1
|
Wang Q, Zhang Y, Ma K, Lin P, Wang Y, Wang R, Li H, Li Z, Wang G. Plexin B2 in physiology and pathophysiology of the central nervous system. Int Immunopharmacol 2025; 155:114627. [PMID: 40220620 DOI: 10.1016/j.intimp.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
The Plexin protein family was initially found in 1995, comprising subfamilies from Plexin A to Plexin D. Plexin B2, a member of the Plexin subfamily, has widespread expression in many human organs and tissues, particularly in the nervous system where expression levels are significantly heightened. The biological roles of Plexin B2 are mostly determined by its protein structure and functional domains. These domains regulate the binding selectivity and affinity for ligands. Ligand binding activates signal transduction pathways, resulting in regulatory effects on several biological processes. This includes managing brain growth and change, keeping angiogenesis and vascular homeostasis in check, and preventing the start, growth, and metastasis of cancer. Plexin B2 has also been associated with the onset of many nervous system illnesses. Plexin B2 aids in the invasion and spread of malignant cells, facilitates nerve healing following spinal cord damage, and plays a role in the etiology of schizophrenia. This article thoroughly examines the existing research on Plexin B2 and its importance in central nervous system biology. Simultaneously, it investigates the regulatory function of Plexin B2 across many cell types in the central nervous system, specifically neural stem cells, neurons, microglia, and astrocytes. This study examines the current knowledge of Plexin B2's role in central nervous system diseases, including schizophrenia, spinal cord injury, neuroblastoma, and fear memory. Overall, the prospects for the clinical translation of Plexin B2 are promising. However, challenges related to specificity and drug delivery must be addressed. Future research could explore the integration of nanodrug delivery systems to enhance the clinical application of Plexin B2-targeted therapies.
Collapse
Affiliation(s)
- Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Kaixuan Ma
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ran Wang
- School of Pharmacy, Harbin Medical University, Daqing, Heilongjiang 163319, China
| | - He Li
- Department of Parasitology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Guangtian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China; Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
2
|
Zucker B, Dharan R, Wang D, Yu L, Sorkin R, Kozlov MM. Migrasome formation is initiated preferentially in tubular junctions by membrane tension. Biophys J 2025; 124:604-619. [PMID: 39755943 PMCID: PMC11900186 DOI: 10.1016/j.bpj.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Migrasomes, the vesicle-like membrane microstructures, arise on the retraction fibers (RFs), the branched nanotubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here, we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems. We assumed that the bulging could be driven by increases in membrane tension and experimentally verified this hypothesis in live-cell and biomimetic systems. We exposed RF-generating live cells to a hypotonic medium, which produced water flows into the cells and a related increase in the membrane tension. We observed the formation of migrasome-like bulges with a preferential location in the RF branching sites. Next, we developed a biomimetic system of three membrane tubules pulled out of a giant plasma membrane vesicle (GPMV), connected by a junction, and subjected to pulling forces controlled by the GPMV membrane tension. An abrupt increase in the GPMV tension resulted in the generation of migrasome-like bulges mainly in the junctions. To understand the physical forces behind these observations, we considered theoretically the mechanical energy of a membrane system consisting of a three-way tubular junction with emerging tubular arms subjected to membrane tension. Substantiating our experimental observations, the energy minimization predicted a tension increase to drive the formation of membrane bulges, preferably in the junction site, independently of the way of the tension application. We generalized the model to derive universal criteria of bulging in branched membrane tubules.
