1
|
Li B, Ming R. Knockdown of YTHDF2 mitigates OGD-induced microglial inflammation by preventing m 6A-dependent PARP14 degradation. J Neuroimmunol 2025; 405:578636. [PMID: 40383033 DOI: 10.1016/j.jneuroim.2025.578636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/26/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Neuroinflammation is a key pathological factor in ischemic brain diseases, contributing to the initiation and progression of these conditions. The function of the m6A reader protein YTHDF2 in regulating neuroinflammation across various neurological contexts. To elucidate the role and regulatory mechanism of YTHDF2 in inflammation under ischemic-like conditions, this study employed an in vitro model, exposing microglia to oxygen-glucose deprivation (OGD) to mimic the stress environment. And through YTHDF2 knockdown, we investigated its effect on OGD-induced inflammation. The results demonstrated that YTHDF2 knockdown significantly suppressed the expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in OGD-treated microglia. Mechanistic analysis revealed that YTHDF2 interacts with Parp14 mRNA under OGD conditions, reducing its RNA stability via m6A-dependent mechanisms, which in turn decreases Poly (ADP-ribose) polymerase family, member 14 (PARP14) protein expression. Additionally, YTHDF2 knockdown after OGD promoted a PARP14-driven phenotypic switch in microglia from the pro-inflammatory M1 state to the anti-inflammatory M2 state, resulting in diminished inflammation. These findings offer new insights into the regulatory function of YTHDF2 in OGD-induced microglial inflammation and propose m6A modification as a potential therapeutic target for alleviating neuroinflammation.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China..
| | - Ruixi Ming
- Institute of Comparative Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Nagaraj M, Emmagouni SKG, Chaurasiya V, Li L, Nguyen VD, Keskitalo S, Varjosalo M, Zhou Y, Haridas PAN, Olkkonen VM. Insight into the function of the Golgi membrane protein GOLM1 in cholangiocytes through interactomic analysis. FEBS Lett 2025; 599:1299-1316. [PMID: 39891560 DOI: 10.1002/1873-3468.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
GOLM1, a Golgi membrane protein, is upregulated in cancers and liver diseases. Analysis of public RNAseq data from healthy human liver suggested that GOLM1 is predominantly expressed in cholangiocytes. Therefore, this study was initiated to understand the molecular functions of GOLM1 in cholangiocytes through protein interactomics. The findings reveal a number of putative GOLM1-interacting partners involved in cellular regimes such as mitochondrial and Golgi functions, ribonucleoprotein biogenesis, cell cycle, and basement membrane organization. Further, to validate select key roles, GOLM1 was silenced in MMNK-1 cholangiocytes and the effects on cell functions were studied. The silencing resulted in impaired mitochondrial function, reduced mitochondrial and P-body markers, increased apoptosis, and reduced cell adhesion, suggesting crucial roles of GOLM1 in maintaining normal cholangiocyte metabolism and function.
Collapse
Affiliation(s)
- Meghana Nagaraj
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
- Doctoral Programme in Integrative Life Science, University of Helsinki, Finland
| | | | - Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Luyang Li
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - Van Dien Nguyen
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
- HiLIFE-Proteomics Unit, Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
- HiLIFE-Proteomics Unit, Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Finland
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, UK
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
3
|
Raja R, Biswas B, Abraham R, Wang Y, Chang CY, Hendriks IA, Buch-Larsen SC, Liu H, Yang X, Wang C, Vu H, Hamacher-Brady A, Cai D, Leung AKL. Interferon-induced PARP14-mediated ADP-ribosylation in p62 bodies requires the ubiquitin-proteasome system. EMBO J 2025; 44:2741-2773. [PMID: 40195501 DOI: 10.1038/s44318-025-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Biomolecular condensates are cellular compartments without enveloping membranes, enabling them to dynamically adjust their composition in response to environmental changes through post-translational modifications. Recent work has revealed that interferon-induced ADP-ribosylation (ADPr), which can be reversed by a SARS-CoV-2-encoded hydrolase, is enriched within a condensate. However, the identity of the condensate and the responsible host ADP-ribosyltransferase remain elusive. Here, we demonstrate that interferon induces ADPr through transcriptional activation of PARP14, requiring both the physical presence and catalytic activity of PARP14 for condensate formation. Interferon-induced ADPr colocalizes with PARP14 and its associated E3 ligase, DTX3L. These PARP14/ADPr condensates contain key components of p62 bodies-including the selective autophagy receptor p62, its binding partner NBR1 and the associated protein TAX1BP1, along with K48-linked and K63-linked polyubiquitin chains-but lack the autophagosome marker LC3B. Knockdown of p62 disrupts the formation of these ADPr condensates. Importantly, these structures are unaffected by autophagy inhibition, but depend on ubiquitination and proteasome activity. Taken together, these findings demonstrate that interferon triggers PARP14-mediated ADP-ribosylation in p62 bodies, which requires an active ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rameez Raja
