1
|
Zhang F, Xu J, Yuan Q, Xie Y, Zhang L, Zhang J, Xu Z, Liu M. Deletion of ZNRF2 Exacerbates MPTP-Induced Parkinson's Disease by Activating mTOR-Mediated Neuroinflammatory Pathways. Mol Neurobiol 2025:10.1007/s12035-025-05044-8. [PMID: 40402410 DOI: 10.1007/s12035-025-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
Parkinson's disease (PD) imposes a significant health burden among older adults and may be related to zinc and ring finger 2 (ZNRF2)-a member of the ubiquitination family. To investigate the role and mechanism of action of ZNRF2 in the regulation of mammalian target of rapamycin (mTOR)-mediated neuroinflammation in a mouse model of PD. Healthy mice were injected intraperitoneally with either saline (control) or MPTP 30 mg/kg. Mouse behavior was tested using rotarod and open field tests. The distribution and expression of tyrosine hydroxylase (TH) were determined by immunoblotting and immunohistochemistry. Inflammatory factors were evaluated using immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence assay. Compared with mice injected with saline, MPTP-treated mice showed significantly impaired locomotor activity, a significant decrease in the number of TH neurons, and a markedly altered morphology. ZNRF2 expression was significantly increased in the mesencephalon of MPTP-treated mice compared to that in control mice. ZNRF2 knockdown exacerbated motor dysfunction, accelerated dopamine neuron degeneration and death, increased the levels of pro-inflammatory factors (e.g., interleukin (IL)-1β, IL-6), and suppressed the expression of anti-inflammatory factors (e.g., IL-4, IL-10) in the central nervous system of MPTP-treated mice, with more pronounced activation of microglia and astrocytes. ZNRF2 knockdown significantly elevated phosphorylated mTOR protein levels after MPTP treatment; subsequently, phosphorylated mTOR protein levels were inhibited; dyskinesia and dopamine neuronal damage were significantly ameliorated, and neuroinflammation was suppressed in PD mice. ZNRF2 regulates the pathogenesis of MPTP-induced PD in mice via mechanisms related to mTOR-mediated neuroinflammation.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China
| | - Jingqing Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China
| | - Qi Yuan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China
| | - Yuling Xie
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China
| | - Li Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Huichuan District, No. 149, Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
2
|
Xie C, Wu N, Guo J, Ma L, Zhang C. The key role of the ferroptosis mechanism in neurological diseases and prospects for targeted therapy. Front Neurosci 2025; 19:1591417. [PMID: 40421132 PMCID: PMC12104224 DOI: 10.3389/fnins.2025.1591417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Neurological disorders represent a major global health concern owing to their intricate pathological processes. Ferroptosis, defined as a form of cell death that is reliant on iron, has been closely linked to various neurological conditions. The fundamental process underlying ferroptosis is defined by the excessive buildup of iron ions, which initiates lipid peroxidation processes leading to cellular demise. Neurons, as highly metabolically active cells, are susceptible to oxidative stress, and imbalances in iron metabolism can directly initiate the ferroptosis process. In neurodegenerative disorders like Alzheimer's disease and Parkinson's disease, ferroptosis driven by iron accumulation represents a fundamental pathological connection. Although the connection between ferroptosis and neurological diseases is clear, clinical application still faces challenges, such as precise regulation of iron metabolism, development of specific drugs, and assessment of efficacy. The limited comprehension of the ferroptosis mechanism hinders the development of personalized treatment approaches. Consequently, subsequent investigations must tackle these obstacles to facilitate the clinical application of ferroptosis-associated therapies in neurological disorders. This article provides a comprehensive overview of the most recent advancements regarding the underlying mechanisms of ferroptosis. Subsequently, the study investigates the mechanistic contributions of ferroptosis within the nervous system. In conclusion, we evaluate and deliberate on targeted therapeutic strategies associated with ferroptosis and neurological disorders.
Collapse
Affiliation(s)
- Chenyu Xie
- Department of Rehabilitation, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiaojiao Guo
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Department of Rehabilitation, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Congcong Zhang
- Rehabilitation Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
4
|
Abstract
Both genetic and environmental factors modulate the risk of Parkinson's disease. In this article, all these pathophysiologic processes that contribute to damages at the tissue, cellular, organelle, and molecular levels, and their effects are talked about.
