1
|
Deng H, Fu Y, Su L, Chen D, Deng X, Hu B, Chen Y, Deng Y. Unveiling the deep-sea microplastic Odyssey: Characteristics, distribution, and ecological implications in Pacific Ocean sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137537. [PMID: 39952139 DOI: 10.1016/j.jhazmat.2025.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Microplastics (MPs) in deep-sea environments are a growing concern due to their potential ecological risks and the deep sea's role in global biogeochemical cycles. This study investigated the characteristics and distribution of MPs in sediments from the Pacific Ocean at depths of 4900-7016 m across three regions: Western Pacific (WP), Central Pacific (CP), and Eastern Pacific (EP). MPs were detected at all sampling sites, with the highest abundance in WP (111.3 ± 75.1 items/kg dw) and the lowest in CP (49.4 ± 18.7 items/kg dw). Site S9 was recorded as the peak abundance (270.1 ± 107.4 items/kg dw) in WP. MPs were predominantly fibers (94.8 %) in black, gray, and blue hues, mainly composed of polyester and rayon. Statistical analysis showed significant regional variations, reflecting anthropogenic impacts and complex deposition mechanisms. Risk assessments indicated low to medium hazard levels (PLI <10, PRI ≤ III), but the potential ecological impacts remain concerning. This study highlights the significant variability in MP distribution across regions, emphasizing the importance of region-specific mitigation strategies. It calls for comprehensive, long-term research to better understand MP sources, deposition processes, and ecological impacts in deep-sea ecosystems.
Collapse
Affiliation(s)
- Hua Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Yutao Fu
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Daohua Chen
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Xiguang Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Bo Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yinan Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China.
| |
Collapse
|
2
|
Wang Q, Li S, Ding Y. Characteristics, influencing factors, and ecological risks of microplastics in the north branch tidal marshes of the Yangtze River estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126230. [PMID: 40221114 DOI: 10.1016/j.envpol.2025.126230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Microplastic pollution is a growing global environmental issue, particularly in vulnerable tidal marsh ecosystems, where its environmental behaviour and ecological risks remain poorly understood. This study investigated the microplastic contamination in the north branch tidal marshes of the Yangtze River estuary. Surface sediment samples were collected from 42 stations across 6 transects, revealing an average microplastic abundance of 506.80 ± 386.82 items/kg. The distribution of microplastics was strongly influenced by salinity and vegetation, with seawater intrusion playing a critical role. A significant negative correlation between salinity and microplastic abundance was observed; areas dominated by Phragmites australis (low salinity) had higher microplastic abundance compared to high-salinity areas with sparse vegetation. 12 types of microplastics were identified, with polyethylene and polystyrene being the most abundant (20 % and 19 %, respectively). The most common colours were transparent (26 %) and yellow (23 %), while the predominant shapes were granular (37 %) and fragmentary (32 %). Most microplastics measured under 2000 μm, with the 200-500 μm size range accounting for 49 % of the total. Likely sources of microplastics include aquaculture equipment, industrial products, agricultural cultivation supplies, and daily necessities. Although the ecological risk index for the region is relatively low, the presence of diverse species highlights potential ecological threats.
Collapse
Affiliation(s)
- Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Songshuo Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
3
|
Pradel A, Hufenus R, Schneebeli M, Mitrano DM. Impact of contaminant size and density on their incorporation into sea ice. Nat Commun 2025; 16:4375. [PMID: 40355447 PMCID: PMC12069638 DOI: 10.1038/s41467-025-59608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Sea ice accumulates contaminants and redistributes them laterally as the ice drifts and vertically as it melts. Contaminant incorporation into sea ice must be better understood to resolve contaminant cycling and exposure to polar organisms. Here we develop an experimental method that mimics the formation of young sea ice and enables the quantification of model contaminants separately in the ice matrix and brine. Several limitations inherent in field studies are overcome using this approach. Results show that dissolved contaminants (<1 nm) and dispersed colloidal contaminants (1 nm-1 μm) follow the same behavior as sea salts. When colloids aggregate they follow a similar transport pathway to high-density particulate contaminants (>1 μm). While high-density particles are depleted in sea ice and low-density particles are enriched relative to their initial concentration in seawater, both are engulfed and can travel in wide brine channels. These results can also help to predict the incorporation of natural species in sea ice.
