1
|
Zheng Z, Hu J, Sun D, Huang K, Li X, Sun J, Bai W. Structural and functional properties of common natural organic cations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156662. [PMID: 40138773 DOI: 10.1016/j.phymed.2025.156662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Natural products have emerged as a critical focus in modern scientific research due to their structural diversity and therapeutic potential. Among these are natural organic cations-a distinct class of nitrogen- and oxygen-containing compounds. Despite their pharmacological relevance, the literature lacks a systematic synthesis of structure-activity relationships for natural organic cations (NOC). This gap hinders the rational development of NOC-based therapies as sustainable alternatives to synthetic compounds. METHODS Literature was searched and collected using databases, including PubMed, Science Direct, and Web of Science. The search terms used included "natural organic cation", "alkaloid", "anthocyanin", "structure-activity relationship", "charge interaction", "π-cation interaction", "biological activity", "antimicrobial", "antioxidant", "anticancer", "neuroprotection", "anti-inflammatory", "berberine", "coptisine", "palmatine", "cyanidin", "delphinidin", "pelargonidin", "free radical scavenging", "gut microbiota metabolism", "NF-κB pathway", "G-quadruplex DNA", "isoquinoline alkaloid", "protoberberine", "benzophenanthridine", "planar conjugated system", "charge delocalization", "methylenedioxy group", and several combinations of these words. RESULTS The bioactivity of NOC is underestimated. This review uncovers the structure-activity relationships of NOC. Firstly, planar conjugated systems and substituents control target binding: N⁺ in alkaloids enhances DNA/protein affinity, while O⁺ in anthocyanins enables free radical scavenging and enzyme inhibition. Secondly, cationic species outperform neutral analogs in antimicrobial potency, antioxidant capacity, and target selectivity. NOC bind to biomolecules via π-cation/π-π stacking and electrostatic binding. Charge localization in conjugated systems enhances stability and bioactivity. CONCLUSION This review consolidates evidence that NOC represent promising candidates for replacing synthetic compounds in therapies for cancer, neurodegeneration, metabolic disorders, etc. Key findings highlight the superiority of cationic species in target engagement and bioactivity, driven by planar conjugated systems and substituent effects. However, clinical translation requires addressing gaps in bioavailability and long-term safety. Future research must prioritize structural optimization and mechanistic validation. By bridging these gaps, NOC could advance as sustainable, low-toxicity agents in precision medicine and functional nutrition.
Collapse
Affiliation(s)
- Zipeng Zheng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Dawei Sun
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China; The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Su J, Pan Y, Zhong F, Zhong Y, Huang J, Liu S, Wang K, Lin K, Gu X, Li D, Wu Q, Geng H, Guan Y, Xu G. Mitochondrial SLC3A1 regulates sexual dimorphism in cystinuria. Genes Dis 2025; 12:101472. [PMID: 40110490 PMCID: PMC11919626 DOI: 10.1016/j.gendis.2024.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/19/2024] [Accepted: 11/16/2024] [Indexed: 03/22/2025] Open
Abstract
Cystinuria is the most common inheritable cause of kidney stone disease, with males exhibiting a higher susceptibility than females. However, the cellular origin and underlying mechanisms of sex differences in cystinuria remain elusive. This study aims to investigate the mechanism using Slc3a1 knockout mice. We found that male mice lacking the Slc3a1 gene exhibited more severe stone formation and renal injuries, unaffected by double knockout of another sex-dependent-expressed cystine transporter Slc7a13 or orchidectomy procedure. Further investigations revealed aberrant mitochondrial functions as the primary factor contributing to the severity of cystinuria in Slc3a1 knockout male mice. Mechanistically, higher SLC3A1 levels in male kidneys could enhance mitochondrial functions through modulation of mitochondrial NAD+ uptake primarily in proximal tubule cells. Supplementation with an NAD+ precursor rescued the sex differences caused by Slc3a1 knockout. Our studies uncover the crucial role of Slc3a1 in mitochondrial functions and provide novel insights into potential interventions for sexual dimorphism of cystinuria.
Collapse
Affiliation(s)
- Jingyi Su
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongdong Pan
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fengbo Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiaxin Huang
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shengnan Liu
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kaiyuan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kai Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qihui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Hongquan Geng
- Department of Urology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yuting Guan
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
3
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
4
|
Zhang Z, Yang R, Zi Z, Liu B. A new clinical age of aging research. Trends Endocrinol Metab 2025; 36:440-458. [PMID: 39227191 DOI: 10.1016/j.tem.2024.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Aging is a major risk factor for a variety of diseases, thus, translation of aging research into practical applications is driven by the unmet need for existing clinical therapeutic options. Basic and translational research efforts are converging at a critical stage, yielding insights into how fundamental aging mechanisms are used to identify promising geroprotectors or therapeutics. This review highlights several research areas from a clinical perspective, including senescent cell targeting, alleviation of inflammaging, and optimization of metabolism with endogenous metabolites or precursors. Refining our understanding of these key areas, especially from the clinical angle, may help us to better understand and attenuate aging processes and improve overall health outcomes.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhike Zi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Liu B, Jin Q, Sun YK, Yang ZM, Meng P, Zhang X, Chen Q, Gan P, Zhao T, He JJ, He GP, Xue Q. From bench to bedside: targeting ferroptosis and mitochondrial damage in the treatment of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1563362. [PMID: 40352456 PMCID: PMC12061709 DOI: 10.3389/fendo.2025.1563362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and fatal cardiac complication caused by diabetes, with its pathogenesis involving various forms of cell death and mitochondrial dysfunction, particularly ferroptosis and mitochondrial injury. Recent studies have indicated that ferroptosis and mitochondrial damage play crucial roles in the onset and progression of DCM, though their precise regulatory mechanisms remain unclear. Of particular interest is the interaction between ferroptosis and mitochondrial damage, as well as their synergistic effects, which are not fully understood. This review summarizes the roles of ferroptosis and mitochondrial injury in the progression of DCM and explores the molecular mechanisms involved, with an emphasis on the interplay between these two processes. Additionally, the article offers an overview of targeted drugs shown to be effective in cellular experiments, animal models, and clinical trials, analyzing their mechanisms of action and potential side effects. The goal is to provide insights for future drug development and clinical applications. Moreover, the review explores the challenges and prospects of multi-target combination therapies and personalized medicine interventions in clinical practice to offer strategic guidance for the comprehensive prevention and management of DCM.
