1
|
Cao J, Zhang Y, Yue N, Xiong S, Zhang S, Wu C. A potential prognostic marker for hematologic neoplasms: CD58. Front Oncol 2025; 15:1586842. [PMID: 40365344 PMCID: PMC12069415 DOI: 10.3389/fonc.2025.1586842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
CD58 is a glycoprotein receptor widely distributed on histiocytes that binds to CD2, that takes part in constituting the Immunological Synapses (IS) and activating T/NK cells. Aberrant expression of CD58 has been demonstrated to exert a significant impact on the prognosis of hematological tumors, including leukemia and lymphoma. Furthermore, this aberrant expression has been associated with drug resistance and immune rejection in CAR cell therapy. In this article, we will explore the future of CD58 in hematological oncology by describing its function in immune cells, its impact on hematological oncology and immunotherapies such as CAR cell therapy.
Collapse
|
2
|
Passet M, Kim R, Clappier E. Genetic subtypes of B-cell acute lymphoblastic leukemia in adults. Blood 2025; 145:1451-1463. [PMID: 39786374 DOI: 10.1182/blood.2023022919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is a rare malignancy in adults, with outcomes remaining poor, especially compared with children. Over the past 2 decades, extensive whole-genome studies have identified numerous genetic alterations driving leukemia, leading to the recognition of >20 distinct subtypes that are closely associated with treatment response and prognosis. In pediatric B-ALL, large correlation studies have made genetic classification a central component of risk-adapted treatment strategies. Notably, genetic subtypes are unevenly distributed according to age, and the spectrum of genetic alterations and their prognostic relevance in adult B-ALL have been less extensively studied, with treatment primarily based on the presence or absence of BCR::ABL1 fusion. This review provides an overview of genetic subtypes in adult B-ALL, including recent biological and clinical insights in well-established subtypes as well as data on newly recognized subtypes. Their relevance for risk classification, disease monitoring, and therapeutic management, including in the context of B-cell-directed therapies, is discussed. This review advocates for continuing efforts to further improve our understanding of the biology of adult B-ALL to establish the foundation of future precision medicine in B-ALL.
Collapse
Affiliation(s)
- Marie Passet
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Madero‐Marroquin R, Hunter RW, Saygin C, Johnston H, DuVall AS, Rahmani Youshanlouei H, Osei C, Shah S, Stock W, Gurbuxani S, Patel AA. CD58 expression does not impact response to inotuzumab ozogamicin in patients with B-cell acute lymphoblastic leukemia. EJHAEM 2025; 6:e1076. [PMID: 39866945 PMCID: PMC11756963 DOI: 10.1002/jha2.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025]
Abstract
Background CD58 loss has been described as a mechanism of resistance to blinatumomab and chimeric antigen receptor T-cell therapy, functioning as a modulator of response to T-cell activation. Methods Using flow cytometry, we evaluated the impact of CD58 mean fluorescence intensity (MFI) on the probability of achieving measurable residual disease (MRD) negativity in patients with B-cell acute lymphoblastic leukemia treated with inotuzumab ozogamicin (InO). Results The odds ratio of achieving MRD negativity was 1.03 for every 1000 unit increase in CD58 MFI. Conclusion Our results suggest that MRD negativity rates after InO are high, regardless of the intensity of CD58 expression.
Collapse
Affiliation(s)
- Rafael Madero‐Marroquin
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Ryan W. Hunter
- Department of PathologyUniversity of ChicagoChicagoIllinoisUSA
| | - Caner Saygin
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Hannah Johnston
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Adam S. DuVall
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | | | - Clinton Osei
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Syed Shah
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | - Wendy Stock
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| | | | - Anand A. Patel
- Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Tang X, Liu S, Hu Y, Chen F, Wang L, Li T, Liu Y, Zhou G, Liu S, Liu S, Wen F, Wang Y, Mai H, Xiao J. Clearing MRD positivity with blinatumomab in pediatric B-cell acute lymphoblastic leukemia: insights from droplet digital PCR and flow cytometry. Ann Hematol 2025; 104:559-564. [PMID: 39668199 PMCID: PMC11868138 DOI: 10.1007/s00277-024-06126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Blinatumomab has shown to improve survival outcomes in B-cell acute lymphoblastic leukemia (B-ALL) patients with measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC). However, data on blinatumomab clearing MRD with high sensitivity remain scarce. This study evaluates the effectiveness of blinatumomab in eradicating low levels of MRD, as detected by droplet digital PCR (ddPCR) but undetectable by MFC, in children with B-ALL. Patients (n = 9) whose MRD was undetectable by MFC but detectable by ddPCR after chemotherapy and followed by blinatumomab consolidation were included retrospectively. After the administration of blinatumomab, 5 out of 9 patients (55.56%) successfully achieved undetectable levels of ddPCR-MRD. Notably, among the 4 patients with BCR::ABL1 gene-positive acute lymphoblastic leukemia (ALL), only one achieved gene negativity. Starting from the initiation of blinatumomab treatment, with a median follow-up of 12 months, all patients remained in complete remission. Our study was the first to demonstrate that blinatumomab could further eradicate ddPCR MRD after patients achieve MFC-MRD undetectable status in B-ALL patients.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Siyu Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| | - Yanni Hu
- Department of Hematology and Oncology, Children Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tonghui Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guichi Zhou
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shilin Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Huirong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Jianwen Xiao
- Department of Hematology and Oncology, Children Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