Collapse
Affiliation(s)
- Alice Pradel
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Rudolf Hufenus
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Advanced Fibers, St. Gallen, Switzerland
| | - Martin Schneebeli
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Denise M Mitrano
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Collard F, Hallanger IG, Philipp C, Herzke D, Schmidt N, Hotvedt Å, Galtung K, Rydningen TA, Litti L, Gentili G, Husum K. Microplastic pellets in Arctic marine sediments: a common source or a common process? ENVIRONMENTAL RESEARCH 2025; 279:121770. [PMID: 40335005 DOI: 10.1016/j.envres.2025.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Plastic consumption is increasing, and millions of tonnes of plastic are released into the oceans every year. Plastic materials are accumulating in the marine environment, especially on the seafloor. The Arctic is contaminated with plastics, including microplastics (MPs, < 5 mm) but occurrences, concentrations and fate are largely unknown. This study aimed at assessing whether MPs accumulate at greater water depths in the Barents Sea, and close to the Longyearbyen settlement, and at understanding the ubiquity and source of a specific type of collected pellets. Surface sediments were collected at seven stations around Svalbard with a box-corer, and three replicates were taken at each station. MPs were extracted through density separation with saturated saltwater. Many pellets were found, and their composition was assessed by pyrolysis-GC/MS. Procedural blanks were performed using field blanks as samples to assess the overall contamination. The composition of all extracted particles was then analysed by μRaman spectroscopy. On average, 3.61±1.45 MPs/100 g (dw) were found. The sea ice station, after blank correction, was more contaminated and displaying a different profile than the other stations, and the deepest station did not show the highest MP concentrations but rather the opposite. Sediments close to Longyearbyen were not more contaminated than the other stations either. Dark pellets of similar aspect were found at all stations, raising the question about a possible common source or process. These pellets were made of several plastic polymers which varied in proportion for each pellet, suggesting a common process was at the origin of those pellets, potentially marine snow formation.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute, Fram Centre, 9296-Tromsø, Norway; Norwegian Institute for Water Research (NIVA), Fram Centre, 9296-Tromsø, Norway.
| | | | | | | | | | - Ådne Hotvedt
- Norwegian Polar Institute, Fram Centre, 9296-Tromsø, Norway; NILU, Fram Centre, 9296-Tromsø, Norway
| | - Kristin Galtung
- Norwegian Institute for Water Research (NIVA), Fram Centre, 9296-Tromsø, Norway; NILU, Fram Centre, 9296-Tromsø, Norway
| | - Tom Arne Rydningen
- UiT The Arctic University of Norway, Department of Geosciences, Tromsø, Norway
| | - Lucio Litti
- University of Padova, Department of Chemical Sciences, Padova, Italy
| | - Giulia Gentili
- University of Padova, Department of Chemical Sciences, Padova, Italy
| | - Katrine Husum
- Norwegian Polar Institute, Fram Centre, 9296-Tromsø, Norway
| |
Collapse
|
5
|
Kong L, Li S, Fu Y, Cai Q, Zhai Z, Liang J, Ma T. Microplastics/nanoplastics contribute to aging and age-related diseases: Mitochondrial dysfunction as a crucial role. Food Chem Toxicol 2025; 199:115355. [PMID: 40020987 DOI: 10.1016/j.fct.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The pervasive utilization of plastic products has led to a significant escalation in plastic waste accumulation. Concurrently, the implications of emerging pollutants such as microplastics (MPs) and nanoplastics (NPs) on human health are increasingly being acknowledged. Recent research has demonstrated that MPs/NPs may contribute to the onset of human aging and age-related diseases. Additionally, MPs/NPs have the potential to induce mitochondrial damage, resulting in mitochondrial dysfunction. Mitochondrial dysfunction is widely recognized as a hallmark of aging; thus, it is necessary to elucidate the relationship between them. In this article, we first elucidate the distribution of MPs/NPs in various environmental media, their pathways into the human body, and their subsequent distribution within human tissues and organs. Subsequently, we examine the interplay between MPs/NPs, mitochondrial dysfunction, and the aging process. We aspire that this article will enhance awareness regarding the toxicity of MPs/NPs while also offering a theoretical framework to support the development of improved regulatory policies in the future.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhengyu Zhai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