Collapse
Affiliation(s)
- Bin Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Qing Jin
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Yi Kang Sun
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Zhi Ming Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Ping Meng
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiu Chen
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Pin Gan
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Tao Zhao
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Jia Ji He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Gui Ping He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiang Xue
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| |
Collapse
|
6
|
Manickam R, Santhana S, Xuan W, Bisht KS, Tipparaju SM. Nampt: a new therapeutic target for modulating NAD + levels in metabolic, cardiovascular, and neurodegenerative diseases. Can J Physiol Pharmacol 2025. [PMID: 40203459 DOI: 10.1139/cjpp-2024-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
NAD+ is an important cofactor involved in regulating many biochemical processes in cells. An imbalance in NAD+/NADH ratio is linked to many diseases. NAD+ is depleted in diabetes, cardiovascular and neurodegenerative diseases, and in aging, and is increased in tumor cells. NAD+ is generated in cells via the de novo, Preiss-Handler, and salvage pathways. Most of the cellular NAD+ is generated through Nampt activation, a key rate-limiting enzyme that is involved in the salvage pathway. Restoration of NAD+/NADH balance offers therapeutic advantages for improving tissue homeostasis and function. NAD+ is known to benefit and restore the body's physiological mechanisms, including DNA replication, chromatin and epigenetic modifications, and gene expression. Recent studies elucidate the role of NAD+ in cells utilizing transgenic mouse models. Translational new therapeutics are positioned to utilize the NAD+ restoration strategies for overcoming the drawbacks that exist in the pharmacological toolkit. The present review highlights the significance of Nampt-NAD+ axis as a major player in energy metabolism and provides an overview with insights into future strategies, providing pharmacological advantages to address current and future medical needs.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sandhya Santhana
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kirpal S Bisht
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Fang X, Zhong Y, Zheng R, Wu Q, Liu Y, Zhang D, Wang Y, Ding W, Wang K, Zhong F, Lin K, Yao X, Hu Q, Li X, Xu G, Liu N, Nie J, Li D, Geng H, Guan Y. PPDPF preserves integrity of proximal tubule by modulating NMNAT activity in chronic kidney diseases. SCIENCE ADVANCES 2025; 11:eadr8648. [PMID: 40106551 PMCID: PMC11922016 DOI: 10.1126/sciadv.adr8648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/24/2024] [Indexed: 03/22/2025]
Abstract
Genome-wide association studies (GWAS) have identified loci associated with kidney diseases, but the causal variants, genes, and pathways involved remain elusive. Here, we identified a kidney disease gene called pancreatic progenitor cell differentiation and proliferation factor (PPDPF) through integrating GWAS on kidney function and multiomic analysis. PPDPF was predominantly expressed in healthy proximal tubules of human and mouse kidneys via single-cell analysis. Further investigations revealed that PPDPF functioned as a thiol-disulfide oxidoreductase to maintain cellular NAD+ levels. Deficiency in PPDPF disrupted NAD+ and mitochondrial homeostasis by impairing the activities of nicotinamide mononucleotide adenylyl transferases (NMNATs), thereby compromising the function of proximal tubules during injuries. Consequently, knockout of PPDPF notably accelerated the progression of chronic kidney disease (CKD) in mouse models induced by aging, chemical exposure, and obstruction. These findings strongly support targeting PPDPF as a potential therapy for kidney fibrosis, offering possibilities for future CKD interventions.
Collapse
Affiliation(s)
- Xiaoliang Fang
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui Zheng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Qihui Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Yu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Dexin Zhang
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuwei Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Wubing Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kaiyuan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fengbo Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kai Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, 266000, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Qingxun Hu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, 17164, Sweden
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongquan Geng
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
8
|
Jiang Y, Zhang H, Shi J, Shan T, Liu M, Wang P, Liang X, Liang H. Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice. Food Funct 2025; 16:1947-1968. [PMID: 39957299 DOI: 10.1039/d4fo05553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD+, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg-1 d-1) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD+ in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD+ level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Jing Shi
- College of continuing education, Qingdao University, Qingdao, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Man Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Zeng X, Wang Y, Farias K, Rappa A, Darko C, Sauve A, Huang Q, Alonso LC, Yang Y. NRH, a potent NAD + enhancer, improves glucose homeostasis and lipid metabolism in diet-induced obese mice through an active adenosine kinase pathway. Metabolism 2025; 164:156110. [PMID: 39710001 PMCID: PMC11788054 DOI: 10.1016/j.metabol.2024.156110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS NAD+ deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD+ enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD+ synthesis. METHODS Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice. In long-term studies, lean and high-fat diet-induced obese mice were treated with 250 mg/kg NRH thrice weekly for 7 weeks. Blood NAD+ levels, body composition, energy expenditure, and glucose and lipid metabolism were monitored. To test ADK's role, the ADK inhibitor ABT702 was co-administered with NRH in obese mice. RESULTS NRH entered tissues unassisted and was rapidly metabolized for NAD+ biosynthesis, while ADK inhibition blocked its phosphorylation, leading to NRH accumulation in all examined tissues and possible release back into circulation. The 7-week NRH administration was well-tolerated in both lean and obese mice. In obese mice, NRH improved glucose homeostasis by boosting insulin secretion, enhancing muscle insulin signaling, and reducing hepatic gluconeogenesis. It also lowered fat mass, decreased serum lipids, and improved white adipose function. These benefits were linked to elevated tissue NAD+ levels, enhanced Sirtuin activities, and increased mitochondrial antioxidant defenses. ADK inhibition abolished these effects, confirming that NRH's direct entry into tissues and subsequent phosphorylation is essential for its full benefits. CONCLUSION This study establishes NRH as a promising therapeutic agent for obesity-induced metabolic dysfunction, correcting glucose intolerance and hyperlipidemia through ADK-dependent NAD+ enhancement.