Collapse
Affiliation(s)
- Bin Xiao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - ZhiDong Zhou
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - YinXia Chao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
5
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
6
|
Pinheiro CV, Ribeiro RT, Roginski AC, Brondani M, Zemniaçak ÂB, Hoffmann CIH, Vizuete AFK, Gonçalves CA, Amaral AU, Wajner M, Baldo G, Leipnitz G. Disturbances in mitochondrial quality control and mitochondria-lysosome contact underlie the cerebral cortex and heart damage of mucopolysaccharidosis type II mice. Metab Brain Dis 2025; 40:177. [PMID: 40220021 DOI: 10.1007/s11011-025-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Mucopolysaccharidosis type II (or Hunter syndrome) is a lysosomal disease caused by mutations in the IDS gene, which encodes the enzyme iduronate 2-sulfatase. MPS II patients present with systemic clinical manifestations and, in the most severe cases, with severe central nervous system abnormalities. Cardiac alterations are also commonly observed. In this study, we evaluated the communication between mitochondria and lysosomes, as well as mitochondrial dynamics and bioenergetics, mitophagy/autophagy, and redox homeostasis in the cerebral cortex and heart of 6-month-old MPS II mice. Our findings showed a reduction in the content of protein TBC1D15 in the cerebral cortex and heart of MPS II mice and an increase in Rab7 in the heart of these animals, suggesting disturbances in the communication between mitochondria and lysosomes. Furthermore, decreased Drp1 levels, indicative of reduced fission, and increased VDAC1 and COX IV, suggesting an increase in mitochondrial mass, were seen in both tissues. Tom20 was also augmented in the cortex. Changes in parkin levels were also verified, indicating disrupted mitophagy. In the field of bioenergetics, we observed reduced activities of citrate synthase and malate dehydrogenase in the cortex, as well as decreased activities of isocitrate dehydrogenase, creatine kinase, and pyruvate kinase, along with diminished mitochondrial respiration in the cardiac tissue of deficient mice. However, a mild increase in lipid peroxidation was seen only in the heart. Our findings suggest that mitochondria-lysosome crosstalk disruption and bioenergetic failure contribute to the pathophysiology of brain and heart alterations in MPS II.
Collapse
Affiliation(s)
- Camila Vieira Pinheiro
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Rafael Teixeira Ribeiro
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ana Cristina Roginski
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Morgana Brondani
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Ângela Beatris Zemniaçak
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
| | - Alexandre Umpierrez Amaral
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Postgraduation Program in Integral Health Care, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, 99709-910, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Baldo
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil
- Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Células, Porto Alegre, 90035-903, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Postgraduation Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Rio Grande do Sul, Brazil.
- Postgraduation Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Minakaki G, Safren N, Bustos BI, Lubbe SJ, Mencacci NE, Krainc D. Commander complex regulates lysosomal function and is implicated in Parkinson's disease risk. Science 2025; 388:204-211. [PMID: 40209002 DOI: 10.1126/science.adq6650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025]
Abstract
Variants in GBA1 resulting in decreased lysosomal glucocerebrosidase (GCase) activity are a common risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Incomplete penetrance of GBA1 variants suggests that additional genes contribute to PD and DLB manifestation. By using a pooled genome-wide CRISPR interference screen, we identified copper metabolism MURR1 domain-containing 3 (COMMD3) protein, a component of the COMMD/coiled-coil domain-containing protein 22 (CCDC22)/CCDC93 (CCC) and Commander complexes, as a modifier of GCase and lysosomal activity. Loss of COMMD3 increased the release of lysosomal proteins through extracellular vesicles, leading to their impaired delivery to endolysosomes and consequent lysosomal dysfunction. Rare variants in the Commander gene family were associated with increased PD risk. Thus, COMMD genes and related complexes regulate lysosomal homeostasis and may represent modifiers in PD and other neurodegenerative diseases associated with lysosomal dysfunction.
Collapse
Affiliation(s)
- Georgia Minakaki
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nathaniel Safren
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bernabe I Bustos
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Lubbe
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Niccolò E Mencacci
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Song P, Franchini R, Chen C, Duong B, Wang YZ, Savas J, Parisiadou L, Krainc D. N-acetyl-l-leucine lowers pS129-synuclein and improves synaptic function in models of Parkinson's disease. RESEARCH SQUARE 2025:rs.3.rs-6298077. [PMID: 40297686 PMCID: PMC12036458 DOI: 10.21203/rs.3.rs-6298077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
N-acetyl-L-leucine (NALL), a derivative of the branched-chain amino acid leucine, has shown therapeutic potential in neurodegenerative diseases, including in prodromal stages of Parkinson's disease (PD). However, the mechanism of its protective effects has been largely unknown. Using discovery-based proteomics, we found that treatment with NALL led to upregulation of lysosomal, mitochondrial, and synaptic proteins in PD patient-derived dopaminergic neurons. NALL reduced levels of pathological pS129-alpha-synuclein in dopaminergic neurons from patients harboring GBA1 or LRRK2 mutations. This decrease in pS129-syn was dependent on serine protease HTRA1 that was induced by NALL treatment of dopaminergic neurons. NALL also upregulated expression of wild-type parkin in both GBA1 and LRRK2 mutant neurons, leading to an increase in functional dopamine transporter and synaptic membrane-associated synaptojanin-1, suggesting improved synaptic function. Furthermore, NALL treatment of mutant LRRK2R1441C knock-in mice led to decreased pS129-alpha-synuclein, increased parkin and improved dopamine-dependent motor learning deficits. These findings highlight the therapeutic potential of NALL in PD by its protective effects on α-synuclein pathology and synaptic function in vulnerable dopaminergic neurons.