6
|
Ho CM, Feng W, Li X, Ngien SK, Yu X, Song F, Yang F, Liao H. Microplastic distribution and its implications for human health through marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125427. [PMID: 40252426 DOI: 10.1016/j.jenvman.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Microplastics are pervasive pollutants in the ocean, threatening ecosystems and human health through bioaccumulation and toxicological effects. This review synthesizes recent findings on microplastic distribution, trophic transfer, and human health impacts. Key findings indicate that microplastic abundance is highest in the Indian and Pacific Oceans, particularly in seawater and sediment. Morphologically, fibers and fragments dominate, with polypropylene, polyethylene, and polyester being the most prevalent polymers. Smaller particles (<1 mm) undergo long-range transport via ocean currents, while biofouling accelerates vertical sinking. Trophic transfer studies confirm microplastic ingestion across marine food webs. Human exposure is associated with seafood consumption, inhalation of airborne particles, and potential dermal contact, particularly in marine environments. These exposures can lead to adverse health effects, including inflammation, organ damage, respiratory issues, oxidative stress, and metabolic disruptions. Finally, this review explores potential strategies for minimizing human exposure to microplastic pollution in marine environments, paving the way for further research in this critical area.
Collapse
Affiliation(s)
- Chia Min Ho
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Xiaofeng Li
- China Hebei Construction and Geotechnical Investigation Group Ltd., Shijiazhuang, 050227, China
| | - Su Kong Ngien
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300, Pahang, Malaysia
| | - Xuezheng Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Tian Z, Kim SK, Kim K. Distinguishing between extractable and leachable contents of styrene oligomers in various polystyrene consumer products: Towards environmentally realistic scenarios. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137190. [PMID: 40087825 DOI: 10.1016/j.jhazmat.2025.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 03/17/2025]
Abstract
Plastic additives' environmental impacts remain insufficiently understood due to knowledge gaps in their bioavailability, despite growing concerns from increased plastic use and waste. Additives that are non-covalently bound but strongly interact with polymers can be extractable but not leachable, thus non-bioavailable. Nevertheless, most studies have not distinguished between extractable (EC) and leachable content (LC) in plastic additives. We quantified the EC and LC of styrene oligomers (SOs) in polystyrene (PS) by applying the selective solvent compatibility of PS-dissolution in dichloromethane for EC and swelling in n-hexane for LC. Significant differences were found between EC and LC of SOs in 28 widely consumed PS products and across three PS types-expanded PS (EPS), extruded PS (XPS), and solid PS. EPS showed lower EC and LC values and fewer SO isomers. LCs were only 32 % (EPS), 84 % (XPS), and 72 % (solid PS) of ECs, suggesting bioavailable fractions may be overestimated if only EC is considered. We estimate that 3.3 MT of PS-incorporated SOs, with 76 % in leachable forms, have entered the environment, but much may still remain in PS debris. Distinct isomer ratios and high non-leachable fractions in EPS suggest that SOs could serve as effective tracers for distinguishing and quantifying invisible EPS-origin particles in beach sediments. This study underscores the need to differentiate EC from LC for environmentally realistic risk assessment and source identification.