Collapse
Affiliation(s)
- Xinliu Zeng
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongjie Wang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America; Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, United States of America
| | - Karina Farias
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America
| | - Andrew Rappa
- Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY 10021, United States of America
| | - Christine Darko
- Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY 10021, United States of America
| | - Anthony Sauve
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America
| | - Qingxia Huang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Laura C Alonso
- Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY 10021, United States of America
| | - Yue Yang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, United States of America
| |
Collapse
|
10
|
Siri M, Maleki MH, Meybodi SM, Mazhari SA, Saviri FG, Dehghanian A, Naseh M, Esmaeili N, Dastghaib S, Aryanian Z. Enhancing wound healing via modulation of autophagy-induced apoptosis: the role of nicotinamide riboside and resveratrol in streptozotocin-treated diabetic rat. J Nutr Biochem 2025; 137:109811. [PMID: 39577710 DOI: 10.1016/j.jnutbio.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Impaired wound healing from diabetes mellitus (DM) causes lower limb amputations, posing clinical, social, and economic issues. Hypoxia and advanced glycation end products cause autophagy and apoptosis dysregulation, which delays wound healing. The study will test systemic and topical Nicotinamide Riboside (NR) and Resveratrol (RSV) for the capacity to modulate autophagy and apoptosis via the SIRT-1-FOXO1 pathway and improve diabetic wound healing. About 54 male Sprague-Dawley rats were separated into control, diabetic (T1D), T1D-Gel-Base, T1D-NR, T1D-RSV, and T1D-NR+RSV groups. Rats were gavaged with 50 mg/kg/day RSV and 300 mg/kg/day NR for 5 weeks before having their wounds topically treated with 5% NR and RSV gel for 15 days after diabetes induction. Biochemical, histomorphometric, and stereological assays were conducted. The mRNA expressions of SIRT-1, FOXO1, VEGF, BAX, Cas3, Bcl-2, Beclin1, LC3IIβ, P62, and ATG5 were examined by qRT-PCR. NR and RSV improved diabetic rat wound closure. Diabetic rats treated with NR and RSV had significantly higher LC3IIβ, VEGEF, Bcl-2, and SIRT-1 mRNA levels. Bcl-2, p62, and ATG5 were regulated whereas BAX and Cas 3 were reduced. Stereological investigations showed epidermal, dermal, collagen bundle, vascular, and fibroblast density enhancements. This study highlights the potential of NR and RSV, acting as SIRT-1 activators, in improving diabetic wound healing by regulating SIRT-1-FOXO1-mediated autophagy and apoptosis. These findings offer valuable insights for developing targeted strategies to enhance diabetic wound healing. The combination of NR and RSV showed promising effects, suggesting a potential therapeutic approach for improving diabetic wound healing.
Collapse
Affiliation(s)
- Morvarid Siri
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Mohammadmahdi Meybodi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Fatemeh Ghaderi Saviri
- Department of cellular and molecular biology, Kish International Campus, University of Tehran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Molecular Pathology and Cytogenetics Division, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Esmaeili
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Razi Hospital, School of Medicine, Tehran University of Medical Sciences
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, Shiraz, Iran; Autophagy Research center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zeinab Aryanian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
11
|
Antoniou C, Loreto A, Gilley J, Merlini E, Orsomando G, Coleman MP. Chronically Low NMNAT2 Expression Causes Sub-lethal SARM1 Activation and Altered Response to Nicotinamide Riboside in Axons. Mol Neurobiol 2025; 62:3903-3917. [PMID: 39352636 PMCID: PMC11790816 DOI: 10.1007/s12035-024-04480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 02/04/2025]
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon survival factor that maintains axon health by blocking activation of the downstream pro-degenerative protein SARM1 (sterile alpha and TIR motif containing protein 1). While complete absence of NMNAT2 in mice results in extensive axon truncation and perinatal lethality, the removal of SARM1 completely rescues these phenotypes. Reduced levels of NMNAT2 can be compatible with life; however, they compromise axon development and survival. Mice born expressing sub-heterozygous levels of NMNAT2 remain overtly normal into old age but develop axonal defects in vivo and in vitro as well as behavioural phenotypes. Therefore, it is important to examine the effects of constitutively low NMNAT2 expression on SARM1 activation and disease susceptibility. Here we demonstrate that chronically low NMNAT2 levels reduce prenatal viability in mice in a SARM1-dependent manner and lead to sub-lethal SARM1 activation in morphologically intact axons of superior cervical ganglion (SCG) primary cultures. This is characterised by a depletion in NAD(P) and compromised neurite outgrowth. We also show that chronically low NMNAT2 expression reverses the NAD-enhancing effect of nicotinamide riboside (NR) in axons in a SARM1-dependent manner. These data indicate that low NMNAT2 levels can trigger sub-lethal SARM1 activation which is detectable at the molecular level and could predispose to human axonal disorders.
Collapse
Affiliation(s)
- Christina Antoniou
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Andrea Loreto
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Gilley
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Elisa Merlini
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
12
|
Zhao J, Zhang Y, Lv S, Wang F, Shan T, Wang J, Liu Z, Zhang L, Cui H, Tian J. Mechanism of Formononetin in Improving Energy Metabolism and Alleviating Neuronal Injury in CIRI Based on Nontargeted Metabolomics Research. J Cell Mol Med 2025; 29:e70340. [PMID: 39993962 PMCID: PMC11850093 DOI: 10.1111/jcmm.70340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 02/26/2025] Open
Abstract
Cerebral ischaemia-reperfusion injury (CIRI), resulting from thrombolytic therapy for ischaemic stroke, presents a considerable challenge during postoperative recovery. Formononetin (FMN) has shown promise in the prevention and treatment of neurological diseases. However, its specific mechanism in ameliorating CIRI remains uncertain. Initially, we established a CIRI rat model to evaluate FMN's therapeutic potential by assessing neurological function, infarct area and pathological changes. Subsequently, we employed metabolomics technology to investigate FMN's impact on metabolite levels in the ischaemic brain tissue of CIRI rats. Based on the metabolomics findings, we validated FMN's effects on nicotinate and nicotinamide metabolism, as well as alanine, aspartate and glutamate metabolism, along with its influence on neuronal injury and repair. Our investigation unveiled that FMN intervention significantly diminished the Longa score and asymmetry score in CIRI rats, constricted the infarct area and ameliorated pathological alterations in the ischaemic brain tissue, including reduced DCI index and augmented Nissl body count. Metabolomics analysis indicated that FMN exerted regulatory effects on nicotinate and nicotinamide metabolism, as well as alanine, aspartate and glutamate metabolism. Following FMN intervention, there was a notable increase in the levels of related metabolites such as nicotinamide (NAM), L-aspartic acid (L-Asp), fumaric acid (FA), gamma-aminobutyric acid (GABA) and L-glutamic acid (L-Glu). RT-qPCR and Western blot outcomes demonstrated that FMN upregulated the gene and protein expression of key enzymes adenylosuccinate lyase (ADSL) and glutamic acid decarboxylase (GAD) involved in alanine, aspartate and glutamate metabolism. Moreover, FMN intervention bolstered SOD activity, diminished MDA and ROS levels and reduced TUNEL-positive expression. Furthermore, FMN intervention elevated ATP levels and markedly increased Ki67-positive expression. FMN exhibits the potential to alleviate oxidative stress injury in CIRI rats by enhancing nicotinate and nicotinamide metabolism along with alanine, aspartate and glutamate metabolism, consequently reinstating energy metabolism and conferring neuroprotective effects to ameliorate CIRI.