Collapse
Affiliation(s)
| | - Rossella Franchini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University
| | - Bryan Duong
- Northwestern University Feinberg School of Medicine
| | | | - Jeffrey Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Dimitri Krainc
- Department of Neurology Northwestern University Feinberg School of Medicine
| |
Collapse
|
9
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
10
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF-α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- International Max Planck Research School in Physics and Medicine, Erlangen, Germany
| | - Luís Eduardo Gonçalves
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vivien Ruder
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christina James
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA
| | - Holger Wend
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Atilio Gerez
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Merel Kuijs
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maiia Shulman
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Roland Riek
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Ravindran R, Gustafsson ÅB. Mitochondrial quality control in cardiomyocytes: safeguarding the heart against disease and ageing. Nat Rev Cardiol 2025:10.1038/s41569-025-01142-1. [PMID: 40113864 DOI: 10.1038/s41569-025-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria are multifunctional organelles that are important for many different cellular processes, including energy production and biosynthesis of fatty acids, haem and iron-sulfur clusters. Mitochondrial dysfunction leads to a disruption in these processes, the generation of excessive reactive oxygen species, and the activation of inflammatory and cell death pathways. The consequences of mitochondrial dysfunction are particularly harmful in energy-demanding organs such as the heart. Loss of terminally differentiated cardiomyocytes leads to cardiac remodelling and a reduced ability to sustain contraction. Therefore, cardiomyocytes rely on multilayered mitochondrial quality control mechanisms to maintain a healthy population of mitochondria. Mitochondrial chaperones protect against protein misfolding and aggregation, and resident proteases eliminate damaged proteins through proteolysis. Irreparably damaged mitochondria can also be degraded through mitochondrial autophagy (mitophagy) or ejected from cells inside vesicles. The accumulation of dysfunctional mitochondria in cardiomyocytes is a hallmark of ageing and cardiovascular disease. This accumulation is driven by impaired mitochondrial quality control mechanisms and contributes to the development of heart failure. Therefore, there is a strong interest in developing therapies that directly target mitochondrial quality control in cardiomyocytes. In this Review, we discuss the current knowledge of the mechanisms involved in regulating mitochondrial quality in cardiomyocytes, how these pathways are altered with age and in disease, and the therapeutic potential of targeting mitochondrial quality control pathways in cardiovascular disease.
Collapse
Affiliation(s)
- Rishith Ravindran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Yokota M. Analysis of dopaminergic neuron-specific mitochondrial morphology and function using tyrosine hydroxylase reporter iPSC lines. Anat Sci Int 2025; 100:155-162. [PMID: 39612053 DOI: 10.1007/s12565-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Changes in mitochondrial function and morphology contribute to the development of many neurological diseases. Parkinson's disease is one of the neurodegenerative diseases suspected to be associated with defects in mitochondrial function and quality control. The loss of dopaminergic neurons in the substantia nigra pars compacta is a well-known pathological feature of Parkinson's disease. It is important for elucidating the pathogenesis of Parkinson's disease to analyze mitochondrial function and morphology specific to dopaminergic neurons using live-cell imaging or electron microscopy. However, the cells differentiated into dopaminergic neurons from induced pluripotent stem cells generally comprise heterogeneous populations. We generated tyrosine hydroxylase (TH) reporter iPSC lines to distinguish dopaminergic neurons from other cells for live-cell imaging and electron microscopy. This review summarizes previous studies utilizing the TH reporter iPSC lines and discusses the importance of studying mitochondria specific to dopaminergic neurons. Additionally, it provides overviews of recent studies reporting changes in endoplasmic reticulum-mitochondrial contact sites in Parkinson's disease models.