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Banhi Biswas
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yiran Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ivo A Hendriks
- NNF Center for Protein Research, Copenhagen N, DK-2200, Denmark
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- XDBio Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chenyao Wang
- BeiGene Institute, Shanghai R&D Center, Shanghai, 200131, China
| | - Hien Vu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anne Hamacher-Brady
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21205, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Weixler L, Žaja R, Ikenga NJ, Siefert J, Mohan G, Aydin G, Wijngaarden S, Filippov DV, Lüscher B, Feijs-Žaja KLH. Family-wide analysis of human macrodomains reveals novel activities and identifies PARG as most efficient ADPr-RNA hydrolase. Commun Biol 2025; 8:453. [PMID: 40102620 PMCID: PMC11920425 DOI: 10.1038/s42003-025-07901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
ADP-ribosylation is well-known as protein posttranslational modification and was recently also identified as RNA posttranscriptional modification. When macrodomain proteins were identified as protein ADP-ribosylhydrolases, several ADP-ribosylation substrates were not yet identified. Therefore, the majority of macrodomain-containing proteins have not been tested towards these additional substrates and were considered to be inactive. Here, we compare in vitro activities of the human macrodomains on a range of ADP-ribosylated substrates. We confirm recent findings that PARP9macro1 and PARP14macro1 can remove ADP-ribose from acidic residues and provide evidence that also PARP14macro2 and PARP15macro2 can function as ADP-ribosylhydrolases. In addition, we find that both PARP9macro1 and PARP14macro1 are active as ADPr-RNA decapping protein domains. Notwithstanding these in vitro activities, our data furthermore indicate that in HEK293 cells, PARG is the major ADPr-RNA decapping enzyme. Our findings thus expand the spectrum of known catalytic activities of human macrodomains and demonstrate their different efficiencies towards nucleic acid substrates.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, Bonn, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| | - Nonso J Ikenga
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Jonas Siefert
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Ganga Mohan
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Gülcan Aydin
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Karla L H Feijs-Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Ribeiro VC, Russo LC, González Duré DM, Hoch NC. Interferon-induced ADP-ribosylation: technical developments driving ICAB discovery. Biosci Rep 2025; 45:BSR20240986. [PMID: 40014063 PMCID: PMC12096948 DOI: 10.1042/bsr20240986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025] Open
Abstract
Cells respond to a variety of internal and external stimuli by regulating the activities of different signalling cascades and cellular processes, often via chemical modifications of biological macromolecules that modulate their overall levels, biochemical activities or biophysical interactions. One such modification, termed ADP-ribosylation (ADPr), is emerging as an important player in the interferon (IFN) response, but the molecular targets and functions of ADP-ribosyltransferases within this core component of innate immunity still remains unclear. We and others have recently identified that stimulation of IFN signalling cascades promotes the formation of a novel cytosolic structure in human cells that is enriched in ADP-ribosyl modifications. Here, we propose to name these structures 'interferon-induced cytosolic ADPr bodies' (ICABs) and discuss their known components and potential functions. We also review methods to detect ICABs (and cellular ADPr in general) using a range of recently developed reagents. This lays the foundation for future studies aimed at elucidating the molecular functions of ICABs and ADPr in innate immune responses, which is a central unanswered question in the field.
Collapse
Affiliation(s)
| | - Lilian Cristina Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Zheng J, Deng Y, Fang C, Xiong S, Zhu X, Wu W, Chen X, Wu W, Yin D, Hu K, Yan H. Comprehensive dataset of interactors for the entire PARP family using TurboID proximity labeling. Sci Data 2025; 12:405. [PMID: 40057523 PMCID: PMC11890743 DOI: 10.1038/s41597-025-04722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
A comprehensive dataset detailing protein interactors for the PARP family has been generated using TurboID proximity labeling under standardized experimental conditions. V5-TurboID fusion constructs enabled identification of 6,314 high-confidence interacting proteins through mass spectrometry, capturing transient interactions undetectable by conventional methods. Parallel GFP-PARP localization experiments validated physiological subcellular distributions. The dataset reveals both shared and unique interactors across PARP members, with network analysis suggesting functional cooperativity and specialization. Functional annotation analyses were performed on representative PARP members to validate key biological processes. All raw proteomic data (PRIDE: PXD052745)29 and processed interaction networks (figshare)50 are publicly available. This comprehensive interactome atlas provides a valuable foundation for advancing our understanding of PARP-mediated regulatory mechanisms and supports therapeutic development.