Collapse
Affiliation(s)
- Jianwen Zhao
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Yanwei Zhang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
| | - Shuquan Lv
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
| | - Feng Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
| | - Ting Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
- Graduate SchoolChengde Medical UniversityChengdeChina
| | - Jian Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
| | - Zeng Liu
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
- Graduate SchoolHebei University of Chinese MedicineShijiazhuangChina
| | - Limin Zhang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western MedicineCangzhouChina
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Junbiao Tian
- Hebei Provincial Hospital of Chinese MedicineShijiazhuangChina
| |
Collapse
|
13
|
Liu YJ, Kimura M, Li X, Sulc J, Wang Q, Rodríguez-López S, Scantlebery AML, Strotjohann K, Gallart-Ayala H, Vijayakumar A, Myers RP, Ivanisevic J, Houtkooper RH, Subramanian GM, Takebe T, Auwerx J. ACMSD inhibition corrects fibrosis, inflammation, and DNA damage in MASLD/MASH. J Hepatol 2025; 82:174-188. [PMID: 39181211 PMCID: PMC11741923 DOI: 10.1016/j.jhep.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in the liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and induced pluripotent stem cell-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. HLO models of steatohepatitis were used to assess the DNA damage responses to ACMSD inhibition in human contexts. RESULTS Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as observed in HLO models of steatohepatitis. CONCLUSIONS Our findings highlight the benefits of ACMSD inhibition in enhancing hepatic NAD+ levels and enabling genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS Enhancing NAD+ levels has been shown to induce remarkable health benefits in mouse models of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance de novo synthesis of NAD+ in the liver by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism institute, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Camillo L, Zavattaro E, Savoia P. Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:254. [PMID: 40005371 PMCID: PMC11857428 DOI: 10.3390/medicina61020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is a precursor to essential cofactors nicotinamide adenine dinucleotide (NAD⁺) and NADPH. NAD⁺ is integral to numerous cellular processes, including metabolism regulation, ATP production, mitochondrial respiration, reactive oxygen species (ROS) management, DNA repair, cellular senescence, and aging. NAM supplementation has demonstrated efficacy in restoring cellular energy, repairing DNA damage, and inhibiting inflammation by suppressing pro-inflammatory cytokines release. Due to its natural presence in a variety of foods and its excellent safety profile-even at high doses of up to 3 g/day-NAM is extensively used in the chemoprevention of non-melanoma skin cancers and the treatment of dermatological conditions such as blistering diseases, atopic dermatitis, rosacea, and acne vulgaris. Recently, its anti-aging properties have elevated NAM's prominence in skincare formulations. Beyond DNA repair and energy replenishment, NAM significantly impacts oxidative stress reduction, cell cycle regulation, and apoptosis modulation. Despite these multifaceted benefits, the comprehensive molecular mechanisms underlying NAM's actions remain not fully elucidated. This review consolidates recent research to shed light on these mechanisms, emphasizing the critical role of NAM in cellular health and its therapeutic potential. By enhancing our understanding, this work underscores the importance of continued exploration into NAM's applications, aiming to inform future clinical practices and skincare innovations.
Collapse
Affiliation(s)
| | | | - Paola Savoia
- Department of Health Science, Università del Piemonte Orientale, 28100 Novara, Italy; (L.C.); (E.Z.)
| |
Collapse
|
15
|
Wang X, Xie Y, Bayoude A, Zhang B, Yu B. Discovering the Q-marker of scutellaria baicalensis against viral pneumonia integrated chemical profile identification, pharmacokinetic, metabolomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119232. [PMID: 39662860 DOI: 10.1016/j.jep.2024.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (SR), an ancient antiviral herbal medicine, is widely used in treating viral pneumonia and its active constituents, baicalin and baicalein, have been reported to have antiviral activity. AIM OF THE STUDY However, reports on Q-markers of SR for antiviral pneumonia are still scarce. This study aims to screen for Q-markers using a comprehensive strategy that integrates identification of chemical profiles, in vivo absorption, metabolic regulation and predicted target. MATERIALS AND METHODS First, the markers were screened by chemical profile identification and pharmacokinetics using HPLC-MS/MS. Then, the therapeutic effects and differential metabolites of SR on viral pneumonia rats were evaluated by HE staining, assessment of inflammation levels and metabolomics analysis. Finally, the mechanisms of action between Q-markers and metabolites were exploited based on network pharmacology. CONCLUSION A total of 139 compounds were identified in SR, of which 35 and 41 were found in rat plasma and urine, respectively. Pharmacokinetic screening identified baicalin, baicalein, wogonin, wogonoside and oroxylin A as potential markers of SR. Furthermore, SR significantly improved interstitial and alveolar oedema, hemorrhage and alveolar collapse after modelling, while reducing the expression of inflammatory factors. Metabolomics revealed that SR significantly regulated the expression of 37 metabolites, mainly involving phenylalanine, tyrosine and tryptophan biosynthesis pathways. Network pharmacology showed that these five biomarkers can regulate the expression of metabolites through the key target SRC, ESR1, HSP90AA1, EGFR, thereby exerting antiviral effects against pneumonia. The study results suggest that baicalin, baicalein, wogonin, wogonoside and oroxylin A serve as primary Q-markers of SR in the treatment of viral pneumonia.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Alamusi Bayoude
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Yadav S, Pan X, Li S, Martin PL, Hoang N, Chen K, Karhadkar A, Malhotra J, Zuckerman AL, Munan S, Klose MK, Wang L, Cracan V, Parkhitko AA. Tissue-specific modulation of NADH consumption as an anti-aging intervention in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631511. [PMID: 39829793 PMCID: PMC11741393 DOI: 10.1101/2025.01.06.631511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD+) or reduced (NADH) states, which together form a key NADH/NAD+ redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process. Supplementation with NAD precursors boosts total cellular NAD levels and provides some therapeutic benefits in human clinical trials. However, supplementation studies cannot determine tissue-specific effects of an altered NADH/NAD+ ratio. Here, we created transgenic Drosophila expressing a genetically encoded xenotopic tool LbNOX to directly manipulate the cellular NADH/NAD+ ratio. We found that LbNOX expression in Drosophila impacts both NAD(H) and NADP(H) metabolites in a sex-specific manner. LbNOX rescues neuronal cell death induced by the expression of mutated alpha-B crystallin in the Drosophila eye, a widely used system to study reductive stress. Utilizing LbNOX, we demonstrate that targeting redox NAD metabolism in different tissues may have drastically different outcomes, as the expression of LbNOX solely in the muscle is much more effective for rescuing paraquat-induced oxidative stress compared to whole-body expression. Excitingly, we demonstrate that perturbing NAD(P) metabolism in non-neuronal tissues is sufficient to rejuvenate sleep profiles in aged flies to a youthful state. In summary, we used xenotopic tool LbNOX to identify tissues and metabolic processes which benefited the most from the modulation of the NAD metabolism thereby highlighting important aspects of rebalancing the NAD and NADP pools, all of which can be translated into novel designs of NAD-related human clinical trials.