Collapse
Affiliation(s)
- Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
13
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 PMCID: PMC11876448 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Gao G, Shi Y, Deng HX, Krainc D. Dysregulation of mitochondrial α-ketoglutarate dehydrogenase leads to elevated lipid peroxidation in CHCHD2-linked Parkinson's disease models. Nat Commun 2025; 16:1982. [PMID: 40011434 PMCID: PMC11865444 DOI: 10.1038/s41467-025-57142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Dysregulation of mitochondrial function has been implicated in Parkinson's disease (PD), but the role of mitochondrial metabolism in disease pathogenesis remains to be elucidated. Using an unbiased metabolomic analysis of purified mitochondria, we identified alterations in α-ketoglutarate dehydrogenase (KGDH) pathway upon loss of PD-linked CHCHD2 protein. KGDH, a rate-limiting enzyme complex in the tricarboxylic acid cycle, was decreased in CHCHD2-deficient male mouse brains and human dopaminergic neurons. This deficiency of KGDH led to elevated α-ketoglutarate and increased lipid peroxidation. Treatment of CHCHD2-deficient dopaminergic neurons with lipoic acid, a KGDH cofactor and antioxidant agent, resulted in decreased levels of lipid peroxidation and phosphorylated α-synuclein. CHCHD10, a close homolog of CHCHD2 that is primarily linked to amyotrophic lateral sclerosis/frontotemporal dementia, did not affect the KGDH pathway or lipid peroxidation. Together, these results identify KGDH metabolic pathway as a targetable mitochondrial mechanism for correction of increased lipid peroxidation and α-synuclein in Parkinson's disease.
Collapse
Affiliation(s)
- Ge Gao
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yong Shi
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Yang Y, Chen H, Huang S, Chen H, Verkhratsky A, Niu J, Qu Y, Yi C. BOK-engaged mitophagy alleviates neuropathology in Alzheimer's disease. Brain 2025; 148:432-447. [PMID: 39054908 DOI: 10.1093/brain/awae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease. Promoting mitophagy has been shown to improve cognitive function in Alzheimer's disease animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in patients with Alzheimer's disease and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned Alzheimer's disease-related changes. Our findings uncover a novel mechanism of BOK signalling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in Alzheimer's disease, thus representing a promising therapeutic target.
Collapse
Affiliation(s)
- Yang Yang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuwen Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius 01102, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 50630, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
16
|
Wang K, Ho C, Li X, Hou J, Luo Q, Wu J, Yang Y, Zhang X. Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs. Cell Prolif 2025; 58:e13746. [PMID: 39353686 PMCID: PMC11839199 DOI: 10.1111/cpr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.
Collapse
Affiliation(s)
- Kang Wang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Chingchun Ho
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xiangyu Li
- The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Jianfeng Hou
- Department of Joint and Trauma SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Qipei Luo
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Jiahong Wu
- School of MedicineSun Yat‐sen UniversityShenzhenPeople's Republic of China
| | - Yuxin Yang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of StomatologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouPeople's Republic of China
| |
Collapse
|
17
|
Guo C, Liu Y, Ma F, Xu X, Zhang W, Zhao Z, Wang Y, Kong Q. Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6009-6023. [PMID: 39804788 DOI: 10.1021/acsami.4c18801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery. In this study, a lactic acid-capturing microgel carrying a functionalized miRNA-155 nanocarrier was designed for IVD regeneration. microRNA-155 was loaded into the NPC-targeted nanogel via host-guest binding. The miR-155 nanocarrier (NGM) achieved lactic acid-sensitive release of miRNA-155, resulting in rapid regulation of apoptosis. Moreover, SS31, which dissociated from the nanogel network, had the ability to regulate mitochondrial metabolism. Moreover, the microgel was constructed using a matrix metalloproteinase-responsive peptide. The chitosan coating on the microgel system was ingeniously employed to capture lactic acid and enable pH-responsive dissociation, thereby alleviating the acidic microenvironment to protect cell viability and facilitate the delivery of the NGM. The microgel system effectively promoted IVD regeneration by alleviating the acidic microenvironment and preventing NPC apoptosis.
Collapse
Affiliation(s)
- Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyuan Xu
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Xie Y, Sun W, Han A, Zhou X, Zhang S, Shen C, Xie Y, Wang C, Xie N. Novel strategies targeting mitochondria-lysosome contact sites for the treatment of neurological diseases. Front Mol Neurosci 2025; 17:1527013. [PMID: 39877141 PMCID: PMC11772484 DOI: 10.3389/fnmol.2024.1527013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy. This article reviews recent research advances regarding the tethering processes, regulation, and function of MLCSs and their role in neurological diseases.
Collapse
Affiliation(s)
- Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlin Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aoya Han
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinru Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shijie Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changchang Shen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Pastore R, Yao L, Hatcher N, Helley M, Brownlees J, Desai R. Deficiency in NPC2 results in disruption of mitochondria-late endosome/lysosomes contact sites and endo-lysosomal lipid dyshomeostasis. Sci Rep 2025; 15:325. [PMID: 39747180 PMCID: PMC11696400 DOI: 10.1038/s41598-024-83460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers. Using several techniques, we demonstrated that contacts between mitochondria and late endosomes/lysosomes are reduced in NPC2-/- HEK cells, we observed that the acidic compartments are swollen and lipid dense. Quantification of endogenous lipids in HEKNPC2-/- cells by mass spectrometry reveals accumulation of lipid species indicative of sphingolipid metabolic dysregulation within the lysosome. Specifically, HEK NPC2-/- cells exhibit marked elevation of glucosylsphingosine and glucosylceramides, substrates of beta glucocerebroside (GBA), as well as accumulation of sphingosine and sphingomyelins. Our studies suggest an involvement of NPC2 in the formation of contact sites between mitochondria and lysosomes and support the hypothesis of a role for NPC2 in the endo-lysosomal trafficking pathway and dynamic organellar crosstalk.
