucken A, Rheinberger J, Marrink SJ, Souza PCT, Paulino C, Slotboom DJ. Expulsion mechanism of the substrate-translocating subunit in ECF transporters. Nat Commun 2023; 14:4484. [PMID: 37491368 PMCID: PMC10368641 DOI: 10.1038/s41467-023-40266-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Energy-coupling factor (ECF)-type transporters mediate the uptake of micronutrients in many bacteria. They consist of a substrate-translocating subunit (S-component) and an ATP-hydrolysing motor (ECF module) Previous data indicate that the S-component topples within the membrane to alternately expose the binding site to either side of the membrane. In many ECF transporters, the substrate-free S-component can be expelled from the ECF module. Here we study this enigmatic expulsion step by cryogenic electron microscopy and reveal that ATP induces a concave-to-convex shape change of two long helices in the motor, thereby destroying the S-component's docking site and allowing for its dissociation. We show that adaptation of the membrane morphology to the conformational state of the motor may favour expulsion of the substrate-free S-component when ATP is bound and docking of the substrate-loaded S-component after hydrolysis. Our work provides a picture of bilayer-assisted chemo-mechanical coupling in the transport cycle of ECF transporters.
Collapse
Affiliation(s)
- Chancievan Thangaratnarajah
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Mark Nijland
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry, CNRS and University of Lyon, 69367, Lyon, France
| | - Aike Jeucken
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jan Rheinberger
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy Group, University of Groningen, 9747 AG, Groningen, The Netherlands
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Siewert J Marrink
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Molecular Dynamics Group, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, CNRS and University of Lyon, 69367, Lyon, France
| | - Cristina Paulino
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Electron Microscopy Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
35
|
Ren M, Ma Z, Zhao L, Wang Y, An H, Sun F. Self-Association of ACE-2 with Different RBD Amounts: A Dynamic Simulation Perspective on SARS-CoV-2 Infection. J Chem Inf Model 2023; 63:4423-4432. [PMID: 37382878 DOI: 10.1021/acs.jcim.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Transmissibility of SARS-CoV-2 initially relies on its trimeric Spike-RBDs to tether the ACE-2 on host cells, and enhanced self-association of ACE-2 engaged with Spike facilitates the viral infection. Two primary packing modes of Spike-ACE2 heteroproteins exist potentially due to discrepant amounts of RBDs loading on ACE-2, but the resultant self-association difference is inherently unclear. We used extensive coarse-grained dynamic simulations to characterize the self-association efficiency, the conformation relevance, and the molecular mechanism of ACE-2 with different RBD amounts. It was revealed that the ACE-2 hanging two/full RBDs (Mode-A) rapidly dimerized into the heteroprotein complex in a compact "linear" conformation, while the bare ACE-2 showed weakened self-association and a protein complex. The RBD-tethered ectodomains of ACE-2 presented a more upright conformation relative to the membrane, and the intermolecular ectodomains were predominantly packed by the neck domains, which was obligated to the rapid protein self-association in a compact pattern. Noted is the fact that the ACE-2 tethered by a single RBD (Mode-B) retained considerable self-association efficiency and clustering capability, which unravels the interrelation of ACE-2 colocalization and protein cross-linkage. The molecular perspectives in this study expound the self-association potency of ACE-2 with different RBD amounts and the viral activity implications, which can greatly enhance our comprehension of SARS-CoV-2 infection details.
