1
|
Chen L, Zhao B, Zhang M, Yan Y, Nie C, Yu K, Tu Z, Xia Y. Micron-scale heterogeneity reduction leads to increased interspecies competition in thermophilic digestion microbiome. WATER RESEARCH 2025; 279:123419. [PMID: 40048904 DOI: 10.1016/j.watres.2025.123419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 05/06/2025]
Abstract
Microbial spatial heterogeneity is an important determinant of larger-scale community properties, whereas most studies neglect it and therefore only provide average information, potentially obscuring the signal of microbial interactions. Our study takes a step toward addressing this problem by characterizing the spatial heterogeneity of a microbiome with micron-scale resolution. Micron-scale single clusters (40-70 μm) were randomly collected from lab-scale anaerobic digestion (AD) biosystems, and a comparative analysis was performed to evaluate differences between mesophilic and thermophilic systems. Here we reveal a cascading effect from high-temperature selection to global microbial interactions. We observed that thermophilic communities exhibited less spatial heterogeneity than mesophilic communities, which we attribute to the considerable extinction of low-abundant species by high-temperature selection. Then, the low spatial heterogeneity and the high-temperature selection acting in conjunction resulted in a high proportion of competitive interactions in thermophilic communities. Unexpectedly, however, the thermophilic AD, characterized by lower micron-scale spatial heterogeneity, showed more efficient synergistic and syntrophic cooperations involving around Clostridiales, which significantly enhanced hydrolysis performance under thermophilic conditions. In addition, the fact that high temperatures favor slower growers, along with functional redundancy-related competitive advantage, led to the selection of more proficient methanogens in more competitive environments, which are also potentially associated with enhanced methanogenic performance. In summary, our findings underscore the significance of micron-scale resolution for revealing the microbial ecology in spatially structured environments.
Collapse
Affiliation(s)
- Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxi Yan
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihao Tu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Zakem EJ, McNichol J, Weissman JL, Raut Y, Xu L, Halewood ER, Carlson CA, Dutkiewicz S, Fuhrman JA, Levine NM. Functional biogeography of marine microbial heterotrophs. Science 2025; 388:eado5323. [PMID: 40403069 DOI: 10.1126/science.ado5323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/31/2024] [Accepted: 03/06/2025] [Indexed: 05/24/2025]
Abstract
Heterotrophic bacteria and archaea ("heteroprokaryotes") drive global carbon cycling, but how to quantitatively organize their functional complexity remains unclear. We generated a global-scale understanding of marine heteroprokaryotic functional biogeography by synthesizing genetic sequencing data with a mechanistic marine ecosystem model. We incorporated heteroprokaryotic diversity into the trait-based model along two axes: substrate lability and growth strategy. Using genetic sequences along three ocean transects, we compiled 21 heteroprokaryotic guilds and estimated their degree of optimization for rapid growth (copiotrophy). Data and model consistency indicated that gradients in grazing and substrate lability predominantly set biogeographical patterns, and we identified deep-ocean "slow copiotrophs" whose ecological interactions control the surface accumulation of dissolved organic carbon.
Collapse
Affiliation(s)
- Emily J Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Jesse McNichol
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - J L Weissman
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Biology, The City College of New York, New York, NY, USA
| | - Yubin Raut
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Xu
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Elisa R Halewood
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Sustainability Science and Strategy, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Goyal A, Chure G. Paradox of the Sub-Plankton: Plausible Mechanisms and Open Problems Underlying Strain-Level Diversity in Microbial Communities. Environ Microbiol 2025; 27:e70094. [PMID: 40268300 PMCID: PMC12018069 DOI: 10.1111/1462-2920.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Microbial communities are often complex and highly diverse, typically with dozens of species sharing spatially-restricted environments. Within these species, genetic and ecological variation often exists at a much finer scale, with closely related strains coexisting and competing. While the coexistence of strains in communities has been heavily explored over the past two decades, we have no self-consistent theory of how this diversity is maintained. This question challenges our conventional understanding of ecological coexistence, typically framed around species with clear phenotypic and ecological differences. In this review, we synthesise plausible mechanisms underlying strain-level diversity (termed microdiversity), focusing on niche-based mechanisms such as nutrient competition, neutral mechanisms such as migration, and evolutionary mechanisms such as horizontal gene transfer. We critically assess the strengths and caveats of these mechanisms, acknowledging key gaps that persist in linking genetic similarity to ecological divergence. Finally, we highlight how the origin and maintenance of microdiversity could pose a major challenge to conventional ecological thinking. We articulate a call-to-arms for a dialogue between well-designed experiments and new theoretical frameworks to address this grand conceptual challenge in understanding microbial biodiversity.