Collapse
Affiliation(s)
- Raffaele Pastore
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, via F. De Santis, 86100, Campobasso, Italy
| | - Lihang Yao
- Merck Research Laboratories, Merck & Co., Rahway, NJ, USA
| | - Nathan Hatcher
- Merck Research Laboratories, Merck & Co., Rahway, NJ, USA
| | - Martin Helley
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Janet Brownlees
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Radha Desai
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
| |
Collapse
|
20
|
Rizzollo F, Agostinis P. Mitochondria-Lysosome Contact Sites: Emerging Players in Cellular Homeostasis and Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329250. [PMID: 40109887 PMCID: PMC11920999 DOI: 10.1177/25152564251329250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria and lysosomes regulate a multitude of biological processes that are essential for the maintenance of nutrient and metabolic homeostasis and overall cell viability. Recent evidence reveals that these pivotal organelles, similarly to others previously studied, communicate through specialized membrane contact sites (MCSs), hereafter referred to as mitochondria-lysosome contacts (or MLCs), which promote their dynamic interaction without involving membrane fusion. Signal integration through MLCs is implicated in key processes, including mitochondrial fission and dynamics, and the exchange of calcium, cholesterol, and amino acids. Impairments in the formation and function of MLCs are increasingly associated with age-related diseases, specifically neurodegenerative disorders and lysosomal storage diseases. However, MLCs may play roles in other pathological contexts where lysosomes and mitochondria are crucial. In this review, we introduce the methodologies used to study MLCs and discuss known molecular players and key factors involved in their regulation in mammalian cells. We also argue other potential regulatory mechanisms depending on the acidic lysosomal pH and their impact on MLC's function. Finally, we explore the emerging implications of dysfunctional mitochondria-lysosome interactions in disease, highlighting their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
22
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
23
|
Morais LH, Boktor JC, MahmoudianDehkordi S, Kaddurah-Daouk R, Mazmanian SK. α-synuclein overexpression and the microbiome shape the gut and brain metabolome in mice. NPJ Parkinsons Dis 2024; 10:208. [PMID: 39477976 PMCID: PMC11525669 DOI: 10.1038/s41531-024-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Pathological forms of α-synuclein contribute to synucleinopathies, including Parkinson's disease (PD). Most cases of PD arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms in animal models. We quantitatively profiled nearly 630 metabolites in the gut, plasma, and brain of α-synuclein-overexpressing (ASO) mice, compared to wild-type (WT) animals, and comparing germ-free (GF) to specific pathogen-free (SPF) animals (n = 5 WT-SPF; n = 6 ASO-SPF; n = 6 WT-GF; n = 6 ASO-GF). Many differentially expressed metabolites in ASO mice are also dysregulated in human PD patients, including amine oxides, bile acids and indoles. The microbial metabolite trimethylamine N-oxide (TMAO) strongly correlates from the gut to the plasma to the brain in mice, notable since TMAO is elevated in the blood and cerebrospinal fluid of PD patients. These findings uncover broad metabolomic changes that are influenced by the intersection of host genetics and microbiome in a mouse model of PD.