Collapse
Affiliation(s)
- Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Yawen Deng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cong Fang
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shiyu Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinliang Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Lu Y, Schuller M, Bullen N, Mikolcevic P, Zonjic I, Raggiaschi R, Mikoc A, Whitney J, Ahel I. Discovery of reversing enzymes for RNA ADP-ribosylation reveals a possible defence module against toxic attack. Nucleic Acids Res 2025; 53:gkaf069. [PMID: 39964479 PMCID: PMC11833690 DOI: 10.1093/nar/gkaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Nucleic acid ADP-ribosylation and its associated enzymes involved in catalysis and hydrolysis are widespread among all kingdoms of life. Yet, its roles in mammalian and bacterial physiology including inter-/intraspecies conflicts are currently underexplored. Recently, several examples of enzymatic systems for RNA ADP-ribosylation have been identified, showing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP-ribosyltransferases (ARTs) which attach ADP-ribose modifications either to nucleobases, the backbone ribose, or phosphate ends. Yet little is known about the reversibility of RNA ADP-ribosylation by ADP-ribosylhydrolases belonging to the macrodomain, ARH, or NADAR superfamilies. Here, we characterize the hydrolytic activity of ADP-ribosylhydrolases on RNA species ADP-ribosylated by mammalian and bacterial ARTs. We demonstrate that NADAR ADP-ribosylhydrolases are the only hydrolase family able to reverse guanosine RNA base ADP-ribosylation while they are inactive on phosphate-end RNA ADP-ribosylation. Furthermore, we reveal that macrodomain-containing PARG enzymes are the only hydrolase type with the ability for specific and efficient reversal of 2'-hydroxyl group RNA ADP-ribosylation catalysed by Pseudomonas aeruginosa effector toxin RhsP2. Moreover, using the RhsP2/bacterial PARG system as an example, we demonstrate that PARG enzymes can act as protective immunity enzymes against antibacterial RNA-targeting ART toxins.
Collapse
Affiliation(s)
- Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Petra Mikolcevic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Iva Zonjic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Roberto Raggiaschi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Andreja Mikoc
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| |
Collapse
|
9
|
Challa S, Nandu T, Kim HB, Gong X, Renshaw CW, Li WC, Tan X, Aljardali MW, Camacho CV, Chen J, Kraus WL. RACK1 MARylation regulates translation and stress granules in ovarian cancer cells. J Cell Biol 2025; 224:e202401101. [PMID: 39760726 DOI: 10.1083/jcb.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins. In parallel, we observed reduced translation of a subset of mRNAs, including those encoding key cancer regulators (e.g., AKT). Treatment with a PARP14 inhibitor or mutation of the sites of MARylation on RACK1 blocks these outcomes, as well as the growth of ovarian cancer cells in culture and in vivo. To reset the system after prolonged stress and recovery, the ADP-ribosyl hydrolase TARG1 deMARylates RACK1, leading to the dissociation of the stress granules and the restoration of translation. Collectively, our results demonstrate a therapeutically targetable pathway that controls polysome assembly, translation, and stress granule dynamics in ovarian cancer cells.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuan Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles W Renshaw
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Chen Li
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinrui Tan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marwa W Aljardali
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cristel V Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Minnee H, Codée JDC, Filippov DV. Mono-ADP-Ribosylation of Peptides: An Overview of Synthetic and Chemoenzymatic Methodologies. Chembiochem 2024; 25:e202400440. [PMID: 38984757 PMCID: PMC11664928 DOI: 10.1002/cbic.202400440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e. g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| |
Collapse
|
11
|
Zhang Y, Chen JC, Zheng JH, Cheng YZ, Weng WP, Zhong RL, Sun SL, Shi YS, Pan XD. Pterosin B improves cognitive dysfunction by promoting microglia M1/M2 polarization through inhibiting Klf5/Parp14 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156152. [PMID: 39413455 DOI: 10.1016/j.phymed.2024.156152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Pterosin B (PB) exhibits strong neuroprotective effects in vitro, but its therapeutic effect and underlying mechanism on Alzheimer's disease (AD) remain elusive. PURPOSE This study aimed to investigate the anti-AD effect and mechanism of PB. STUDY DESIGN The therapeutic effect and mechanism of PB were investigated in APP/PS1 mice and lipopolysaccharide (LPS)-induced BV-2 cells. METHODS After 8 weeks of oral administration of PB or donepezil, the cognitive function was assessed using behavioral tests. Pathological damage was evaluated using histological analysis and