Collapse
Affiliation(s)
- Akshit Goyal
- International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Griffin Chure
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
4
|
Rindi L, He J, Miculan M, Dell'Acqua M, Pè ME, Benedetti-Cecchi L. Legacies of temperature fluctuations promote stability in marine biofilm communities. Nat Commun 2025; 16:2442. [PMID: 40069148 PMCID: PMC11897366 DOI: 10.1038/s41467-025-57258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
The increasing frequency and intensity of extreme climate events are driving significant biodiversity shifts across ecosystems. Yet, the extent to which these climate legacies will shape the response of ecosystems to future perturbations remains poorly understood. Here, we tracked taxon and trait dynamics of rocky intertidal biofilm communities under contrasting regimes of warming (fixed vs. fluctuating) and assessed how they influenced stability dimensions in response to temperature extremes. Fixed warming enhanced the resistance of biofilm by promoting the functional redundancy of stress-tolerance traits. In contrast, fluctuating warming boosted recovery rate through the selection of fast-growing taxa at the expense of functional redundancy. This selection intensified a trade-off between stress tolerance and growth further limiting the ability of biofilm to cope with temperature extremes. Anticipating the challenges posed by future extreme events, our findings offer a forward-looking perspective on the stability of microbial communities in the face of ongoing climatic change.
Collapse
Affiliation(s)
- Luca Rindi
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Jianyu He
- Department of Biology, University of Pisa, Pisa, Italy
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan City, Zhejiang, China
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italia
- Center of Excellence for Sustainable Food Security, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italia
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italia
| | | |
Collapse
|
5
|
Molnar NB, Weigel BL, Fales RJ, Pfister CA. Warming Seawater Temperature and Nutrient Depletion Alters Microbial Community Composition on a Foundational Canopy Kelp Species. Environ Microbiol 2025; 27:e70077. [PMID: 40075558 PMCID: PMC11903912 DOI: 10.1111/1462-2920.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. Nereocystis luetkeana, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of N. luetkeana, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13°C, 16°C, 21°C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on N. luetkeana extend to the microbiome.
Collapse
Affiliation(s)
| | - Brooke L. Weigel
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
| | - Robin J. Fales
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
- University of WashingtonDepartment of BiologySeattleWashingtonUSA
| | - Catherine A. Pfister
- The College, The University of ChicagoChicagoIllinoisUSA
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
6
|
Cabacungan GN, Waduwara Kankanamalage TN, Azam AF, Collins MR, Arratia AR, Gutting AN, Matz MV, Black KL. Cryptic coral community composition across environmental gradients. PLoS One 2025; 20:e0318653. [PMID: 39913472 PMCID: PMC11801642 DOI: 10.1371/journal.pone.0318653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Cryptic genetic variation is increasingly being identified in numerous coral species, with prior research indicating that different cryptic genetic lineages can exhibit varied responses to environmental changes. This suggests a potential link between cryptic coral lineages and local environmental conditions. In this study, we investigate how communities of cryptic coral lineages vary along environmental gradients. We began by identifying cryptic genetic lineages within six coral species sampled around St. Croix, USVI based on 2b-RAD sequencing data. We then analyzed associations between the distributions of cryptic lineages across the six coral species (i.e., "cryptic coral community composition") and ecoregions, or geographically distinct environmental conditions. Our findings show that depth is a more significant predictor of community composition than ecoregions and is the most influential factor among the 40 abiotic variables that characterize ecoregions. These results imply that cryptic coral communities are influenced by both depth and local environmental conditions, although the exact environmental factors driving these patterns remain unknown. Understanding community turnover across a seascape is important to consider when outplanting corals to restore a reef, as locally-adapted lineages may have differential fitness in different environmental conditions.