Collapse
Affiliation(s)
- Ben Zucker
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raviv Dharan
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Dongju Wang
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Li Yu
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Raya Sorkin
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel; School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Minegishi T, Hasebe H, Aoyama T, Naruse K, Takahashi Y, Inagaki N. Mechanical signaling through membrane tension induces somal translocation during neuronal migration. EMBO J 2025; 44:767-780. [PMID: 39707024 PMCID: PMC11790904 DOI: 10.1038/s44318-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024] Open
Abstract
Neurons migrate in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. The former step is critical for determining the migratory route in response to extracellular guidance cues. In the latter step, neurons must generate robust forces that translocate the bulky soma against mechanical barriers of the surrounding three-dimensional environment. However, the link between the leading process extension and subsequent somal translocation remains unknown. By using the membrane tension sensor Flipper-TR and scanning ion conductance microscopy, we show that leading process extension increases plasma membrane tension. The tension elevation activated the mechanosensitive ion channel Tmem63b and triggered Ca2+ influx, leading to actomyosin activation at the rear of the cell. Blockade of this signaling pathway disturbed somal translocation, thereby inhibiting neuronal migration in three-dimensional environments. These data suggest that mechanical signaling through plasma membrane tension and mechano-channels links the leading process extension to somal translocation, allowing rapid and saltatory neuronal migration.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Honami Hasebe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tomoya Aoyama
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, 700-8558, Japan
| | - Yasufumi Takahashi
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
4
|
Dharan R, Barnoy A, Tsaturyan AK, Grossman A, Goren S, Yosibash I, Nachmias D, Elia N, Sorkin R, Kozlov MM. Intracellular pressure controls the propagation of tension in crumpled cell membranes. Nat Commun 2025; 16:91. [PMID: 39747015 PMCID: PMC11696741 DOI: 10.1038/s41467-024-55398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of membrane tension mediates mechanical signal transduction along surfaces of live cells and sets the time scale of mechanical equilibration of cell membranes. Recent studies in several cell types and under different conditions revealed a strikingly wide variation range of the tension propagation speeds including extremely low ones. The latter suggests a possibility of long-living inhomogeneities of membrane tension crucially affecting mechano-sensitive membrane processes. Here, we propose, analyze theoretically, and support experimentally a mechanism of tension propagation in membranes crumpled by the contractile cortical cytoskeleton. The tension spreading is mediated by the membrane flow between the crumples. We predict the pace of the tension propagation to be controlled by the intra-cellular pressure and the degree of the membrane crumpling. We provide experimental support for the suggested mechanism by monitoring the rate of tension propagation in cells exposed to external media of different osmolarities.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Barnoy
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andrey K Tsaturyan
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alon Grossman
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Goren
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Yosibash
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Nachmias
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raya Sorkin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| | - Michael M Kozlov
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Griswold JM, Bonilla-Quintana M, Pepper R, Lee CT, Raychaudhuri S, Ma S, Gan Q, Syed S, Zhu C, Bell M, Suga M, Yamaguchi Y, Chéreau R, Nägerl UV, Knott G, Rangamani P, Watanabe S. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 2025; 28:49-61. [PMID: 39623218 PMCID: PMC11706780 DOI: 10.1038/s41593-024-01813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2024] [Indexed: 12/11/2024]
Abstract
Axons are ultrathin membrane cables that are specialized for the conduction of action potentials. Although their diameter is variable along their length, how their morphology is determined is unclear. Here, we demonstrate that unmyelinated axons of the mouse central nervous system have nonsynaptic, nanoscopic varicosities ~200 nm in diameter repeatedly along their length interspersed with a thin cable ~60 nm in diameter like pearls-on-a-string. In silico modeling suggests that this axon nanopearling can be explained by membrane mechanical properties. Treatments disrupting membrane properties, such as hyper- or hypotonic solutions, cholesterol removal and nonmuscle myosin II inhibition, alter axon nanopearling, confirming the role of membrane mechanics in determining axon morphology. Furthermore, neuronal activity modulates plasma membrane cholesterol concentration, leading to changes in axon nanopearls and causing slowing of action potential conduction velocity. These data reveal that biophysical forces dictate axon morphology and function, and modulation of membrane mechanics likely underlies unmyelinated axonal plasticity.