5
|
Zhang Y, Xu Q, Gao Z, Zhang H, Xie X, Li M. High-throughput screening for optimizing adoptive T cell therapies. Exp Hematol Oncol 2024; 13:113. [PMID: 39538305 PMCID: PMC11562648 DOI: 10.1186/s40164-024-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive T cell therapy is a pivotal strategy in cancer immunotherapy, demonstrating potent clinical efficacy. However, its limited durability often results in primary resistance. High-throughput screening technologies, which include both genetic and non-genetic approaches, facilitate the optimization of adoptive T cell therapies by enabling the selection of biologically significant targets or substances from extensive libraries. In this review, we examine advancements in high-throughput screening technologies and their applications in adoptive T cell therapies. We highlight the use of genetic screening for T cells, tumor cells, and other promising combination strategies, and elucidate the role of non-genetic screening in identifying small molecules and targeted delivery systems relevant to adoptive T cell therapies, providing guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qinglong Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhifei Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
6
|
Chen X, Wu W, Jeong JH, Rokavec M, Wei R, Feng S, Schroth W, Brauch H, Zhong S, Luo JL. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1413-1426. [PMID: 38565741 DOI: 10.1007/s11427-023-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024]
Abstract
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin β (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Weilin Wu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Matjaz Rokavec
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shaolong Feng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jun-Li Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
7
|
Li Z, Yeoh AEJ. SEQ-ing the genetic constellation of acute lymphoblastic leukemia. Haematologica 2024; 109:1640-1642. [PMID: 38124627 PMCID: PMC11141640 DOI: 10.3324/haematol.2023.284456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore
| | - Allen Eng Juh Yeoh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Health System.
| |
Collapse
|
8
|
Tian Z, Jia W, Wang Z, Mao H, Zhang J, Shi Q, Li X, Song S, Zhang J, Zhu Y, Yang B, Huang C, Huang J. Clinical significance of immune-related antigen CD58 in gliomas and analysis of its potential core related gene clusters. Heliyon 2024; 10:e29275. [PMID: 38699747 PMCID: PMC11063413 DOI: 10.1016/j.heliyon.2024.e29275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Background The clinical significance of immune-related antigen CD58 in gliomas remains uncertain. The aim of this study was to examine the clinical importance and possible core related genes of CD58 in gliomas. Methods Pan-cancer analysis was to observe the association between CD58 and different tumors, glioma RNA sequencing data and clinical sample analyses were used to observe the relationship between CD58 and glioma, shRNA interference models were to observe the impact of CD58 on glioma cell function, and four glioma datasets and two online analysis platforms were used to explore the core related genes affecting the correlation between CD58 and glioma. Results High CD58 expression was associated with worse prognosis in various tumors and higher malignancy in glioma. Down regulation of CD58 expression was linked to decreased proliferation, increased apoptosis, and reduced metastasis in glioma cells. The pathways involved in CD58-related effects were enriched for immune cell adhesion and immune factor activation, and the core genes were CASP1, CCL2, IL18, MYD88, PTPRC, and TLR2. The signature of CD58 and its core-related genes showed superior predictive power for glioma prognosis. Conclusion High CD58 expression is correlated with more malignant glioma types, and also an independent risk factor for mortality in glioma. CD58 and its core-related genes may serve as novel biomarkers for diagnosing and treating glioma.
Collapse
Affiliation(s)
- Zhi Tian
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Wei Jia
- Medical College of Jishou University, Jishou, Hunan, 416000 PR China
| | - Zhao Wang
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Hui Mao
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Jingjing Zhang
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Qiongya Shi
- Medical College of Jishou University, Jishou, Hunan, 416000 PR China
| | - Xing Li
- Medical College of Jishou University, Jishou, Hunan, 416000 PR China
| | - Shaoyu Song
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Jiao Zhang
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Yingjie Zhu
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Bo Yang
- Department of Pathology, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital, Jishou University, Jishou, Hunan, 416000 PR China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| |
Collapse
|
9
|
Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, Karol SE, Inaba H, Mullighan C, Litzow M, Zhu X, Zhang Y, Stock W, Jain N, Jabbour E, Kornblau SM, Konopleva M, Pui CH, Paietta E, Evans W, Yu J, Yang JJ. Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell 2024; 42:552-567.e6. [PMID: 38593781 PMCID: PMC11008188 DOI: 10.1016/j.ccell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.
Collapse
Affiliation(s)
- Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| | - Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China
| | - Jingliao Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huanbin Zhao
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Satoshi Yoshimura
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaofan Zhu
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingchi Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Nitin Jain
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William Evans
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jun J Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Chen Y, Zhang K, Tan J, Fan Z, Fu Y, Li X, Liu B, Wang G. Design, synthesis, and pharmacological evaluation of novel benzothiazole derivatives targeting LCK in acute lymphoblastic leukemia. Bioorg Chem 2024; 144:107180. [PMID: 38335758 DOI: 10.1016/j.bioorg.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.