immunohistochemical staining. Flow cytometry was applied to detect M1/M2 polarization. The expression levels of glycolysis- and oxidative phosphorylation-related proteins as well as enzyme activities were determined using Western blot and biochemical kits, respectively. The levels of inflammatory cytokines and Kruppel-like factor 5 (Klf5) were measured using enzyme-linked immunosorbent assay. AD biomarkers in serum were analyzed using single-molecular array. RNA sequencing identified the downstream molecules of Klf5, and interaction was evaluated using dual-luciferase reporter assay. RESULTS Our findings demonstrated that PB effectively ameliorated cognitive impairment and reduced pathological damage in APP/PS1 mice. Furthermore, PB facilitated the transition of the phenotype of LPS-induced BV-2 cells from M1 to M2 by modulating metabolic reprogramming. Additionally, Klf5 had high expression levels in the serum of patients with AD, which strongly correlated with cognitive performance and AD biomarkers. PB downregulated Klf5 expression both in vitro and in vivo. Subsequently, poly-ADP ribosyl polymerase 14 (Parp14) was identified as a downstream molecule of Klf5 involved in regulating metabolic reprogramming, and PB regulated microglia M1/M2 polarization by inhibiting the Klf5/Parp14 pathway. CONCLUSION The findings suggested that PB ameliorated cognitive dysfunction in AD by modulating microglia M1/M2 polarization via inhibiting Klf5/Parp14 pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China
| | - Ji-Cong Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Hao Zheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Ying-Zhe Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Wei-Pin Weng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Rong-Ling Zhong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Sheng-Lu Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yu-Sheng Shi
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China.
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China.
| |
Collapse
|
12
|
Gluth A, Li X, Gritsenko MA, Gaffrey MJ, Kim DN, Lalli PM, Chu RK, Day NJ, Sagendorf TJ, Monroe ME, Feng S, Liu T, Yang B, Qian WJ, Zhang T. Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-Treated Pancreatic Beta Cells. Mol Cell Proteomics 2024; 23:100881. [PMID: 39550035 PMCID: PMC11700301 DOI: 10.1016/j.mcpro.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse posttranslational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in the global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple colocalized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.
Collapse
Affiliation(s)
- Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA; Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Bin Yang
- Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
13
|
Chatzicharalampous C, Schüler H. A multidomain PARP14 construct suitable for bacterial expression. Protein Expr Purif 2024; 224:106580. [PMID: 39154924 DOI: 10.1016/j.pep.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Poly-ADP-ribose polymerase-14 (PARP14) can modify proteins and nucleic acids by the reversible addition of a single ADP-ribose molecule. Aberrant PARP14 functions have been related to cancer and inflammation, and its domains are involved in processes related to viral infection. Previous research indicates that PARP14 functions might be mediated via a multitude of target proteins. In vitro studies of this large multidomain enzyme have been complicated by difficulties to obtain biochemical quantities of pure protein. Here we present a strategy that allows bacterial expression and purification of a functional multidomain construct of PARP14. We substituted an internal KH domain and its neighboring unstructured region with a SUMO domain to obtain a protein construct that encompasses three macrodomains, a WWE domain, and a PARP catalytic domain. We show that the resulting construct retains both ADP-ribosyltransferase and de-MARylase activities. This construct will be useful in structural and functional studies of PARP14.
Collapse
Affiliation(s)
| | - Herwig Schüler
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-22362, Lund, Sweden.
| |
Collapse
|
14
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024; 98:e0131324. [PMID: 39387584 PMCID: PMC11575489 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
15
|
Rack JGM, Voorneveld J, Longarini EJ, Wijngaarden S, Zhu K, Peters A, Sia JJ, Prokhorova E, Ahel D, Matić I, Filippov DV, Ahel I. Reversal of tyrosine-linked ADP-ribosylation by ARH3 and PARG. J Biol Chem 2024; 300:107838. [PMID: 39342999 PMCID: PMC11541775 DOI: 10.1016/j.jbc.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids, and a variety of small chemical compounds. The spatiotemporal signaling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Among these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment, and reversal are still lacking. Here we present a re-analysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched among ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of the (ADP-ribosyl)hydrolase ARH3. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.