Collapse
Grants
- S10 RR026445 NCRR NIH HHS
- 1R01 NS105810-01A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- MURI FA9550-18-0051 United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
- 1RF1DA055668-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1R35NS132153-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- S10OD023548 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 MH139350 NIMH NIH HHS
- R35 NS132153 NINDS NIH HHS
- R25NS063307 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- S10RR026445 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 NS105810 NINDS NIH HHS
- R25 NS063307 NINDS NIH HHS
- DP2 NS111133 NINDS NIH HHS
- DGE-2139757 National Science Foundation (NSF)
- RF1 DA055668 NIDA NIH HHS
- 1DP2 NS111133-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- Johns Hopkins University (Johns Hopkins)
- Johns Hopkins | School of Medicine, Johns Hopkins University (SOM, JHU)
- Marine Biological Laboratory (MBL)
- Brain Research Foundation (BRF)
- Adrienne Helis Malvin Medical Research Foundation
- Diana Helis Henry Medical Research Foundation
- Johns Hopkins Discovery funds, Johns Hopkins Catalyst award, Chan-Zuckerberg Initiative Collaborative Pair Grant, Chan-Zuckerberg Initiative Supplement Award, Johns Hopkins University Department of Neuroscience Imaging Core
- UC | UC San Diego | Kavli Institute for Brain and Mind, University of California, San Diego (KIBM, UCSD)
Collapse
Affiliation(s)
- Jacqueline M Griswold
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Renee Pepper
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siyi Ma
- Neurobiology Course, The Marine Biological Laboratory, Woods Hole, MA, USA
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Quan Gan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Syed
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuncheng Zhu
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Mitsuo Suga
- Application Department, EPBU, JEOL Company, Ltd., Tokyo, Japan
| | - Yuuki Yamaguchi
- Application Department, EPBU, JEOL Company, Ltd., Tokyo, Japan
| | - Ronan Chéreau
- Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - U Valentin Nägerl
- Bordeaux Neurocampus, Université de Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
- Universitätsmedizin Göttingen, Georg-August-Universität, Zentrum Anatomie, Göttingen, Germany
| | - Graham Knott
- Bioelectron Microscopy Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Raj N, Weiß MS, Vos BE, Weischer S, Brinkmann F, Betz T, Trappmann B, Gerke V. Membrane Tension Regulation is Required for Wound Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402317. [PMID: 39360573 DOI: 10.1002/advs.202402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Disruptions of the eukaryotic plasma membrane due to chemical and mechanical challenges are frequent and detrimental and thus need to be repaired to maintain proper cell function and avoid cell death. However, the cellular mechanisms involved in wound resealing and restoration of homeostasis are diverse and contended. Here, it is shown that clathrin-mediated endocytosis is induced at later stages of plasma membrane wound repair following the actual resealing of the wound. This compensatory endocytosis occurs near the wound, predominantly at sites of previous early endosome exocytosis which is required in the initial stage of membrane resealing, suggesting a spatio-temporal co-ordination of exo- and endocytosis during wound repair. Using cytoskeletal alterations and modulations of membrane tension and membrane area, membrane tension is identified as a major regulator of the wounding-associated exo- and endocytic events that mediate efficient wound repair. Thus, membrane tension changes are a universal trigger for plasma membrane wound repair modulating the exocytosis of early endosomes required for resealing and subsequent clathrin-mediated endocytosis acting at later stages to restore cell homeostasis and function.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Martin S Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Bart E Vos
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Sarah Weischer
- Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Timo Betz
- Third Institute of Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Multiscale Imaging Centre, Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
7
|
De Belly H, Weiner OD. Follow the flow: Actin and membrane act as an integrated system to globally coordinate cell shape and movement. Curr Opin Cell Biol 2024; 89:102392. [PMID: 38991476 PMCID: PMC11929537 DOI: 10.1016/j.ceb.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Migratory cells are polarized with protrusive fronts and contractile rears. This spatial organization necessitates long-range coordination of the signals that organize protrusions and contractions. Cells leverage reciprocal interactions of short-range biochemical signals and long-range mechanical forces for this integration. The interface between the plasma membrane and actin cortex is where this communication occurs. Here, we review how the membrane and cortex form an integrated system for long-range coordination of cell polarity. We highlight the role of membrane-to-cortex-attachment proteins as regulators of tension transmission across the cell and discuss the interplay between actin-membrane and polarity signaling complexes. Rather than presenting an exhaustive list of recent findings, we focus on important gaps in our current understanding.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Yan Q, Gomis Perez C, Karatekin E. Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes. Physiology (Bethesda) 2024; 39:0. [PMID: 38501962 PMCID: PMC11368524 DOI: 10.1152/physiol.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Abstract
Cell membrane tension affects and is affected by many fundamental cellular processes, yet it is poorly understood. Recent experiments show that membrane tension can propagate at vastly different speeds in different cell types, reflecting physiological adaptations. Here we briefly review the current knowledge about membrane tension gradients, membrane flows, and their physiological context.