Collapse
Affiliation(s)
- Zhexi Tian
- Institute of Basic Science, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Seung-Kyu Kim
- Institute of Basic Science, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea; Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
8
|
Zhu R, Zhang Z, Zhang N, Zhong H, Zhou F, Zhang X, Liu C, Huang Y, Yuan Y, Wang Y, Li C, Shi H, Rillig MC, Dang F, Ren H, Zhang Y, Xing B. A global estimate of multiecosystem photosynthesis losses under microplastic pollution. Proc Natl Acad Sci U S A 2025; 122:e2423957122. [PMID: 40063820 PMCID: PMC11929485 DOI: 10.1073/pnas.2423957122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/09/2025] [Indexed: 03/25/2025] Open
Abstract
Understanding how ecosystems respond to ubiquitous microplastic (MP) pollution is crucial for ensuring global food security. Here, we conduct a multiecosystem meta-analysis of 3,286 data points and reveal that MP exposure leads to a global reduction in photosynthesis of 7.05 to 12.12% in terrestrial plants, marine algae, and freshwater algae. These reductions align with those estimated by a constructed machine learning model using current MP pollution levels, showing that MP exposure reduces the chlorophyll content of photoautotrophs by 10.96 to 12.84%. Model estimates based on the identified MP-photosynthesis nexus indicate annual global losses of 4.11 to 13.52% (109.73 to 360.87 MT·y-1) for main crops and 0.31 to 7.24% (147.52 to 3415.11 MT C·y-1) for global aquatic net primary productivity induced by MPs. Under scenarios of efficient plastic mitigation, e.g., a ~13% global reduction in environmental MP levels, the MP-induced photosynthesis losses are estimated to decrease by ~30%, avoiding a global loss of 22.15 to 115.73 MT·y-1 in main crop production and 0.32 to 7.39 MT·y-1 in seafood production. These findings underscore the urgency of integrating plastic mitigation into global hunger and sustainability initiatives.
Collapse
Affiliation(s)
- Ruijie Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Zhaoying Zhang
- International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing210023, China
- International Joint Carbon Neutrality Laboratory, Nanjing University, Nanjing210023, China
| | - Naichi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Fanqi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Xiao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Cun Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
| | - Yingnan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
| | - Yuan Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University Shanghai, Shanghai200241, China
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin14195, Germany
| | - Fei Dang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing211135, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Yongguang Zhang
- International Institute for Earth System Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing University, Nanjing210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing210023, China
- International Joint Carbon Neutrality Laboratory, Nanjing University, Nanjing210023, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
9
|
Rezania S, Miri S, Cho J, Hur J, Kamyab H, Darajeh N, Mohammadi AA, Molani F, Taghavijeloudar M. Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104496. [PMID: 39793407 DOI: 10.1016/j.jconhyd.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Negisa Darajeh
- Aurecon Group, 110 Carlton Gore Road, Newmarket, Auckland 1023, New Zealand
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace Health Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzad Molani
- Department of Chemistry, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea
| |
Collapse
|
10
|
Ni Z, Chen X, Zhang M, Lu C, Ji X, Yuan L, Chen C, Chen Z, Ye J, Yang J. Microplastics in the surface waters of the northern South China Sea: Interannual variation and potential ecological risks. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106947. [PMID: 39778252 DOI: 10.1016/j.marenvres.2025.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023. The average abundance of microplastics exhibited an increasing trend from 2019 to 2021 and a subsequent decrease from 2021 to 2023 in both the Pearl River Estuary and Zhanjiang offshore waters. Conversely, a steady annual decrease was observed in the surface waters of Beibu Gulf from 2020 to 2023. The spatial variability of microplastic hotspot across different years and regions. Microplastics predominantly ranged from 1 to 2 mm in size, with fragments and fibers being the most common shapes and transparent and white colors being the most prevalent. The primary chemical components of microplastics were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). No significant inter-annual differences were observed in the physicochemical characteristics of microplastics. The pollution load index (PLI) indicated medium to low levels of microplastic pollution, with the potential ecological risk index (PERI) suggesting a low level of ecological risk, implying a minimal threat to the marine ecosystem. This study first revealed the annual variations in microplastic pollution and their potential ecological risks in the northern South China Sea, providing crucial data support for the future management and control of marine microplastic pollution.