Collapse
Affiliation(s)
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jia Jhing Sia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Matić
- Research Group of Proteomics and ADP-ribosylation Signalling, Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
17
|
Challa S, Nandu T, Kim HB, Gong X, Renshaw CW, Li WC, Tan X, Aljardali MW, Camacho CV, Chen J, Kraus WL. A PARP14/TARG1-Regulated RACK1 MARylation Cycle Drives Stress Granule Dynamics in Ovarian Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.13.562273. [PMID: 37873085 PMCID: PMC10592810 DOI: 10.1101/2023.10.13.562273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated on three acidic residues by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins. In parallel, we observed reduced translation of a subset of mRNAs, including those encoding key cancer regulators (e.g., AKT). Treatment with a PARP14 inhibitor or mutation of the sites of MARylation on RACK1 blocks these outcomes, as well as the growth of ovarian cancer cells in culture and in vivo. To re-set the system after prolonged stress and recovery, the ADP-ribosyl hydrolase TARG1 deMARylates RACK1, leading to the dissociation of the stress granules and the restoration of translation. Collectively, our results demonstrate a therapeutically targetable pathway that controls stress granule assembly and disassembly in ovarian cancer cells.
Collapse
Affiliation(s)
- Sridevi Challa
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637
| | - Tulip Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuan Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Charles W. Renshaw
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wan-Chen Li
- Altos Labs, Bay Area Institute of Science, Redwood City, CA 94403
| | - Xinrui Tan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marwa W. Aljardali
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V. Camacho
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Altos Labs, Bay Area Institute of Science, Redwood City, CA 94403
| | - W. Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
19
|
Ildefeld N, Steinhilber D, Proschak E, Heering J. HTRF-based assay for detection of mono-ADP-ribosyl hydrolyzing macrodomains and inhibitor screening. iScience 2024; 27:110333. [PMID: 39055912 PMCID: PMC11269945 DOI: 10.1016/j.isci.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic has highlighted the lack of effective, ready-to-use antivirals for the treatment of viruses with pandemic potential. The development of a diverse drug portfolio is therefore crucial for pandemic preparedness. Viral macrodomains are attractive therapeutic targets as they are suggested to play an important role in evading the innate host immune response, making them critical for viral pathogenesis. Macrodomains function as erasers of mono-ADP-ribosylation (deMARylation), a post-translational modification that is involved in interferon signaling. Herein, we report the development of a modular HTRF-based assay, that can be used to screen for inhibitors of various viral and human macrodomains. We characterized the five most promising small molecule SARS-CoV-2 Mac1 inhibitors recently reported in the literature for potency and selectivity and conducted a pilot screen demonstrating HTS suitability. The ability to directly detect enzymatic activity makes the DeMAR assay a valuable addition to the existing tools for macrodomain drug discovery.
Collapse
Affiliation(s)
- Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
20
|
Miwa A, Kamiya K. Cell-Penetrating Peptide-Mediated Biomolecule Transportation in Artificial Lipid Vesicles and Living Cells. Molecules 2024; 29:3339. [PMID: 39064917 PMCID: PMC11279660 DOI: 10.3390/molecules29143339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signal transduction and homeostasis are regulated by complex protein interactions in the intracellular environment. Therefore, the transportation of impermeable macromolecules (nucleic acids, proteins, and drugs) that control protein interactions is essential for modulating cell functions and therapeutic applications. However, macromolecule transportation across the cell membrane is not easy because the cell membrane separates the intra/extracellular environments, and the types of molecular transportation are regulated by membrane proteins. Cell-penetrating peptides (CPPs) are expected to be carriers for molecular transport. CPPs can transport macromolecules into cells through endocytosis and direct translocation. The transport mechanism remains largely unclear owing to several possibilities. In this review, we describe the methods for investigating CPP conformation, translocation, and cargo transportation using artificial membranes. We also investigated biomolecular transport across living cell membranes via CPPs. Subsequently, we show not only the biochemical applications but also the synthetic biological applications of CPPs. Finally, recent progress in biomolecule and nanoparticle transportation via CPPs into specific tissues is described from the viewpoint of drug delivery. This review provides the opportunity to discuss the mechanism of biomolecule transportation through these two platforms.