Collapse
Affiliation(s)
- Livia H Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Joseph C Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
24
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
25
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Wang X, Geng J, Rimal S, Sui Y, Pan J, Qin Z, Lu B. The p53 target DRAM1 modulates calcium homeostasis and ER stress by promoting contact between lysosomes and the ER through STIM1. Proc Natl Acad Sci U S A 2024; 121:e2400531121. [PMID: 39292746 PMCID: PMC11441506 DOI: 10.1073/pnas.2400531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/27/2024] [Indexed: 09/20/2024] Open
Abstract
It is well established that DNA Damage Regulated Autophagy Modulator 1 (DRAM1), a lysosomal protein and a target of p53, participates in autophagy. The cellular functions of DRAM1 beyond autophagy remain elusive. Here, we show p53-dependent upregulation of DRAM1 in mitochondrial damage-induced Parkinson's disease (PD) models and exacerbation of disease phenotypes by DRAM1. We find that the lysosomal location of DRAM1 relies on its intact structure including the cytosol-facing C-terminal domain. Excess DRAM1 disrupts endoplasmic reticulum (ER) structure, triggers ER stress, and induces protective ER-phagy. Mechanistically, DRAM1 interacts with stromal interacting molecule 1 (STIM1) to tether lysosomes to the ER and perturb STIM1 function in maintaining intracellular calcium homeostasis. STIM1 overexpression promotes cellular health by restoring calcium homeostasis, ER stress response, ER-phagy, and AMP-activated protein kinase (AMPK)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling in cells with excess DRAM1. Thus, by promoting organelle contact between lysosomes and the ER, DRAM1 modulates ER structure and function and cell survival under stress. Our results suggest that DRAM1 as a lysosomal protein performs diverse roles in cellular homeostasis and stress response. These findings may have significant implications for our understanding of the role of the p53/DRAM1 axis in human diseases, from cancer to neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing210029, China
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing210029, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Zhenghong Qin
- Institute of Health Technology, Global Institute of Software Technology, Suzhou215163, China
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Sciences, Soochow University, Suzhou215123, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
27
|
Lupi M, Avanzato D, Confalonieri S, Martino F, Pennisi R, Pupo E, Audrito V, Freddi S, Bertalot G, Montani F, Matoskova B, Sigismund S, Di Fiore PP, Lanzetti L. TBC1 domain-containing proteins are frequently involved in triple-negative breast cancers in connection with the induction of a glycolytic phenotype. Cell Death Dis 2024; 15:647. [PMID: 39231952 PMCID: PMC11375060 DOI: 10.1038/s41419-024-07037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic. However, a number of TBC1Ds harbor mutations in their catalytic residues, predicting biological functions different from direct regulation of RAB activities. Herein, we report that several genes encoding for TBC1Ds are expressed at higher levels in triple-negative breast cancers (TNBC) vs. other subtypes of breast cancers (BC), and predict prognosis. Orthogonal transcriptomics/metabolomics analysis revealed that the expression of prognostic TBC1Ds correlates with elevated glycolytic metabolism in BC cell lines. In-depth investigations of the three top hits from the previous analyses (TBC1D31, TBC1D22B and TBC1D7) revealed that their elevated expression is causal in determining a glycolytic phenotype in TNBC cell lines. We further showed that the impact of TBC1D7 on glycolytic metabolism of BC cells is independent of its known participation in the TSC1/TSC2 complex and consequent downregulation of mTORC1 activity. Since TBC1D7 behaves as an independent prognostic biomarker in TNBC, it could be used to distinguish good prognosis patients who could be spared aggressive therapy from those with a poor prognosis who might benefit from anti-glycolytic targeted therapies. Together, our results highlight how TBC1Ds connect disease aggressiveness with metabolic alterations in TNBC. Given the high level of heterogeneity among this BC subtype, TBC1Ds could represent important tools in predicting prognosis and guiding therapy decision-making.
Collapse
Grants
- IG #22811 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MFAG-2021 #26004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #24415 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022 Prot. 2022W93FTW Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Finalizzata RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
Collapse
Affiliation(s)
- Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Department of Veterinary Sciences, Infectious Diseases Unit, University of Torino, Turin, Italy
| | | | - Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Stefano Freddi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy, and Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | | | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
28
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
29
|
Song P, Krainc D. Diverse Functions of Parkin in Midbrain Dopaminergic Neurons. Mov Disord 2024; 39:1282-1288. [PMID: 38858837 PMCID: PMC11341252 DOI: 10.1002/mds.29890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by preferential degeneration of midbrain dopaminergic neurons that contributes to its typical clinical manifestation. Mutations in the parkin gene (PARK2) represent a relatively common genetic cause of early onset PD. Parkin has been implicated in PINK1-dependent mitochondrial quantity control by targeting dysfunctional mitochondria to lysosomes via mitophagy. Recent evidence suggests that parkin can be activated in PINK1-independent manner to regulate synaptic function in human dopaminergic neurons. Neuronal activity triggers CaMKII-mediated activation of parkin and its recruitment to synaptic vesicles where parkin promotes binding of synaptojanin-1 to endophilin A1 and facilitates vesicle endocytosis. In PD patient neurons, disruption of this pathway on loss of parkin leads to defective recycling of synaptic vesicles and accumulation of toxic oxidized dopamine that at least in part explains preferential vulnerability of midbrain dopaminergic neurons. These findings suggest a convergent mechanism for PD-linked mutations in parkin, synaptojanin-1, and endophilin A1 and highlight synaptic dysfunction as an early pathogenic event in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pingping Song
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA
| |
Collapse
|
30
|
Bandyopadhyay S, Adebayo D, Obaseki E, Hariri H. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. CURRENT TOPICS IN MEMBRANES 2024; 93:85-116. [PMID: 39181579 DOI: 10.1016/bs.ctm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Collapse
Affiliation(s)
- Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
31
|
Morais LH, Boktor JC, MahmoudianDehkordi S, Kaddurah-Daouk R, Mazmanian SK. α-Synuclein Overexpression and the Microbiome Shape the Gut and Brain Metabolome in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597975. [PMID: 38915679 PMCID: PMC11195096 DOI: 10.1101/2024.06.07.597975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pathological forms of the protein α-synuclein contribute to a family of disorders termed synucleinopathies, which includes Parkinson's disease (PD). Most cases of PD are believed to arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms and pathology in animal models. To explore how the microbiome may impact PD-associated genetic risks, we quantitatively profiled nearly 630 metabolites from 26 biochemical classes in the gut, plasma, and brain of α-synuclein-overexpressing (ASO) mice with or without microbiota. We observe tissue-specific changes driven by genotype, microbiome, and their interaction. Many differentially expressed metabolites in ASO mice are also dysregulated in human PD patients, including amine oxides, bile acids and indoles. Notably, levels of the microbial metabolite trimethylamine N-oxide (TMAO) strongly correlate from the gut to the plasma to the brain, identifying a product of gene-environment interactions that may influence PD-like outcomes in mice. TMAO is elevated in the blood and cerebral spinal fluid of PD patients. These findings uncover broad metabolomic changes that are influenced by the intersection of host genetics and the microbiome in a mouse model of PD.