Collapse
Affiliation(s)
- Meina Ren
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ziyi Ma
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lina Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yanjiao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
36
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. J Am Chem Soc 2023; 145:14608-14620. [PMID: 37364003 PMCID: PMC10440187 DOI: 10.1021/jacs.3c00967] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
37
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
38
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
39
|
Mittal S, Dutta S, Shukla D. Reconciling membrane protein simulations with experimental DEER spectroscopy data. Phys Chem Chem Phys 2023; 25:6253-6262. [PMID: 36757376 DOI: 10.1039/d2cp02890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spectroscopy experiments are crucial to study membrane proteins for which traditional structure determination methods still prove challenging. Double electron-electron resonance (DEER) spectroscopy experiments provide protein residue-pair distance distributions that are indicative of their conformational heterogeneity. Atomistic molecular dynamics (MD) simulations are another tool that have been proven to be vital to study the structural dynamics of membrane proteins such as to identify inward-open, occluded, and outward-open conformations of transporter membrane proteins, among other partially open or closed states of the protein. Yet, studies have reported that there is no direct consensus between the distributional data from DEER experiments and MD simulations, which has challenged validation of structures obtained from long-timescale simulations and using simulations to design experiments. Current coping strategies for comparisons rely on heuristics, such as mapping the nearest matching peaks between two ensembles or biased simulations. Here we examine the differences in residue-pair distance distributions arising due to the choice of membranes around the protein and covalent modification of a pair of residues to nitroxide spin labels in DEER experiments. Through comparing MD simulations of two proteins, PepTSo and LeuT-both of which have been characterized using DEER experiments previously-we show that the proteins' dynamics are similar despite the choice of the detergent micelle as a membrane mimetic in DEER experiments. On the other hand, covalently modified residues show slight local differences in their dynamics and a huge divergence when the oxygen atom pair distances between spin labeled residues are measured rather than protein backbone distances. Given the computational expense associated with pairwise MTSSL labeled MD simulations, we examine the use of biased simulations to explore the conformational dynamics of the spin labels only to reveal that such simulations alter the underlying protein dynamics. Our study identifies the main cause for the mismatch between DEER experiments and MD simulations and will accelerate the development of potential mitigation strategies to improve the match.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
40
|
Tóth Á, Janaszkiewicz A, Crespi V, Di Meo F. On the interplay between lipids and asymmetric dynamics of an NBS degenerate ABC transporter. Commun Biol 2023; 6:149. [PMID: 36737455 PMCID: PMC9898250 DOI: 10.1038/s42003-023-04537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Multidrug resistance-associated proteins are ABC C-family exporters. They are crucial in pharmacology as they transport various substrates across membranes. However, the role of the degenerate nucleotide-binding site (NBS) remains unclear likewise the interplay with the surrounding lipid environment. Here, we propose a dynamic and structural overview of MRP1 from ca. 110 μs molecular dynamics simulations. ATP binding to NBS1 is likely maintained along several transport cycles. Asymmetric NBD behaviour is ensured by lower signal transduction from NBD1 to the rest of the protein owing to the absence of ball-and-socket conformation between NBD1 and coupling helices. Even though surrounding lipids play an active role in the allosteric communication between the substrate-binding pocket and NBDs, our results suggest that lipid composition has a limited impact, mostly by affecting transport kinetics. We believe that our work can be extended to other degenerate NBS ABC proteins and provide hints for deciphering mechanistic differences among ABC transporters.
Collapse
Affiliation(s)
- Ágota Tóth
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Angelika Janaszkiewicz
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Veronica Crespi
- grid.9966.00000 0001 2165 4861Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute—Univ. Limoges, 2 rue du Prof. Descottes, 87000 F Limoges, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, ΩHealth Institute-Univ. Limoges, 2 rue du Prof. Descottes, 87000 F, Limoges, France.
| |
Collapse
|
41
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525763. [PMID: 36747808 PMCID: PMC9901033 DOI: 10.1101/2023.01.26.525763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification. TOC
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Equal contributors
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
- Equal contributors
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
42
|
Ketter S, Joseph B. Gd 3+-Trityl-Nitroxide Triple Labeling and Distance Measurements in the Heterooligomeric Cobalamin Transport Complex in the Native Lipid Bilayers. J Am Chem Soc 2023; 145:960-966. [PMID: 36599418 PMCID: PMC9853854 DOI: 10.1021/jacs.2c10080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 01/06/2023]
Abstract
Increased efforts are being made for observing proteins in their native environments. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is a powerful tool for this purpose. Conventionally, PELDOR employs an identical spin pair, which limits the output to a single distance for monomeric samples. Here, we show that the Gd3+-trityl-nitroxide (NO) three-spin system is a versatile tool to study heterooligomeric membrane protein complexes, even within their native membrane. This allowed for an independent determination of four different distances (Gd3+-trityl, Gd3+-NO, trityl-NO, and Gd3+-Gd3+) within the same sample. We demonstrate the feasibility of this approach by observing sequential ligand binding and the dynamics of complex formation in the cobalamin transport system involving four components (cobalamin, BtuB, TonB, and BtuF). Our results reveal that TonB binding alone is sufficient to release cobalamin from BtuB in the native asymmetric bilayers. This approach provides a potential tool for the structural and quantitative analysis of dynamic protein-protein interactions in oligomeric complexes, even within their native surroundings.
Collapse
Affiliation(s)
- Sophie Ketter
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| | - Benesh Joseph
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| |
Collapse
|