Collapse
Affiliation(s)
- Shweta Yadav
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Xingxiu Pan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Paige LaRae Martin
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ngoc Hoang
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Kejin Chen
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Aditi Karhadkar
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Jatin Malhotra
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin L. Zuckerman
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
- Program in Mathematics and Science Education, University of California San Diego and San Diego State University, San Diego, USA
| | - Subrata Munan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
| | - Markus K. Klose
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, PA, USA
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Valentin Cracan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Wu C, Kupferschmid AC, Chen L, McManus AJ, Kivisäkk P, Galler JA, Schwab NA, DesRuisseaux LA, Williams VJ, Gerber J, Riley M, Young C, Guzmán‐Vélez E, Dodge HH, Tanzi RE, Singer CM, Arnold SE. Cognitive and Alzheimer's disease biomarker effects of oral nicotinamide riboside (NR) supplementation in older adults with subjective cognitive decline and mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70023. [PMID: 39817194 PMCID: PMC11733434 DOI: 10.1002/trc2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment. METHODS The primary efficacy outcome was the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Secondary outcomes included plasma phosphorylated tau 217 (pTau217), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Exploratory outcomes included Lumosity gameplay (z-scores) for cognition and step counts from wearables. Mixed model for repeated measures was used for between-group comparisons; paired t-tests were used for within-individual comparisons. RESULTS Forty-six participants aged over 55 were randomized to NR-PBO or PBO-NR groups; 41 completed baseline visits, and 37 completed the trial. NR supplementation was safe and well tolerated with no differences in adverse events reported between NR and PBO treatment phases. For the between-group comparison, there was a 7% reduction in pTau217 concentrations after taking NR, while an 18% increase with PBO (p = 0.02). No significant between-group differences were observed for RBANS, other plasma biomarkers(GFAP and NfL), Lumosity gameplay scores or step counts. For the within-individual comparison, pTau217 concentrations significantly decreased during the NR phase compared to the PBO (p = 0.02), while step counts significantly increased during the NR phase than PBO (p = 0.04). DISCUSSION Eight weeks NR supplementation is safe and lowered pTau217 concentrations but did not alter cognition as measured by conventional or novel digital assessments. Further research is warranted to validate NR's efficacy in altering pathological brain aging processes. Highlights The integrated study design combines a two-arm parallel trial with a crossover phase, offering the opportunity to enhance sample size for within-individual analysis and assess carryover effects.NR is safe but did not alter cognition as measured by multi-modal assessments in SCD/MCI.For between-group comparison, pTau217 levels decreased with NR and increased with PBO at 8-week follow-up.For within-individual comparison, step counts increased after NR and decreased after PBO.A larger, longer study with pharmacodynamic and pathophysiological biomarkers is needed to assess NR's disease-modifying effects.
Collapse
Affiliation(s)
- Chao‐Yi Wu
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | | | - Liu Chen
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Alison J. McManus
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Pia Kivisäkk
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Jake A. Galler
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Nadine A. Schwab
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | | | - Victoria J. Williams
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
- GeriatricsDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin – MadisonMadisonUSA
| | - Jessica Gerber
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Misha Riley
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Cathrine Young
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Edmarie Guzmán‐Vélez
- PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonUSA
- McCance Center for Brain HealthGenetics and Aging Research UnitNeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Hiroko H. Dodge
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Rudolph E. Tanzi
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
- McCance Center for Brain HealthGenetics and Aging Research UnitNeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| | - Clifford M. Singer
- Center for Cognitive and Mental HealthNorthern Light Acadia HospitalBangorUSA
| | - Steven E. Arnold
- NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonUSA
| |
Collapse
|
18
|
Norheim KL, Ben Ezra M, Heckenbach I, Andreasson LM, Eriksen LL, Dyhre-Petersen N, Damgaard MV, Berglind M, Pricolo L, Sampson D, Dellinger RW, Sverrild A, Treebak JT, Ditlev SB, Porsbjerg C, Scheibye-Knudsen M. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. NATURE AGING 2024; 4:1772-1781. [PMID: 39548320 PMCID: PMC11645284 DOI: 10.1038/s43587-024-00758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive, incurable disease associated with smoking and advanced age, ranking as the third leading cause of death worldwide. DNA damage and loss of the central metabolite nicotinamide adenine dinucleotide (NAD+) may contribute to both aging and COPD, presenting a potential avenue for interventions. In this randomized, double-blind, placebo-controlled clinical trial, we treated patients with stable COPD (n = 40) with the NAD+ precursor nicotinamide riboside (NR) for 6 weeks and followed-up 12 weeks later. The primary outcome was change in sputum interleukin-8 (IL-8) from baseline to week 6. The estimated treatment difference between NR and placebo in IL-8 after 6 weeks was -52.6% (95% confidence interval (CI): -75.7% to -7.6%; P = 0.030). This effect persisted until the follow-up 12 weeks after the end of treatment (-63.7%: 95% CI -85.7% to -7.8%; P = 0.034). For secondary outcomes, NR treatment increased NAD+ levels by more than twofold in whole blood, whereas IL-6 levels in plasma remained unchanged. In exploratory analyses, treatment with NR showed indications of upregulated gene pathways related to genomic integrity in the airways and reduced epigenetic aging, possibly through a reduction in cellular senescence. These exploratory analyses need to be confirmed in future trials. ClinicalTrials.gov identifier: NCT04990869 .