Collapse
Affiliation(s)
- Qi Yan
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
9
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
10
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. Curr Opin Cell Biol 2024; 88:102377. [PMID: 38823338 PMCID: PMC11193448 DOI: 10.1016/j.ceb.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Di Meo D, Kundu T, Ravindran P, Shah B, Püschel AW. Pip5k1γ regulates axon formation by limiting Rap1 activity. Life Sci Alliance 2024; 7:e202302383. [PMID: 38438249 PMCID: PMC10912816 DOI: 10.26508/lsa.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
During their differentiation, neurons establish a highly polarized morphology by forming axons and dendrites. Cortical and hippocampal neurons initially extend several short neurites that all have the potential to become an axon. One of these neurites is then selected as the axon by a combination of positive and negative feedback signals that promote axon formation and prevent the remaining neurites from developing into axons. Here, we show that Pip5k1γ is required for the formation of a single axon as a negative feedback signal that regulates C3G and Rap1 through the generation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Impairing the function of Pip5k1γ results in a hyper-activation of the Fyn/C3G/Rap1 pathway, which induces the formation of supernumerary axons. Application of a hyper-osmotic shock to modulate membrane tension has a similar effect, increasing Rap1 activity and inducing the formation of supernumerary axons. In both cases, the induction of supernumerary axons can be reverted by expressing constitutively active Pip5k. Our results show that PI(4,5)P2-dependent membrane properties limit the activity of C3G and Rap1 to ensure the extension of a single axon.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Trisha Kundu
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Bhavin Shah
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
| | - Andreas W Püschel
- Institut für Integrative Zellbiologie und Physiologie, Universität Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Zhang Y, Lin C. Lipid osmosis, membrane tension, and other mechanochemical driving forces of lipid flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574656. [PMID: 38260424 PMCID: PMC10802412 DOI: 10.1101/2024.01.08.574656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis. This process lowers the membrane tension in the area, resulting in a membrane tension difference called osmotic membrane tension. We examine the thermodynamic basis and experimental evidence of lipid osmosis and osmotic membrane tension. We predict that lipid osmosis can drive bulk lipid flows between different membrane regions through lipid transfer proteins, scramblases, or other similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Yang S, Shi Z. Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy. Methods Enzymol 2024; 700:385-411. [PMID: 38971608 DOI: 10.1016/bs.mie.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
14
|
Csemer A, Sokvári C, Maamrah B, Szabó L, Korpás K, Pocsai K, Pál B. Pharmacological Activation of Piezo1 Channels Enhances Astrocyte-Neuron Communication via NMDA Receptors in the Murine Neocortex. Int J Mol Sci 2024; 25:3994. [PMID: 38612801 PMCID: PMC11012114 DOI: 10.3390/ijms25073994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Cintia Sokvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Baneen Maamrah
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
- HUN-REN DE Cell Physiology Research Group, H-4032 Debrecen, Hungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| |
Collapse
|
15
|
Pillai EK, Franze K. Mechanics in the nervous system: From development to disease. Neuron 2024; 112:342-361. [PMID: 37967561 DOI: 10.1016/j.neuron.2023.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review highlights the significance of mechanical forces in nervous system development, homeostasis, and disease. We provide an overview of mechanical signals present in the nervous system and delve into mechanotransduction mechanisms translating these mechanical cues into biochemical signals. During development, mechanical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network formation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diagnostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many processes that remain incompletely understood.
Collapse
Affiliation(s)
- Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 1, 91054 Erlangen, Germany.
| |
Collapse
|
16
|
Ghisleni A, Gauthier NC. Mechanotransduction through membrane tension: It's all about propagation? Curr Opin Cell Biol 2024; 86:102294. [PMID: 38101114 DOI: 10.1016/j.ceb.2023.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Over the past 25 years, membrane tension has emerged as a primary mechanical factor influencing cell behavior. Although supporting evidences are accumulating, the integration of this parameter in the lifecycle of cells, organs, and tissues is complex. The plasma membrane is envisioned as a bilayer continuum acting as a 2D fluid. However, it possesses almost infinite combinations of proteins, lipids, and glycans that establish interactions with the extracellular or intracellular environments. This results in a tridimensional composite material with non-trivial dynamics and physics, and the task of integrating membrane mechanics and cellular outcome is a daunting chore for biologists. In light of the most recent discoveries, we aim in this review to provide non-specialist readers some tips on how to solve this conundrum.