Collapse
Affiliation(s)
- Zhixin Ni
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou, 510301, China
| | - Xin Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Minxia Zhang
- China National Offshore Oil Corporation Research Institute, Beijing, 100028, China
| | - Chuqian Lu
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
| | - Xiao Ji
- East China Sea Ecological Center of Ministry of Natural Resources (MNR), Shanghai, 201206, China
| | - Lei Yuan
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Changshu Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Zhiqiang Chen
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jianping Ye
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| | - Jiayu Yang
- South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China
| |
Collapse
|
11
|
Zhang Y, Wang Y, Zhu P, Jing S, Li J, Wanger TC, Liu W, Liu K, Chen X, Li L. Mass concentrations, compositions and burial fluxes of nano- and micro-plastics in a multi-species saltmarsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125181. [PMID: 39447630 DOI: 10.1016/j.envpol.2024.125181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Plastic pollution poses a serious threat to marine ecosystems; yet quantifying the mass concentrations of nano- and microplastics (NMPs) in saltmarsh sediments at the ocean-land interface remains a critical research gap. Here, the study employed reliable and efficient analytical techniques, namely pressurized liquid extraction and the double-shot model of thermal desorption/pyrolysis-gas chromatography-mass spectrometry, to quantify six different types of NMPs in the sediment of a multi-species saltmarsh, providing the first comprehensive assessment of NMP mass concentration and burial in this saltmarsh environment. The results demonstrate that polyethylene, polyvinyl chloride, and polypropylene dominated the NMP composition in sediments, constituting 72.6%, 17.3%, and 4.5% of the total NMPs, respectively. The measured NMPs represent an anthropogenic intrusion, constituting 0.10%-0.23% of the carbon storage in the saltmarsh. By examining the vertical concentration profiles, this study unveiled the influence of saltmarsh vegetation on NMP deposition in sediments, establishing a connection with local sedimentation patterns and the historical zonation of plant species such as Scirpus mariqueter, Phragmites australis and Spartina alterniflora. These findings underscore the crucial role of saltmarsh vegetation in facilitating NMP settling and retention, highlighting the necessity of considering vegetation dynamics in examining the emerging NMP pollution in coastal wetlands.
Collapse
Affiliation(s)
- Yan Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Yanting Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peiyuan Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Siyuan Jing
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China; Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Jiana Li
- Ningbo Academy of Ecological and Environmental Sciences, 315000, Ningbo, China
| | - Thomas Cherico Wanger
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China; Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, Zhejiang, 312028, China
| | - Kai Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Xiaogang Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
12
|
Qiao K, Wang WX. The dual role of coastal mangroves: Sinks and sources of microplastics in rapidly urbanizing areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136408. [PMID: 39504768 DOI: 10.1016/j.jhazmat.2024.136408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Mangrove ecosystems are vital for coastal protection, biodiversity, and pollution interception, yet their interactions with microplastics in rapidly urbanizing regions remain underexplored. This study investigated the microplastic dynamics in the Maozhou River and Dasha River, along with the coastal Xiwan Mangrove Park in the Pearl River Estuary, the second largest estuary in China. Samples were collected from mangrove and surrounding areas, identifying microplastics using Fourier-transform infrared spectroscopy (FTIR) and Laser Direct Infrared (LDIR) techniques. Microplastic concentrations ranged from 245.8 to 1562.4 n/m³ in water and 374.3 to 7475.3 n/kg in sediments. The Maozhou River exhibited consistent microplastic levels across varying hydrological conditions, while the Dasha River and Xiwan Mangrove showed greater sensitivity to water flow changes influenced by urban land use. During high-flow periods, urban river microplastic concentrations decreased due to dilution, whereas mangrove areas experienced elevated levels in water from urban runoff, upstream retention, and sediment resuspension, suggesting a potential for outward release. Weaker water dynamics led to increased microplastic accumulation in mangrove sediments. The distribution of microplastic types was influenced by multiple urban pollution sources, with synthetic rubbers linked to urban transportation comprising over 50 % of some samples, peaking at 79 %. These findings underscore the dual role of mangroves as microplastic sinks and potential sources, highlighting the significant impact of hydrological conditions on their function. This study offers new insights into microplastic pollution in urban mangrove ecosystems and emphasizes the urgent need for improved management strategies in coastal areas facing rapid urbanization.