Collapse
Affiliation(s)
- Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Joseph C. Boktor
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Sarkis K. Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
32
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
33
|
Kou L, Wang Y, Li J, Zou W, Jin Z, Yin S, Chi X, Sun Y, Wu J, Wang T, Xia Y. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Exp Neurol 2024; 376:114757. [PMID: 38508481 DOI: 10.1016/j.expneurol.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Gonzalez-Latapi P, Bustos B, Dong S, Lubbe S, Simuni T, Krainc D. Alterations in Blood Methylome as Potential Epigenetic Biomarker in Sporadic Parkinson's Disease. Ann Neurol 2024; 95:1162-1172. [PMID: 38563317 DOI: 10.1002/ana.26923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bernabe Bustos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Siyuan Dong
- Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Steven Lubbe
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Schrӧder LF, Peng W, Gao G, Wong YC, Schwake M, Krainc D. VPS13C regulates phospho-Rab10-mediated lysosomal function in human dopaminergic neurons. J Cell Biol 2024; 223:e202304042. [PMID: 38358348 PMCID: PMC10868123 DOI: 10.1083/jcb.202304042] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Loss-of-function mutations in VPS13C are linked to early-onset Parkinson's disease (PD). While VPS13C has been previously studied in non-neuronal cells, the neuronal role of VPS13C in disease-relevant human dopaminergic neurons has not been elucidated. Using live-cell microscopy, we investigated the role of VPS13C in regulating lysosomal dynamics and function in human iPSC-derived dopaminergic neurons. Loss of VPS13C in dopaminergic neurons disrupts lysosomal morphology and dynamics with increased inter-lysosomal contacts, leading to impaired lysosomal motility and cellular distribution, as well as defective lysosomal hydrolytic activity and acidification. We identified Rab10 as a phospho-dependent interactor of VPS13C on lysosomes and observed a decreased phospho-Rab10-mediated lysosomal stress response upon loss of VPS13C. These findings highlight an important role of VPS13C in regulating lysosomal homeostasis in human dopaminergic neurons and suggest that disruptions in Rab10-mediated lysosomal stress response contribute to disease pathogenesis in VPS13C-linked PD.
Collapse
Affiliation(s)
- Leonie F. Schrӧder
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ge Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schwake
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Filograna R, Gerlach J, Choi HN, Rigoni G, Barbaro M, Oscarson M, Lee S, Tiklova K, Ringnér M, Koolmeister C, Wibom R, Riggare S, Nennesmo I, Perlmann T, Wredenberg A, Wedell A, Motori E, Svenningsson P, Larsson NG. PARKIN is not required to sustain OXPHOS function in adult mammalian tissues. NPJ Parkinsons Dis 2024; 10:93. [PMID: 38684669 PMCID: PMC11058849 DOI: 10.1038/s41531-024-00707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.
Collapse
Affiliation(s)
- Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Jule Gerlach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hae-Na Choi
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giovanni Rigoni
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Oscarson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Seungmin Lee
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Riggare
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Elisa Motori
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Brooker SM, Naylor GE, Krainc D. Cell biology of Parkinson's disease: Mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol 2024; 85:102841. [PMID: 38306948 DOI: 10.1016/j.conb.2024.102841] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is a growing cause of disability worldwide and there is a critical need for the development of disease-modifying therapies to slow or stop disease progression. Recent advances in characterizing the genetics of PD have expanded our understanding of the cell biology of this disorder. Mitochondrial oxidative stress, defects in synaptic function, and impaired lysosomal activity have been shown to be linked in PD, resulting in a pathogenic feedback cycle involving the accumulation of toxic oxidized dopamine and alpha-synuclein. In this review, we will highlight recent data on a subset of PD-linked genes which have key roles in these pathways and the pathogenic cycle. We will furthermore discuss findings highlighting the importance of dynamic mitochondria-lysosome contact sites that mediate direct inter-organelle cross-talk in the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/BrookerSarahM
| | - Grace E Naylor
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/GENaylor
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Leisten ED, Woods AC, Wong YC. Super-resolution microscopy: Insights into mitochondria-lysosome crosstalk in health and disease. J Cell Biol 2023; 222:e202305032. [PMID: 37917024 PMCID: PMC10621667 DOI: 10.1083/jcb.202305032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Live super-resolution microscopy has allowed for new insights into recently identified mitochondria-lysosome contact sites, which mediate crosstalk between mitochondria and lysosomes, including co-regulation of Rab7 GTP hydrolysis and Drp1 GTP hydrolysis. Here, we highlight recent findings and future perspectives on this dynamic pathway and its roles in health and disease.