Collapse
Affiliation(s)
- Andrea Ghisleni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Nils C Gauthier
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
17
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Flaum E, Prakash M. Curved crease origami and topological singularities at a cellular scale enable hyper-extensibility of Lacrymaria olor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551915. [PMID: 37577489 PMCID: PMC10418517 DOI: 10.1101/2023.08.04.551915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic cells undergo dramatic morphological changes during cell division, phagocytosis and motility. Fundamental limits of cellular morphodynamics such as how fast or how much cellular shapes can change without harm to a living cell remain poorly understood. Here we describe hyper-extensibility in the single-celled protist Lacrymaria olor, a 40 μm cell which is capable of reversible and repeatable extensions (neck-like protrusions) up to 1500 μm in 30 seconds. We discover that a unique and intricate organization of cortical cytoskeleton and membrane enables these hyper-extensions that can be described as the first cellular scale curved crease origami. Furthermore, we show how these topological singularities including d-cones and twisted domain walls provide a geometrical control mechanism for the deployment of membrane and microtubule sheets as they repeatably spool thousands of time from the cell body. We lastly build physical origami models to understand how these topological singularities provide a mechanism for the cell to control the hyper-extensile deployable structure. This new geometrical motif where a cell employs curved crease origami to perform a physiological function has wide ranging implications in understanding cellular morphodynamics and direct applications in deployable micro-robotics.
Collapse
Affiliation(s)
- Eliott Flaum
- Graduate Program in Biophysics
- Department of Bioengineering
- Stanford University
| | - Manu Prakash
- Graduate Program in Biophysics
- Department of Bioengineering
- Department of Biology (courtesy)
- Department of Oceans (courtesy)
- Stanford University
| |
Collapse
|
19
|
Griswold JM, Bonilla-Quintana M, Pepper R, Lee CT, Raychaudhuri S, Ma S, Gan Q, Syed S, Zhu C, Bell M, Suga M, Yamaguchi Y, Chéreau R, Nägerl UV, Knott G, Rangamani P, Watanabe S. Membrane mechanics dictate axonal morphology and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549958. [PMID: 37503105 PMCID: PMC10370128 DOI: 10.1101/2023.07.20.549958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Axons are thought to be ultrathin membrane cables of a relatively uniform diameter, designed to conduct electrical signals, or action potentials. Here, we demonstrate that unmyelinated axons are not simple cylindrical tubes. Rather, axons have nanoscopic boutons repeatedly along their length interspersed with a thin cable with a diameter of ∼60 nm like pearls-on-a-string. These boutons are only ∼200 nm in diameter and do not have synaptic contacts or a cluster of synaptic vesicles, hence non-synaptic. Our in silico modeling suggests that axon pearling can be explained by the mechanical properties of the membrane including the bending modulus and tension. Consistent with modeling predictions, treatments that disrupt these parameters like hyper- or hypo-tonic solutions, cholesterol removal, and non-muscle myosin II inhibition all alter the degree of axon pearling, suggesting that axon morphology is indeed determined by the membrane mechanics. Intriguingly, neuronal activity modulates the cholesterol level of plasma membrane, leading to shrinkage of axon pearls. Consequently, the conduction velocity of action potentials becomes slower. These data reveal that biophysical forces dictate axon morphology and function and that modulation of membrane mechanics likely underlies plasticity of unmyelinated axons.
Collapse
|
20
|
Keren K. Effective membrane tension: A long-range integrator of cellular dynamics. Cell 2023; 186:2956-2958. [PMID: 37419084 DOI: 10.1016/j.cell.2023.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 07/09/2023]
Abstract
Membrane tension has been proposed to mechanically couple processes along the cell's boundary. In this issue of Cell, De Belly et al. show that local protrusion or contraction elicit a global membrane tension increase within seconds, whereas tension perturbations that engage only the membrane remain localized.