Collapse
Affiliation(s)
- Kun Qiao
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Saikumar S, Mani R, Ganesan S, Ganesan M. Evaluating the impact of the combined acute toxicity of iron (Fe) and microplastics on Namalycastis jaya. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107141. [PMID: 39520843 DOI: 10.1016/j.aquatox.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The rising concern over heavy metals (HMs) and microplastics (MPs) pollution in marine ecosystems, primarily driven by anthropogenic activities, poses significant threats to ecological health. Understanding the combined exposure of HMs and MPs aids in toxicity assessment. In this study, we examined the combined effects of polystyrene microplastics (MPs) and iron (Fe) on oxidative stress, bioaccumulation, histopathology, and genotoxicity in Namalycastis jaya. Oxidative stress was assessed by analyzing the levels of Superoxide dismutase (SOD), Catalase (CAT), Peroxidase (POD), Malondialdehyde (MDA), and Bicinchoninic acid (BCA), while genotoxicity was evaluated using the comet assay. Bioaccumulation analysis, conducted via Inductively coupled plasma-optical emission spectrometry (ICP-OES), indicated that the highest values (4.790 µg/ml) were observed in combined exposure, emphasizing the significant increase in iron (Fe) accumulation in polychaetes facilitated by MPs. Biochemical analysis revealed that oxidative damage in polychaetes became evident within 48 h of exposure to individual contaminants. However, in the case of combined exposures, elevated stress levels were observed within just 24 h. The genotoxic assay further demonstrated a higher degree of DNA damage in the combined exposure compared to individual exposures. Similarly, histopathology revealed mild alterations in the gut epithelium in combined exposures. It is evident that MPs intensify both oxidative and DNA damage induced by Fe in polychaetes. The insights gained from this study provide valuable information for the risk assessment of Fe and MPs in environmental safety, contributing to our understanding of the complex interactions between these pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Sakthinarenderan Saikumar
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Swedha Ganesan
- Department of Biotechnology, A.V.C. College (Autonomous), Mayiladuthurai, Tamil Nadu, India
| | - Mirunalini Ganesan
- Centre for Ocean Research, Sathyabama Ocean Research Field Facility, ESTC Cell-Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
14
|
Reineccius J, Waniek JJ. Critical reassessment of microplastic abundances in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176449. [PMID: 39317250 DOI: 10.1016/j.scitotenv.2024.176449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Microplastics (MPs) pose a growing concern in the marine environment, but their global prevalence remains largely unknown due to the absence of precise and standardized detection methods. This review critically evaluates existing techniques for quantifying MP abundances in marine field studies, addressing inaccuracies resulting from the exclusion of particle sizes, polymer types, or limitations in identification methods. These traced inaccuracies were considered to recalculate MP abundances for particle sizes from 10 to 5000 μm, providing the first corrected global overview of MP distribution that enables quality assessment and reliable comparisons between adjusted data. The recalculations indicate that MP abundances are up to 15 times higher in marine waters (average (1.5 ± 36.2) × 105 items m-3) and up to 11 times higher in the marine sediments (average (2.7 ± 117.9) × 105 items kg-1) than previously reported in the literature. The Australasian Mediterranean Sea (average (1.2 ± 10.6) × 106 items m-3) and the North Atlantic (average (2.1 ± 37.6) × 105 items kg-1) emerged as the most polluted regions in marine waters and sediments, respectively, with primary contributors being the coasts of Southeast Asia and East America. This review demonstrates that previous field studies, global estimates, and models have significantly underestimated MP levels in marine environments in many cases, which could result in misinterpretations of both local and global pollution levels. This work highlights the critical need for precise handling of microplastic samples and urges future researchers to adopt standardized protocols for MP analysis to avoid inaccurate and misleading outcomes.
Collapse
Affiliation(s)
- Janika Reineccius
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119 Rostock, Germany.
| | - Joanna J Waniek
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
15
|
He J, Guo X, Zhang X, Chen QA, Gao K, Han L, Xu C. Delving into South China Sea microplastic pollution: Abundance, composition, and environmental risk. MARINE POLLUTION BULLETIN 2024; 209:117086. [PMID: 39406067 DOI: 10.1016/j.marpolbul.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024]
Abstract
Understanding marine pollution in the South China Sea is crucial for preserving marine ecosystems and biodiversity. Despite extensive research on pollutants, there is a significant gap in knowledge about microplastics (MPs) in the archipelago region. This study focused on four typical islands, examining MPs in seawater and sediments, their distribution, and environmental risks. Most MPs (>90 %) were smaller than 2.5 mm, with black fiber-shaped polyethylene terephthalate MPs being predominant. MPs in seawater had lower abundance (5-12 items/L) compared to sediment (100-2600 items/kg) but showed richer polymer composition. Pollution load index (PLI) and risk index analysis indicated all regions were contaminated (PLI > 1), with the Zhongsha islands being the most polluted. Correlation analysis highlighted black, fibrous PET-like polymers with large particle sizes (>0.5 mm) as major contributors. This study could help to understand the MPs distribution and pollution in the archipelago region of the South China Sea.