Collapse
Affiliation(s)
- Eric D. Leisten
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Abby C. Woods
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yvette C. Wong
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
39
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
40
|
Peggion C, Barazzuol L, Poggio E, Calì T, Brini M. Ca 2+ signalling: A common language for organelles crosstalk in Parkinson's disease. Cell Calcium 2023; 115:102783. [PMID: 37597300 DOI: 10.1016/j.ceca.2023.102783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by multifactorial pathogenic mechanisms. Familial PD is linked with genetic mutations in genes whose products are either associated with mitochondrial function or endo-lysosomal pathways. Of note, mitochondria are essential to sustain high energy demanding synaptic activity of neurons and alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegenerative process, although the mechanisms responsible for the selective loss of specific neuronal populations in the different neurodegenerative diseases is still not clear. Here, we specifically discuss the importance of a correct mitochondrial communication with the other organelles occurring at regions where their membranes become in close contact. We discuss the nature and the role of contact sites that mitochondria establish with ER, lysosomes, and peroxisomes, and how PD related proteins participate in the regulation/dysregulation of the tethering complexes. Unravelling molecular details of mitochondria tethering could contribute to identify specific therapeutic targets and develop new strategies to counteract the progression of the disease.
Collapse
Affiliation(s)
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Italy; Study Center for Neurodegeneration (CESNE), University of Padova, Italy.
| |
Collapse
|
41
|
Wong YC, Jayaraj ND, Belton TB, Shum GC, Ball HE, Ren D, Tadenev ALD, Krainc D, Burgess RW, Menichella DM. Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons. Proc Natl Acad Sci U S A 2023; 120:e2313010120. [PMID: 37878717 PMCID: PMC10622892 DOI: 10.1073/pnas.2313010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Nirupa D. Jayaraj
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Tayler B. Belton
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - George C. Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hannah E. Ball
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dongjun Ren
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Daniela M. Menichella
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
42
|
Mulligan RJ, Winckler B. Regulation of Endosomal Trafficking by Rab7 and Its Effectors in Neurons: Clues from Charcot-Marie-Tooth 2B Disease. Biomolecules 2023; 13:1399. [PMID: 37759799 PMCID: PMC10527268 DOI: 10.3390/biom13091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Intracellular endosomal trafficking controls the balance between protein degradation and synthesis, i.e., proteostasis, but also many of the cellular signaling pathways that emanate from activated growth factor receptors after endocytosis. Endosomal trafficking, sorting, and motility are coordinated by the activity of small GTPases, including Rab proteins, whose function as molecular switches direct activity at endosomal membranes through effector proteins. Rab7 is particularly important in the coordination of the degradative functions of the pathway. Rab7 effectors control endosomal maturation and the properties of late endosomal and lysosomal compartments, such as coordination of recycling, motility, and fusion with downstream compartments. The spatiotemporal regulation of endosomal receptor trafficking is particularly challenging in neurons because of their enormous size, their distinct intracellular domains with unique requirements (dendrites vs. axons), and their long lifespans as postmitotic, differentiated cells. In Charcot-Marie-Tooth 2B disease (CMT2B), familial missense mutations in Rab7 cause alterations in GTPase cycling and trafficking, leading to an ulcero-mutilating peripheral neuropathy. The prevailing hypothesis to account for CMT2B pathologies is that CMT2B-associated Rab7 alleles alter endocytic trafficking of the neurotrophin NGF and its receptor TrkA and, thereby, disrupt normal trophic signaling in the peripheral nervous system, but other Rab7-dependent pathways are also impacted. Here, using TrkA as a prototypical endocytic cargo, we review physiologic Rab7 effector interactions and control in neurons. Since neurons are among the largest cells in the body, we place particular emphasis on the temporal and spatial regulation of endosomal sorting and trafficking in neuronal processes. We further discuss the current findings in CMT2B mutant Rab7 models, the impact of mutations on effector interactions or balance, and how this dysregulation may confer disease.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|