Collapse
Affiliation(s)
- Gia N. Cabacungan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | | | - Amilah F. Azam
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Madeleine R. Collins
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Abigail R. Arratia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alexandra N. Gutting
- The Nature Conservancy, St. Croix, U.S. Virgin Islands, United States of America
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kristina L. Black
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
7
|
Zhao Y, Hu J, Wang J, Yao X, Zhang T, Hu B. Comammox Nitrospira act as key bacteria in weakly acidic soil via potential cobalamin sharing. IMETA 2025; 4:e271. [PMID: 40027486 PMCID: PMC11865330 DOI: 10.1002/imt2.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
The discovery of comammox Nitrospira in low pH environments has reshaped the ammonia oxidation process in acidic settings, providing a plausible explanation for the higher nitrification rates observed in weakly acidic soils. However, the response of comammox Nitrospira to varying pH levels and its ecological role in these environments remains unclear. Here, a survey across soils with varying pH values (ranging from 4.4 to 9.7) was conducted to assess how comammox Nitrospira perform under different pH conditions. Results showed that comammox Nitrospira dominate ammonia oxidation in weakly acidic soils, functioning as a K-strategy species characterized by slow growth and stress tolerance. As a key species in this environment, comammox Nitrospira may promote bacterial cooperation under low pH conditions. Genomic evidence suggested that cobalamin sharing is a potential mechanism, as comammox Nitrospira uniquely encode a metabolic pathway that compensates for cobalamin imbalance in weakly acidic soils, where 86.8% of metagenome-assembled genomes (MAGs) encode cobalamin-dependent genes. Additionally, we used DNA stable-isotope probing (DNA-SIP) to demonstrate its response to pH fluctuations to reflect how it responds to the decrease in pH. Results confirmed that comammox Nitrospira became dominant ammonia oxidizers in the soil after the decrease in pH. We suggested that comammox Nitrospira will become increasingly important in global soils, under the trend of soil acidification. Overall, our work provides insights that how comammox Nitrospira perform in weakly acidic soil and its response to pH changes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiajie Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiaqi Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil EngineeringThe University of Hong KongHong Kong SARChina
- School of Public HealthThe University of Hong KongHong Kong SARChina
- Center for Environmental Engineering ResearchThe University of Hong KongHong Kong SARChina
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental SafetyHangzhouChina
| |
Collapse
|
8
|
Pérez-Ferrer PA, Ashraf M, Rodrigues M, Troncoso J, Nishiguchi MK. Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías. Mol Ecol 2025; 34:e17596. [PMID: 39625066 DOI: 10.1111/mec.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 12/24/2024]
Abstract
Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.
Collapse
Affiliation(s)
- P A Pérez-Ferrer
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
| | - M Ashraf
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - M Rodrigues
- Brookes Bell LLP, Liverpool, UK
- Universidad de Vigo, Vigo, Spain
| | | | - M K Nishiguchi
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
9
|
Dal Bello M, Abreu CI. Temperature structuring of microbial communities on a global scale. Curr Opin Microbiol 2024; 82:102558. [PMID: 39423562 PMCID: PMC11609007 DOI: 10.1016/j.mib.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Temperature is a fundamental physical constraint regulating key aspects of microbial life. Protein binding, membrane fluidity, central dogma processes, and metabolism are all tightly controlled by temperature, such that growth rate profiles across taxa and environments follow the same general curve. An open question in microbial ecology is how the effects of temperature on individual traits scale up to determine community structure and function at planetary scales. Here, we review recent theoretical and experimental efforts to connect physiological responses to the outcome of species interactions, the assembly of microbial communities, and their function as temperature changes. We identify open questions in the field and define a roadmap for future studies.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Clare I Abreu
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Knight CG, Nicolitch O, Griffiths RI, Goodall T, Jones B, Weser C, Langridge H, Davison J, Dellavalle A, Eisenhauer N, Gongalsky KB, Hector A, Jardine E, Kardol P, Maestre FT, Schädler M, Semchenko M, Stevens C, Tsiafouli MΑ, Vilhelmsson O, Wanek W, de Vries FT. Soil microbiomes show consistent and predictable responses to extreme events. Nature 2024; 636:690-696. [PMID: 39604724 PMCID: PMC11655354 DOI: 10.1038/s41586-024-08185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Increasing extreme climatic events threaten the functioning of terrestrial ecosystems1,2. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning3,4. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils. Soil microbiomes exhibited a small, but highly consistent and phylogenetically conserved, response under the imposed extreme events. Heat treatment most strongly impacted soil microbiomes, enhancing dormancy and sporulation genes and decreasing metabolic versatility. Microbiome response to heat in particular could be predicted by local climatic conditions and soil properties, with soils that do not normally experience the extreme conditions being imposed being most vulnerable. Our results suggest that soil microbiomes from different climates share unified responses to extreme climatic events, but that predicting the extent of community change may require knowledge of the local microbiome. These findings advance our understanding of soil microbial responses to extreme events, and provide a first step for making general predictions about the impact of extreme climatic events on soil functioning.