Collapse
Affiliation(s)
- Jiehong He
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Guo
- Key Laboratory of Environmental Toxicology of Haikou, Hainan University, Haikou 570228, China
| | - Xuanwei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Ang Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kuo Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chao Xu
- Institute of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany.
| |
Collapse
|
16
|
Jiahan W, Xiaowei L, Feng Y, Xiujiu Y, Wenguang J, Kai T, Jinli W, Yan C. An efficient extraction device for microplastics in marine sediments and its applications. RSC Adv 2024; 14:35610-35617. [PMID: 39524091 PMCID: PMC11544592 DOI: 10.1039/d4ra04347b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Microplastics, defined as small pieces of plastic with a size less than 5 millimeters, constitute a significant sink for microplastics in marine sediments. Given the potential harm to nature and human beings, accurate detection of microplastics in marine sediments is of the utmost importance. The separation of microplastics from marine sediments represents a pivotal step in the quantitative detection of microplastics. This paper presents a high-efficiency extraction device for microplastics in marine sediments, with the objective of enhancing the effectiveness and efficiency of microplastics extraction. The device employs an air pump to thoroughly mix the samples and incorporates metal perforated plate fillers to achieve efficient sedimentation, thus facilitating the separation of microplastics from the surrounding marine sediments. Subsequently, the separated microplastics are passed through a series of pore sizes of stainless steel screens and glass fibre filters via suction filtration, allowing for the collection of microplastics of varying particle sizes for subsequent identification. Following a series of method trials, the optimal extraction conditions for this device were identified. The results demonstrated its excellent extraction effectiveness and high efficiency. To verify the feasibility of this device, it was used to investigate the microplastics in the sediments of Dongzhai Harbor, Hainan. The abundance, particle size distribution, shape, and composition of microplastics in the sediments of this area were obtained, which not only validated the practicality of this microplastic extraction device but also provided significant insights for ecological and environmental protection in the region.
Collapse
Affiliation(s)
- Wang Jiahan
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Liu Xiaowei
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Yang Feng
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Yang Xiujiu
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Jiao Wenguang
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Tang Kai
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Wang Jinli
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| | - Chen Yan
- Haikou Marine Geological Survey Center, China Geological Survey Haikou 571127 China
| |
Collapse
|
17
|
Wu F, Zonneveld KAF, Wolschke H, von Elm R, Primpke S, Versteegh GJM, Gerdts G. Diving into the Depths: Uncovering Microplastics in Norwegian Coastal Sediment Cores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39258578 PMCID: PMC11428159 DOI: 10.1021/acs.est.4c04360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High concentrations of microplastics (MPs) have been documented in the deep-sea surface sediments of the Arctic Ocean. However, studies investigating their high-resolution vertical distribution in sediments from the European waters to the Arctic remain limited. This study examines MPs in five sediment cores from the Norwegian Coastal Current (NCC), encompassing the water-sediment interface and sediment layers up to 19 cm depth. Advanced analytical methods for MP identification down to 11 μm in size were combined with radiometric dating and lithology observations. MPs were present across all sediment cores, including layers predating the introduction of plastics, with concentrations exhibiting significant variation (54-12,491 MP kg-1). The smallest size class (11 μm) predominated in most sediment layers (34-100%). A total of 18 different polymer types were identified across all sediment layers, with polymer diversity and depth correlations varying widely between stations. Our findings suggest that differences in seafloor topography and the impact of anthropogenic activities (e.g., fishing) lead to varying environmental conditions at the sampling sites, influencing the vertical distribution of MPs. This challenges the reliability of using environmental parameters to predict MP accumulation zones and questions the use of MPs in sediment cores as indicators of the Anthropocene.