Collapse
Affiliation(s)
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan;
| |
Collapse
|
21
|
Vedantham M, Polari L, Poosakkannu A, Pinto RG, Sakari M, Laine J, Sipilä P, Määttä J, Gerke H, Rissanen T, Rantakari P, Toivola DM, Pulliainen AT. Body-wide genetic deficiency of poly(ADP-ribose) polymerase 14 sensitizes mice to colitis. FASEB J 2024; 38:e23775. [PMID: 38967223 DOI: 10.1096/fj.202400484r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.
Collapse
Affiliation(s)
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | | | - Rita G Pinto
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Petra Sipilä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tiia Rissanen
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | |
Collapse
|
22
|
Rijpkema KJ, Schuller M, van der Veer MS, Rieken S, Chang DLR, Balić P, Todorov A, Minnee H, Wijngaarden S, Matos IA, Hoch NC, Codée JDC, Ahel I, Filippov DV. Synthesis of Structural ADP-Ribose Analogues as Inhibitors for SARS-CoV-2 Macrodomain 1. Org Lett 2024; 26:5700-5704. [PMID: 38935522 PMCID: PMC11249776 DOI: 10.1021/acs.orglett.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation is crucial for a proper immune response. Accordingly, viruses have evolved ADP-ribosyl hydrolases to remove these modifications, a prominent example being the SARS-CoV-2 NSP3 macrodomain, "Mac1". Consequently, inhibitors are developed by testing large libraries of small molecule candidates, with considerable success. However, a relatively underexplored angle in design pertains to the synthesis of structural substrate mimics. Here, we present the synthesis and biophysical activity of novel adenosine diphosphate ribose (ADPr) analogues as SARS-CoV-2 NSP3 Mac1 inhibitors.
Collapse
Affiliation(s)
- Koen J. Rijpkema
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marion Schuller
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Miriam S. van der Veer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sjoerd Rieken
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diego L. R. Chang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Pascal Balić
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alex Todorov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hugo Minnee
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sven Wijngaarden
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Isaac A. Matos
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Departamento
de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748,
Cidade Universitária, Sao Paulo 055800-000, Brasil
| | - Nicolas C. Hoch
- Departamento
de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748,
Cidade Universitária, Sao Paulo 055800-000, Brasil
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
23
|
Kar P, Chatrin C, Đukić N, Suyari O, Schuller M, Zhu K, Prokhorova E, Bigot N, Baretić D, Ahel J, Elsborg JD, Nielsen ML, Clausen T, Huet S, Niepel M, Sanyal S, Ahel D, Smith R, Ahel I. PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation. EMBO J 2024; 43:2929-2953. [PMID: 38834853 PMCID: PMC11251020 DOI: 10.1038/s44318-024-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Collapse
Affiliation(s)
- Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Department of Biological Sciences, SRM University-AP, Amaravati, 522502, India
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
24
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
25
|
Ribeiro VC, Russo LC, Hoch NC. PARP14 is regulated by the PARP9/DTX3L complex and promotes interferon γ-induced ADP-ribosylation. EMBO J 2024; 43:2908-2928. [PMID: 38834852 PMCID: PMC11251048 DOI: 10.1038/s44318-024-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
Collapse
Affiliation(s)
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
26
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
27
|
Cihlova B, Lu Y, Mikoč A, Schuller M, Ahel I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins (Basel) 2024; 16:208. [PMID: 38787060 PMCID: PMC11125620 DOI: 10.3390/toxins16050208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.
Collapse
Affiliation(s)
- Bara Cihlova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (B.C.); (Y.L.)
| |
Collapse
|
28
|
Parthasarathy S, Saenjamsai P, Hao H, Ferkul A, Pfannenstiel JJ, Suder EL, Bejan DS, Chen Y, Schwarting N, Aikawa M, Muhlberger E, Orozco RC, Sullivan CS, Cohen MS, Davido DJ, Hume AJ, Fehr AR. PARP14 is pro- and anti-viral host factor that promotes IFN production and affects the replication of multiple viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591186. [PMID: 38712082 PMCID: PMC11071520 DOI: 10.1101/2024.04.26.591186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.
Collapse
Affiliation(s)
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Hongping Hao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anna Ferkul
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Daniel S. Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Yating Chen
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology (P.K.J., M.A., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences (M.A., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine (M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elke Muhlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
29
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
30
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
31
|
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey B, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 2024; 52:801-815. [PMID: 38000390 PMCID: PMC10810221 DOI: 10.1093/nar/gkad1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bryan W Dorsey
- Ribon Therapeutics, 35 Cambridgepark Dr., Suite 300, Cambridge MA 02140, USA
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|