Collapse
Affiliation(s)
| | - Océane Nicolitch
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Rob I Griffiths
- School of Natural Sciences, Bangor University, Bangor, UK.
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, UK.
| | - Tim Goodall
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, UK
| | - Briony Jones
- UK Centre for Ecology and Hydrology (UKCEH), Bangor, UK
| | - Carolin Weser
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Holly Langridge
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ariane Dellavalle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Konstantin B Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Jardine
- Department of Biology, University of Oxford, Oxford, UK
- Animal and Plant Sciences Department, University of Sheffield, Sheffield, UK
| | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fernando T Maestre
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research, Leipzig-Halle, Germany
| | - Marina Semchenko
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria Α Tsiafouli
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Wolfgang Wanek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Franciska T de Vries
- Faculty of Science and Engineering, University of Manchester, Manchester, UK.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Sun X, Favier A, Folmar J, Pyenson NC, Sanchez A, Rebolleda-Gómez M. Metabolic Plasticity Shapes Microbial Communities across a Temperature Gradient. Am Nat 2024; 204:381-399. [PMID: 39326062 DOI: 10.1086/731997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractA central challenge in community ecology is understanding and predicting the effects of abiotic factors on community assembly. In particular, microbial communities play a central role in the ecosystem, but we do not understand how changing factors like temperature are going to affect community composition or function. In this article, we studied the self-assembly of multiple communities in synthetic environments to understand changes in microbial community composition based on metabolic responses of different functional groups along a temperature gradient. In many microbial communities, different microbial functional groups coexist through the partitioning of carbon sources in an emergent trophic structure (cross-feeding). In this system, respirofermentative bacteria display a preference for the sugars supplied as the only carbon source but secrete secondary carbon sources (organic acids) that are more efficiently consumed by obligate respirators. As a consequence of this trophic structure, the metabolic plasticity of the respirofermenters has downstream consequences for the relative abundance of respirators across temperatures. We found that the effects of different temperatures on microbial composition can largely be described by an increase in fermentation by-products with increasing temperatures from the respirofermentative bacteria. This research highlights the importance of metabolic plasticity and metabolic trade-offs in predicting species interactions and community dynamics across abiotic gradients.