Collapse
Affiliation(s)
- Kristoffer L Norheim
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Ben Ezra
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | - Louise Munkholm Andreasson
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lise Lotte Eriksen
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Nanna Dyhre-Petersen
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mads Vargas Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Berglind
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Luca Pricolo
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Boosting NAD + in patients with COPD reduces airway inflammation. NATURE AGING 2024; 4:1676-1677. [PMID: 39567759 DOI: 10.1038/s43587-024-00765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
20
|
Høyland LE, VanLinden MR, Niere M, Strømland Ø, Sharma S, Dietze J, Tolås I, Lucena E, Bifulco E, Sverkeli LJ, Cimadamore-Werthein C, Ashrafi H, Haukanes KF, van der Hoeven B, Dölle C, Davidsen C, Pettersen IKN, Tronstad KJ, Mjøs SA, Hayat F, Makarov MV, Migaud ME, Heiland I, Ziegler M. Subcellular NAD + pools are interconnected and buffered by mitochondrial NAD . Nat Metab 2024; 6:2319-2337. [PMID: 39702414 DOI: 10.1038/s42255-024-01174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/05/2024] [Indexed: 12/21/2024]
Abstract
The coenzyme NAD+ is consumed by signalling enzymes, including poly-ADP-ribosyltransferases (PARPs) and sirtuins. Ageing is associated with a decrease in cellular NAD+ levels, but how cells cope with persistently decreased NAD+ concentrations is unclear. Here, we show that subcellular NAD+ pools are interconnected, with mitochondria acting as a rheostat to maintain NAD+ levels upon excessive consumption. To evoke chronic, compartment-specific overconsumption of NAD+, we engineered cell lines stably expressing PARP activity in mitochondria, the cytosol, endoplasmic reticulum or peroxisomes, resulting in a decline of cellular NAD+ concentrations by up to 50%. Isotope-tracer flux measurements and mathematical modelling show that the lowered NAD+ concentration kinetically restricts NAD+ consumption to maintain a balance with the NAD+ biosynthesis rate, which remains unchanged. Chronic NAD+ deficiency is well tolerated unless mitochondria are directly targeted. Mitochondria maintain NAD+ by import through SLC25A51 and reversibly cleave NAD+ to nicotinamide mononucleotide and ATP when NMNAT3 is present. Thus, these organelles can maintain an additional, virtual NAD+ pool. Our results are consistent with a well-tolerated ageing-related NAD+ decline as long as the vulnerable mitochondrial pool is not directly affected.
Collapse
Affiliation(s)
- Lena E Høyland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Marc Niere
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Suraj Sharma
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jörn Dietze
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Tolås
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, NTNU Ålesund, Ålesund, Norway
| | - Eva Lucena
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ersilia Bifulco
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lars J Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Camila Cimadamore-Werthein
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Christian Dölle
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Cédric Davidsen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Svein A Mjøs
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ines Heiland
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
21
|
Madsen HB, Navarro C, Gasparini E, Park JH, Li Z, Croteau DL, Bohr VA. Urolithin A and nicotinamide riboside differentially regulate innate immune defenses and metabolism in human microglial cells. Front Aging Neurosci 2024; 16:1503336. [PMID: 39665042 PMCID: PMC11631940 DOI: 10.3389/fnagi.2024.1503336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction During aging, many cellular processes, such as autophagic clearance, DNA repair, mitochondrial health, metabolism, nicotinamide adenine dinucleotide (NAD+) levels, and immunological responses, become compromised. Urolithin A (UA) and Nicotinamide Riboside (NR) are two naturally occurring compounds known for their anti-inflammatory and mitochondrial protective properties, yet the effects of these natural substances on microglia cells have not been thoroughly investigated. As both UA and NR are considered safe dietary supplements, it is equally important to understand their function in normal cells and in disease states. Methods This study investigates the effects of UA and NR on immune signaling, mitochondrial function, and microglial activity in a human microglial cell line (HMC3). Results Both UA and NR were shown to reduce DNA damage-induced cellular senescence. However, they differentially regulated gene expression related to neuroinflammation, with UA enhancing cGAS-STING pathway activation and NR displaying broader anti-inflammatory effects. Furthermore, UA and NR differently influenced mitochondrial dynamics, with both compounds improving mitochondrial respiration but exhibiting distinct effects on production of reactive oxygen species and glycolytic function. Discussion These findings underscore the potential of UA and NR as therapeutic agents in managing neuroinflammation and mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Helena Borland Madsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Navarro
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Gasparini
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jae-Hyeon Park
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
22
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
23
|
Zhang W, Bai L, Xu W, Liu J, Chen Y, Lin W, Lu H, Wang B, Luo B, Peng G, Zhang K, Shen C. Sirt6 Mono-ADP-Ribosylates YY1 to Promote Dystrophin Expression for Neuromuscular Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406390. [PMID: 39387251 PMCID: PMC11600243 DOI: 10.1002/advs.202406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The degeneration of the neuromuscular junction (NMJ) and the decline in motor function are common features of aging, but the underlying mechanisms have remained largely unclear. This study reveals that Sirt6 is reduced in aged mouse muscles. Ablation of Sirt6 in skeletal muscle causes a reduction of Dystrophin levels, resulting in premature NMJ degeneration, compromised neuromuscular transmission, and a deterioration in motor performance. Mechanistic studies show that Sirt6 negatively regulates the stability of the Dystrophin repressor YY1 (Yin Yang 1). Specifically, Sirt6 mono-ADP-ribosylates YY1, causing its disassociation from the Dystrophin promoter and allowing YY1 to bind to the SMURF2 E3 ligase, leading to its degradation. Importantly, supplementation with nicotinamide mononucleotide (NMN) enhances the mono-ADP-ribosylation of YY1 and effectively delays NMJ degeneration and the decline in motor function in elderly mice. These findings provide valuable insights into the intricate mechanisms underlying NMJ degeneration during aging. Targeting Sirt6 could be a potential therapeutic approach to mitigate the detrimental effects on NMJ degeneration and improve motor function in the elderly population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lei Bai
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wentao Xu
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jun Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Yi Chen
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicine and International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwuChina
| | - Huasong Lu
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Binwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Benyan Luo
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Guoping Peng
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseMOE Joint International Research Laboratory of Pancreatic DiseasesFirst Affiliated HospitalHangzhou310006China
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang UniversityNanhu Brain‐Computer Interface InstituteHangzhouChina
| |
Collapse
|
24
|
Liang NN, Guo YY, Zhang XY, Ren YH, He YZ, Liu ZB, Xu DX, Xu S. Mitochondrial Dysfunction-Evoked DHODH Acetylation is Involved in Renal Cell Ferroptosis during Cisplatin-Induced Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404753. [PMID: 39303219 DOI: 10.1002/advs.202404753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Several studies have observed renal cell ferroptosis during cisplatin-induced acute kidney injury (AKI). However, the mechanism is not completely clear. In this study, oxidized arachidonic acid (AA) metabolites are increased in cisplatin-treated HK-2 cells. Targeted metabolomics showed that the end product of pyrimidine biosynthesis is decreased and the initiating substrate of pyrimidine biosynthesis is increased in cisplatin-treated mouse kidneys. Mitochondrial DHODH, a key enzyme for pyrimidine synthesis, and its downstream product CoQH2, are downregulated. DHODH overexpression attenuated but DHODH silence exacerbated cisplatin-induced CoQH2 depletion and lipid peroxidation. Mechanistically, renal DHODH acetylation is elevated in cisplatin-exposed mice. Mitochondrial SIRT3 is reduced in cisplatin-treated mouse kidneys and HK-2 cells. Both in vitro SIRT3 overexpression and in vivo NMN supplementation attenuated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis. By contrast, Sirt3 knockout aggravated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis, which can not be attenuated by NMN. Additional experiments showed that cisplatin caused mitochondrial dysfunction and SIRT3 SUMOylation. Pretreatment with mitochondria-target antioxidant MitoQ alleviated cisplatin-caused mitochondrial dysfunction, SIRT3 SUMOylation, and DHODH acetylation. MitoQ pretreatment protected against cisplatin-caused AKI and renal cell ferroptosis. Taken together, these results suggest that mitochondrial dysfunction-evoked DHODH acetylation partially contributes to renal cell ferroptosis during cisplatin-induced AKI.