Collapse
Affiliation(s)
- Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiacheng Tan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhichao Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Prelog T, Bucek S, Brozic A, Peterlin J, Kavcic M, Omerzel M, Markelc B, Jesenko T, Prevodnik VK. The influence of cytotoxic drugs on the immunophenotype of blast cells in paediatric B precursor acute lymphoblastic leukaemia. Radiol Oncol 2024; 58:133-144. [PMID: 38378030 PMCID: PMC10878768 DOI: 10.2478/raon-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flow cytometry plays is important in the diagnosis of acute lymphoblastic leukaemia (ALL) and when antigen-specific immunotherapy is indicated. We have investigated the effects of prednisolone, vincristine, daunorubicin, asparaginase and methotrexate on the antigen expression on blast cells that could influence the planning of antigen-specific therapy as well as risk-based treatment assignment. PATIENTS AND METHODS Patients aged ≤ 17 years with de novo B-cell ALL (B-ALL) were enrolled in the study. Blast cells were isolated and exposed in vitro to 5 individual cytotoxic drugs in logarithmically increasing concentrations. Then, the expression of CD10, CD19, CD20, CD27, CD34, CD45, CD58, CD66c and CD137 antigens was determined by quantitative flow cytometry. RESULTS Cytotoxic drugs caused dose-dependent or dose-independent modulation of antigen expression. Daunorubicin caused a dose-dependent down-modulation of CD10, CD19, CD34, CD45 and CD58 and an up-modulation of CD137. Vincristine caused a dose-dependent down-modulation of CD19 and CD58 and an up-modulation of CD45. Daunorubicin also caused dose-independent down-modulation of CD27 and prednisolone down-modulation of CD10, CD19, CD27, CD34 and CD58. Down-modulation of CD20 was detected only in relation to the specific dose of daunorubicin. CONCLUSIONS The results of the study have shown that cytotoxic drugs can alter the expression of antigens that are important for immunotherapy. Importantly, daunorubicin, prednisolone and vincristine caused down-modulation of CD19 and CD58, suggesting that these drugs are better avoided during bridging therapy prior to bispecific antibodies or CAR-T cell therapy. In addition, immunophenotypic changes on blast cells induced by different drugs could also influence risk-based treatment assignment.
Collapse
Affiliation(s)
- Tomaz Prelog
- Department of Haemato-Oncology, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Bucek
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Andreja Brozic
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Jakob Peterlin
- Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kavcic
- Department of Haemato-Oncology, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Masa Omerzel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronika Kloboves Prevodnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Institute of Pathology, Faculty of MedicineUniversity of Maribor, Maribor, Slovenia
| |
Collapse
|
12
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 PMCID: PMC12047531 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
13
|
Assis AJB, Santana BLDO, Gualberto ACM, Pittella-Silva F. Therapeutic applications of CRISPR/Cas9 mediated targeted gene editing in acute lymphoblastic leukemia: current perspectives, future challenges, and clinical implications. Front Pharmacol 2023; 14:1322937. [PMID: 38130408 PMCID: PMC10733529 DOI: 10.3389/fphar.2023.1322937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
Collapse
Affiliation(s)
| | | | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
14
|
Ho P, Melms JC, Rogava M, Frangieh CJ, Poźniak J, Shah SB, Walsh Z, Kyrysyuk O, Amin AD, Caprio L, Fullerton BT, Soni RK, Ager CR, Biermann J, Wang Y, Khosravi-Maharlooei M, Zanetti G, Mu M, Fatima H, Moore EK, Vasan N, Bakhoum SF, Reiner SL, Bernatchez C, Sykes M, Mace EM, Wucherpfennig KW, Schadendorf D, Bechter O, Shah P, Schwartz GK, Marine JC, Izar B. The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell 2023; 41:1207-1221.e12. [PMID: 37327789 PMCID: PMC10524902 DOI: 10.1016/j.ccell.2023.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.
Collapse
Affiliation(s)
- Patricia Ho
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Chris J Frangieh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Klarman Cell Observatory, the Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Shivem B Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Zachary Walsh
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Lindsay Caprio
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Benjamin T Fullerton
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY 10032, USA
| | - Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Yiping Wang
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Giorgia Zanetti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Michael Mu
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Emily K Moore
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Rheumatology, Columbia University, New York, NY 10032, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven L Reiner
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Chantale Bernatchez
- Department of Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, 45147 Essen, Germany
| | | | - Parin Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Gary K Schwartz
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Shi YJ, Han Y, Wang Y, Mao DF, Zhang JL, Xi R, Bai H, Wu T. [Analysis on the clinical efficacy and adverse reactions of blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:516-519. [PMID: 37550212 PMCID: PMC10450561 DOI: 10.3760/cma.j.issn.0253-2727.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Y J Shi
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - Y Han
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - Y Wang
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - D F Mao
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - J L Zhang
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - R Xi
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - H Bai
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| | - T Wu
- Department of Hematology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Amy, Lanzhou 730050, China
| |
Collapse
|