Collapse
|
12
|
Pathak A, Marquez M, Stothard P, Chukwujindu C, Su JQ, Zhou Y, Zhou XY, Jagoe CH, Chauhan A. A seasonal study on the microbiomes of Diploid vs. Triploid eastern oysters and their denitrification potential. iScience 2024; 27:110193. [PMID: 38984199 PMCID: PMC11231605 DOI: 10.1016/j.isci.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Oyster reefs are hotspots of denitrification mediated removal of dissolved nitrogen (N), however, information on their denitrifier microbiota is scarce. Furthermore, in oyster aquaculture, triploids are often preferred over diploids, yet again, microbiome differences between oyster ploidies are unknown. To address these knowledge gaps, farmed diploid and triploid oysters were collected over an annual growth cycle and analyzed using shotgun metagenomics and quantitative microbial elemental cycling (QMEC) techniques. Regardless of ploidy, Psychrobacter genus was abundant, with positive correlations found for genes of central metabolism, DNA metabolism, and carbohydrate metabolism. MAGs (metagenome-assembled genomes) yielded multiple Psychrobacter genomes harboring norB, narH, narI, and nirK denitrification genes, indicating their functional relevance within the eastern oysters. QMEC analysis indicated the predominance of carbon (C) and nitrogen (N) cycling genes, with no discernable patterns between ploidies. Among the N-cycling genes, the nosZII clade was overrepresented, suggesting its role in the eastern oyster's N removal processes.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Mario Marquez
- Texas Sea Grant College Program, 4115 TAMU Eller O&M 306, Texas A&M University, College Station, TX 77843, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, General Services Bldg, Edmonton, AB 2-31 T6G 2H1, Canada
| | - Christian Chukwujindu
- Material & Energy Technology Department, Projects Development Institute, Emene Industrial Layout, Enugu-Nigeria 400104
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charles H. Jagoe
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| |
Collapse
|
13
|
Walker RM, Sanabria VC, Youk H. Microbial life in slow and stopped lanes. Trends Microbiol 2024; 32:650-662. [PMID: 38123400 PMCID: PMC11187706 DOI: 10.1016/j.tim.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Microbes in nature often lack nutrients and face extreme or widely fluctuating temperatures, unlike microbes in growth-optimized settings in laboratories that much of the literature examines. Slowed or suspended lives are the norm for microbes. Studying them is important for understanding the consequences of climate change and for addressing fundamental questions about life: are there limits to how slowly a cell's life can progress, and how long cells can remain viable without self-replicating? Recent studies began addressing these questions with single-cell-level measurements and mathematical models. Emerging principles that govern slowed or suspended lives of cells - including lives of dormant spores and microbes at extreme temperatures - are re-defining discrete cellular states as continuums and revealing intracellular dynamics at new timescales. Nearly inactive, lifeless-appearing microbes are transforming our understanding of life.
Collapse
Affiliation(s)
- Rachel M Walker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Valeria C Sanabria
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Alton LA, Kutz T, Bywater CL, Lombardi E, Cockerell FE, Layh S, Winwood-Smith H, Arnold PA, Beaman JE, Walter GM, Monro K, Mirth CK, Sgrò CM, White CR. Temperature and nutrition do not interact to shape the evolution of metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220484. [PMID: 38186272 PMCID: PMC10772606 DOI: 10.1098/rstb.2022.0484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Lesley A. Alton
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Teresa Kutz
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Candice L. Bywater
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Emily Lombardi
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Fiona E. Cockerell
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Sean Layh
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hugh Winwood-Smith
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Pieter A. Arnold
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Julian E. Beaman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, Monash University, Melbourne, Victoria 3800, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
15
|
Gralka M. Searching for Principles of Microbial Ecology Across Levels of Biological Organization. Integr Comp Biol 2023; 63:1520-1531. [PMID: 37280177 PMCID: PMC10755194 DOI: 10.1093/icb/icad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Microbial communities play pivotal roles in ecosystems across different scales, from global elemental cycles to household food fermentations. These complex assemblies comprise hundreds or thousands of microbial species whose abundances vary over time and space. Unraveling the principles that guide their dynamics at different levels of biological organization, from individual species, their interactions, to complex microbial communities, is a major challenge. To what extent are these different levels of organization governed by separate principles, and how can we connect these levels to develop predictive models for the dynamics and function of microbial communities? Here, we will discuss recent advances that point towards principles of microbial communities, rooted in various disciplines from physics, biochemistry, and dynamical systems. By considering the marine carbon cycle as a concrete example, we demonstrate how the integration of levels of biological organization can offer deeper insights into the impact of increasing temperatures, such as those associated with climate change, on ecosystem-scale processes. We argue that by focusing on principles that transcend specific microbiomes, we can pave the way for a comprehensive understanding of microbial community dynamics and the development of predictive models for diverse ecosystems.