Collapse
Affiliation(s)
- Nan-Nan Liang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Yue-Yue Guo
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Ya-Hui Ren
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Yi-Zhang He
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zhi-Bing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| |
Collapse
|
25
|
Oliveira-Cruz A, Macedo-Silva A, Silva-Lima D, Sanchez-Almeida J, Cruz-Coutinho L, Santos Tavares MP, Majerowicz D. Effects of Supplementation with NAD + Precursors on Metabolic Syndrome Parameters: A Systematic Review and Meta-Analysis. Horm Metab Res 2024; 56:818-826. [PMID: 39111741 DOI: 10.1055/a-2382-6829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Intracellular levels of NAD + regulate metabolism, among other ways, through enzymes that use NAD + as a substrate, capable of inducing catabolic processes, such as lipid oxidation, glucose uptake, and mitochondrial activity. In several model organisms, administering precursor compounds for NAD + synthesis increases its levels, improves lipid and glucose homeostasis, and reduces weight gain. However, evidence of the effects of these precursors on human patients needs to be better evaluated. Therefore, we carried out a systematic review and meta-analysis of randomized clinical trials that assessed the effects of NAD + precursors on Metabolic Syndrome parameters in humans. We based our methods on PRISMA 2020. Our search retrieved 429 articles, and 19 randomized controlled trials were included in the meta-analysis. We assessed the risk of bias with the Rob 2 algorithm and summarized the quality of evidence with the GRADE algorithm. Supplementation with NAD + precursors reduced plasma levels of total cholesterol and triglycerides in volunteers, but the intervention did not significantly affect the other outcomes analyzed. Three of the included articles presented a high risk of bias. The quality of evidence varied between very low and low due to the risk of bias, imprecision, and indirectness. The number of participants in outcomes other than lipidemia is still generally tiny; therefore, more clinical trials evaluating these parameters will increase the quality of the evidence. On the other hand, quality randomized studies are essential to assess better the effects of NAD + precursors on lipidemia.
Collapse
Affiliation(s)
- Amanda Oliveira-Cruz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Silva-Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Sanchez-Almeida
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Cruz-Coutinho
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Majerowicz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Broome SC, Whitfield J, Karagounis LG, Hawley JA. Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing. Sports Med 2024; 54:2291-2309. [PMID: 39060742 PMCID: PMC11393155 DOI: 10.1007/s40279-024-02072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The age-related loss of skeletal muscle mass and physical function leads to a loss of independence and an increased reliance on health-care. Mitochondria are crucial in the aetiology of sarcopenia and have been identified as key targets for interventions that can attenuate declines in physical capacity. Exercise training is a primary intervention that reduces many of the deleterious effects of ageing in skeletal muscle quality and function. However, habitual levels of physical activity decline with age, making it necessary to implement adjunct treatments to maintain skeletal muscle mitochondrial health and physical function. This review provides an overview of the effects of ageing and exercise training on human skeletal muscle mitochondria and considers several supplements that have plausible mechanistic underpinning to improve physical function in ageing through their interactions with mitochondria. Several supplements, including MitoQ, urolithin A, omega-3 polyunsaturated fatty acids (n3-PUFAs), and a combination of glycine and N-acetylcysteine (GlyNAC) can improve physical function in older individuals through a variety of inter-dependent mechanisms including increases in mitochondrial biogenesis and energetics, decreases in mitochondrial reactive oxygen species emission and oxidative damage, and improvements in mitochondrial quality control. While there is evidence that some nicotinamide adenine dinucleotide precursors can improve physical function in older individuals, such an outcome seems unrelated to and independent of changes in skeletal muscle mitochondrial function. Future research should investigate the safety and efficacy of compounds that can improve skeletal muscle health in preclinical models through mechanisms involving mitochondria, such as mitochondrial-derived peptides and mitochondrial uncouplers, with a view to extending the human health-span.
Collapse
Affiliation(s)
- Sophie C Broome
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
27
|
Zhang J, Poon ETC, Wong SHS. Efficacy of oral nicotinamide mononucleotide supplementation on glucose and lipid metabolism for adults: a systematic review with meta-analysis on randomized controlled trials. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39116016 DOI: 10.1080/10408398.2024.2387324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A surge of public interest in NMN supplementation has been observed in recent years. However, whether NMN supplements are effective in improving metabolic health remains unclear. The objective of the review was to assess the effects of NMN supplementation on fasting glucose, triglycerides, total cholesterol, LDL-C, and HDL-C in adults. Studies were located by searching four databases (PubMed, Embase, Cochrane, and Web of Science). Two reviewers independently conducted title/abstract and full-text screening, data extraction, and risk-of-bias assessment. Of the 4049 records reviewed, 12 studies with a total of 513 participants met the criteria for analysis. Random-effects meta-analyses found an overall significant effect of NMN supplementation in elevating blood NAD levels. However, most of the clinically relevant outcomes were not significantly different between NMN supplementation and control group. Risk-of-bias assessment using RoB2 showed some concerns in seven studies and high risk of bias in the other five studies. Together, our findings suggest that an exaggeration of the benefits of NMN supplementation may exist in the field. Although the limited number of eligible studies was sufficiently powered to detect changes in the abovementioned primary outcomes, more studies are needed to conclude about the exact effects of NMN supplementation.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| | - Eric Tsz-Chun Poon
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| | - Stephen Heung-Sang Wong
- Department of Sports Science & Physical Education, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong
| |
Collapse
|
28
|
Yue T, Dong Y, Huo Q, Li W, Wang X, Zhang S, Fan H, Wu X, He X, Zhao Y, Li D. Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism. J Adv Res 2024:S2090-1232(24)00294-7. [PMID: 39029900 DOI: 10.1016/j.jare.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE. OBJECTIVES The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms. METHODS Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection. RESULTS Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR. CONCLUSION In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.