Collapse
Affiliation(s)
- Fangzhu Wu
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Karin A F Zonneveld
- MARUM - Centre for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Hendrik Wolschke
- Environmental Radiochemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Robin von Elm
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Sebastian Primpke
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Gerard J M Versteegh
- MARUM - Centre for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Department of Physics and Earth Sciences, Constructor University, 28759 Bremen, Germany
| | - Gunnar Gerdts
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
18
|
Xu SY, Mo YH, Liu YJ, Wang X, Li HY, Yang WD. Physiological and genetic responses of the benthic dinoflagellate Prorocentrum lima to polystyrene microplastics. HARMFUL ALGAE 2024; 136:102652. [PMID: 38876530 DOI: 10.1016/j.hal.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 μm and 100 μm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan-Hang Mo
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yu-Jie Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
19
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
20
|
Xu L, Liu C, Ren Y, Huang Y, Liu Y, Feng S, Zhong X, Fu D, Zhou X, Wang J, Liu Y, Yang M. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134148. [PMID: 38565012 DOI: 10.1016/j.jhazmat.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chong Liu
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yachao Ren
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yinran Huang
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Donglin Fu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaohong Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinmao Wang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| |
Collapse
|
21
|
Xu J, Wang Z. Intelligent classification and pollution characteristics analysis of microplastics in urban surface waters using YNet. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133694. [PMID: 38330648 DOI: 10.1016/j.jhazmat.2024.133694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs, ≤ 5 mm in size) are hazardous contaminants that pose threats to ecosystems and human health. YNet was developed to analyze MPs abundance and shape to gain insights into MPs pollution characteristics in urban surface waters. The study found that YNet achieved an accurate identification and intelligent classification performance, with a dice similarity coefficient (DSC) of 90.78%, precision of 94.17%, and recall of 89.14%. Analysis of initial MPs levels in wetlands and reservoirs revealed 127.3 items/L and 56.0 items/L. Additionally, the MPs in effluents were 27.0 items/L and 26.3 items/L, indicating the ability of wetlands and reservoirs to retain MPs. The concentration of MPs in the lower reaches of the river was higher (45.6 items/L) compared to the upper reaches (22.0 items/L). The majority of MPs detected in this study were fragments, accounting for 51.63%, 54.94%, and 74.74% in the river, wetland, and reservoir. Conversely, granules accounted for the smallest proportion of MPs in the river, wetland, and reservoir, representing only 11.43%, 10.38%, and 6.5%. The study proves that the trained YNet accurately identify and intelligently classify MPs. This tool is essential in comprehending the distribution of MPs in urban surface waters and researching their sources and fate.
Collapse
Affiliation(s)
- Jiongji Xu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China.
| | - Zhaoli Wang
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China; Pazhou Lab, Guangzhou 510335, China.
| |
Collapse
|
22
|
Huang JN, Xu L, Wen B, Gao JZ, Chen ZZ. Reshaping the plastisphere upon deposition: Promote N 2O production through affecting sediment microbial communities in aquaculture pond. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133290. [PMID: 38134685 DOI: 10.1016/j.jhazmat.2023.133290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) could provide vector for microorganisms to form biofilm (plastisphere), but the shaping process of MPs biofilm and its effects on the structure and function of sedimentary microbial communities especially in aquaculture environments are not reported. For this, we incubated MPs biofilm in situ in an aquaculture pond and established a sediment microcosm with plastisphere. We found that the formation of MPs biofilm in surface water was basically stable after 30 d incubation, but the biofilm communities were reshaped after deposition for another 30 d, because they were more similar to plastisphere communities incubated directly within sediment but not surface water. Moreover, microbial communities of MPs-contaminated sediment were altered, which was mainly driven by the biofilm communities present on MPs, because they but not sediment communities in proximity to MPs had a more pronounced separation from the control sediment communities. In the presence of MPs, increased sediment nitrification, denitrification and N2O production rates were observed. The K00371 (NO2-⇋NO3-) pathway and elevated abundance of nxrB and narH genes were screened by metagenomic analysis. Based on structural equation model, two key bacteria (Alphaproteobacteria bacterium and Rhodobacteraceae bacterium) associated with N2O production were further identified. Overall, the settling of MPs could reshape the original biofilm and promote N2O production by selectively elevating sedimental microorganisms and functional genes in aquaculture pond.
Collapse
Affiliation(s)
- Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|