Collapse
Affiliation(s)
- Matti Gralka
- Systems Biology lab, Amsterdam Institute for Life and Environment (A-LIFE), Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
16
|
Brunet M, Le Duff N, Rigaut-Jalabert F, Romac S, Barbeyron T, Thomas F. Seasonal dynamics of a glycan-degrading flavobacterial genus in a tidally mixed coastal temperate habitat. Environ Microbiol 2023; 25:3192-3206. [PMID: 37722696 DOI: 10.1111/1462-2920.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Coastal marine habitats constitute hotspots of primary productivity. In temperate regions, this is due both to massive phytoplankton blooms and dense colonisation by macroalgae that mostly store carbon as glycans, contributing substantially to local and global carbon sequestration. Because they control carbon and energy fluxes, algae-degrading microorganisms are crucial for coastal ecosystem functions. Environmental surveys revealed consistent seasonal dynamics of alga-associated bacterial assemblages, yet resolving what factors regulate the in situ abundance, growth rate and ecological functions of individual taxa remains a challenge. Here, we specifically investigated the seasonal dynamics of abundance and activity for a well-known alga-degrading marine flavobacterial genus in a tidally mixed coastal habitat of the Western English Channel. We show that members of the genus Zobellia are a stable, low-abundance component of healthy macroalgal microbiota and can also colonise particles in the water column. This genus undergoes recurring seasonal variations with higher abundances in winter, significantly associated to biotic and abiotic variables. Zobellia can become a dominant part of bacterial communities on decaying macroalgae, showing a strong activity and high estimated in situ growth rates. These results provide insights into the seasonal dynamics and environmental constraints driving natural populations of alga-degrading bacteria that influence coastal carbon cycling.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | | | - Sarah Romac
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin (AD2M)-UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
17
|
Crocker K, Lee KK, Chakraverti-Wuerthwein M, Li Z, Tikhonov M, Mani M, Gowda K, Kuehn S. Global patterns in gene content of soil microbiomes emerge from microbial interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542950. [PMID: 38014336 PMCID: PMC10680560 DOI: 10.1101/2023.05.31.542950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Microbial metabolism sustains life on Earth. Sequencing surveys of communities in hosts, oceans, and soils have revealed ubiquitous patterns linking the microbes present, the genes they possess, and local environmental conditions. One prominent explanation for these patterns is environmental filtering: local conditions select strains with particular traits. However, filtering assumes ecological interactions do not influence patterns, despite the fact that interactions can and do play an important role in structuring communities. Here, we demonstrate the insufficiency of the environmental filtering hypothesis for explaining global patterns in topsoil microbiomes. Using denitrification as a model system, we find that the abundances of two characteristic genotypes trade-off with pH; nar gene abundances increase while nap abundances decrease with declining pH. Contradicting the filtering hypothesis, we show that strains possessing the Nar genotype are enriched in low pH conditions but fail to grow alone. Instead, the dominance of Nar genotypes at low pH arises from an ecological interaction with Nap genotypes that alleviates nitrite toxicity. Our study provides a roadmap for dissecting how global associations between environmental variables and gene abundances arise from environmentally modulated community interactions.
Collapse
Affiliation(s)
- Kyle Crocker
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | - Kiseok Keith Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | | | - Zeqian Li
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Karna Gowda
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Zhao Y, Liu Z, Zhang B, Cai J, Yao X, Zhang M, Deng Y, Hu B. Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation. Nat Commun 2023; 14:5394. [PMID: 37669961 PMCID: PMC10480208 DOI: 10.1038/s41467-023-41224-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Mutualism is commonly observed in nature but not often reported for bacterial communities. Although abiotic stress is thought to promote microbial mutualism, there is a paucity of research in this area. Here, we monitor microbial communities in a quasi-natural composting system, where temperature variation (20 °C-70 °C) is the main abiotic stress. Genomic analyses and culturing experiments provide evidence that temperature selects for slow-growing and stress-tolerant strains (i.e., Thermobifida fusca and Saccharomonospora viridis), and mutualistic interactions emerge between them and the remaining strains through the sharing of cobalamin. Comparison of 3000 bacterial pairings reveals that mutualism is common (~39.1%) and competition is rare (~13.9%) in pairs involving T. fusca and S. viridis. Overall, our work provides insights into how high temperature can favour mutualism and reduce competition at both the community and species levels.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|