Collapse
Affiliation(s)
- Kinneret Keren
- Department of Physics, Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
21
|
De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town JP, Zager PJ, Estrada DC, Meyer K, Turlier H, Bustamante C, Weiner OD. Cell protrusions and contractions generate long-range membrane tension propagation. Cell 2023; 186:3049-3061.e15. [PMID: 37311454 PMCID: PMC10330871 DOI: 10.1016/j.cell.2023.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hudson Borja da Rocha
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Sacha Ichbiah
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Jason P Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick J Zager
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dorothy C Estrada
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France.
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Itoh T, Tsujita K. Exploring membrane mechanics: The role of membrane-cortex attachment in cell dynamics. Curr Opin Cell Biol 2023; 81:102173. [PMID: 37224683 DOI: 10.1016/j.ceb.2023.102173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
The role of plasma membrane (PM) tension in cell dynamics has gained increasing interest in recent years to understand the mechanism by which individual cells regulate their dynamic behavior. Membrane-to-cortex attachment (MCA) is a component of apparent PM tension, and its assembly and disassembly determine the direction of cell motility, controlling the driving forces of migration. There is also evidence that membrane tension plays a role in malignant cancer cell metastasis and stem cell differentiation. Here, we review recent important discoveries that explore the role of membrane tension in the regulation of diverse cellular processes, and discuss the mechanisms of cell dynamics regulated by this physical parameter.
Collapse
Affiliation(s)
- Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
23
|
Young MN, Sindoni MJ, Lewis AH, Zauscher S, Grandl J. The energetics of rapid cellular mechanotransduction. Proc Natl Acad Sci U S A 2023; 120:e2215747120. [PMID: 36795747 PMCID: PMC9974467 DOI: 10.1073/pnas.2215747120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Cells throughout the human body detect mechanical forces. While it is known that the rapid (millisecond) detection of mechanical forces is mediated by force-gated ion channels, a detailed quantitative understanding of cells as sensors of mechanical energy is still lacking. Here, we combine atomic force microscopy with patch-clamp electrophysiology to determine the physical limits of cells expressing the force-gated ion channels (FGICs) Piezo1, Piezo2, TREK1, and TRAAK. We find that, depending on the ion channel expressed, cells can function either as proportional or nonlinear transducers of mechanical energy and detect mechanical energies as little as ~100 fJ, with a resolution of up to ~1 fJ. These specific energetic values depend on cell size, channel density, and cytoskeletal architecture. We also make the surprising discovery that cells can transduce forces either nearly instantaneously (<1 ms) or with a substantial time delay (~10 ms). Using a chimeric experimental approach and simulations, we show how such delays can emerge from channel-intrinsic properties and the slow diffusion of tension in the membrane. Overall, our experiments reveal the capabilities and limits of cellular mechanosensing and provide insights into molecular mechanisms that different cell types may employ to specialize for their distinct physiological roles.
Collapse
Affiliation(s)
- Michael N. Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Michael J. Sindoni
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27710
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
24
|
Yang S, Miao X, Arnold S, Li B, Ly AT, Wang H, Wang M, Guo X, Pathak MM, Zhao W, Cox CD, Shi Z. Membrane curvature governs the distribution of Piezo1 in live cells. Nat Commun 2022; 13:7467. [PMID: 36463216 PMCID: PMC9719557 DOI: 10.1038/s41467-022-35034-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Piezo1 is a bona fide mechanosensitive ion channel ubiquitously expressed in mammalian cells. The distribution of Piezo1 within a cell is essential for various biological processes including cytokinesis, cell migration, and wound healing. However, the underlying principles that guide the subcellular distribution of Piezo1 remain largely unexplored. Here, we demonstrate that membrane curvature serves as a key regulator of the spatial distribution of Piezo1 in the plasma membrane of living cells. Piezo1 depletes from highly curved membrane protrusions such as filopodia and enriches to nanoscale membrane invaginations. Quantification of the curvature-dependent sorting of Piezo1 directly reveals the in situ nano-geometry of the Piezo1-membrane complex. Piezo1 density on filopodia increases upon activation, independent of calcium, suggesting flattening of the channel upon opening. Consequently, the expression of Piezo1 inhibits filopodia formation, an effect that diminishes with channel activation.
Collapse
Affiliation(s)
- Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xinwen Miao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Steven Arnold
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Boxuan Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alan T Ly
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Matthew Wang
- Department of Physics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Medha M Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, 92697, USA
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637457, Singapore, Singapore
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|