Collapse
Affiliation(s)
- Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
29
|
Liu MN, Lan Q, Wu H, Qiu CW. Rejuvenation of young blood on aging organs: Effects, circulating factors, and mechanisms. Heliyon 2024; 10:e32652. [PMID: 38994040 PMCID: PMC11237939 DOI: 10.1016/j.heliyon.2024.e32652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Aging causes degenerative changes in organs, leading to a decline in physical function. Over the past two decades, researchers have made significant progress in understanding the rejuvenating effects of young blood on aging organs, benefiting from heterochronic parabiosis models that connect the blood circulation of aged and young rodents. It has been discovered that young blood can partially rejuvenate organs in old animals by regulating important aging-related signaling pathways. Clinical trials have also shown the effectiveness of young blood in treating aging-related diseases. However, the limited availability of young blood poses a challenge to implementing anti-aging therapies on a large scale for older individuals. As a promising alternative, scientists have identified some specific anti-aging circulating factors in young blood that have been shown to promote organ regeneration, reduce inflammation, and alleviate fibrosis associated with aging in animal experiments. While previous reviews have focused primarily on the effects and mechanisms of circulating factors on aging, it is important to acknowledge that studying the rejuvenating effects and mechanisms of young blood has been a significant source of inspiration in this field, and it will continue to be in the future. In recent years, new findings have emerged, further expanding our knowledge in this area. This review aims to summarize the rejuvenating effects and mechanisms of young blood and circulating factors, discussing their similarities and connections, addressing discrepancies in previous studies, outlining future research directions, and highlighting the potential for clinical translation in anti-aging interventions.
Collapse
Affiliation(s)
- Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Hao Wu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
30
|
Sack MN. Coordinate Targeting of Mitochondrial Energetics, Antioxidant Defenses, and Inflammation: Is NAD + Boosting an HFpEF Elixir? JACC Basic Transl Sci 2024; 9:751-753. [PMID: 39070278 PMCID: PMC11282880 DOI: 10.1016/j.jacbts.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Affiliation(s)
- Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Kuppa A, Alzamrooni A, Lopez R, Suhan T, Chaudhary R, Collins N, Van den Bergh F, Abouleisa R, Wang H, Mohamed T, Satin J, Lyssiotis C, Beard DA, Abdel-Latif A. Inherent Metabolic Adaptations in Adult Spiny Mouse ( Acomys ) Cardiomyocytes Facilitate Enhanced Cardiac Recovery Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595229. [PMID: 38826249 PMCID: PMC11142149 DOI: 10.1101/2024.05.22.595229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( Acomys ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood. In this study, we comprehensively characterized the metabolic characteristics of cardiomyocytes in Acomys compared to the non-regenerative Mus musculus . We utilized single-nucleus RNA sequencing (snRNA-seq) in sham-operated animals and 1, 3, and 7 days post-myocardial infarction to investigate cardiomyocytes' transcriptomic and metabolomic profiles in response to myocardial infarction. Complementary targeted metabolomics, stable isotope-resolved metabolomics, and functional mitochondrial assays were performed on heart tissues from both species to validate the transcriptomic findings and elucidate the metabolic adaptations in cardiomyocytes following ischemic injury. Transcriptomic analysis revealed that Acomys cardiomyocytes inherently upregulate genes associated with glycolysis, the pentose phosphate pathway, and glutathione metabolism while downregulating genes involved in oxidative phosphorylation (OXPHOS). These metabolic characteristics are linked to decreased reactive oxygen species (ROS) production and increased antioxidant capacity. Our targeted metabolomic studies in heart tissue corroborated these findings, showing a shift from fatty acid oxidation to glycolysis and ancillary biosynthetic pathways in Acomys at baseline with adaptive changes post-MI. Functional mitochondrial studies indicated a higher reliance on glycolysis in Acomys compared to Mus , underscoring the unique metabolic phenotype of Acomys hearts. Stable isotope tracing experiments confirmed a shift in glucose utilization from oxidative phosphorylation in Acomys . In conclusion, our study identifies unique metabolic characteristics of Acomys cardiomyocytes that contribute to their enhanced ischemic resilience following myocardial infarction. These findings provide novel insights into the role of metabolism in regulating cardiac repair in adult mammals. Our work highlights the importance of inherent and adaptive metabolic flexibility in determining cardiomyocyte ischemic responses and establishes Acomys as a valuable model for studying cardiac ischemic resilience in adult mammals. Graphical abstract
Collapse
|
32
|
Wang H, Cai P, Yu X, Li S, Zhu W, Liu Y, Wang D. Bioinformatics identifies key genes and potential drugs for energy metabolism disorders in heart failure with dilated cardiomyopathy. Front Pharmacol 2024; 15:1367848. [PMID: 38510644 PMCID: PMC10952830 DOI: 10.3389/fphar.2024.1367848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Dysfunction in myocardial energy metabolism plays a vital role in the pathological process of Dilated Cardiomyopathy (DCM). However, the precise mechanisms remain unclear. This study aims to investigate the key molecular mechanisms of energy metabolism and potential therapeutic agents in the progression of dilated cardiomyopathy with heart failure. Methods: Gene expression profiles and clinical data for patients with dilated cardiomyopathy complicated by heart failure, as well as healthy controls, were sourced from the Gene Expression Omnibus (GEO) database. Gene sets associated with energy metabolism were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis were employed to identify key modules and genes related to heart failure. Potential biological mechanisms were investigated through Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the construction of a competing endogenous RNA (ceRNA) network. Molecular docking simulations were then conducted to explore the binding affinity and conformation of potential therapeutic drugs with hub genes. Results: Analysis of the left ventricular tissue expression profiles revealed that, compared to healthy controls, patients with dilated cardiomyopathy exhibited 234 differentially expressed genes and 2 genes related to myocardial energy metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic agent for the treatment of dilated cardiomyopathy. Conclusion: The study findings highlight the crucial role of myocardial energy metabolism in the progression of Dilated Cardiomyopathy. Notably, Benzoylaconine emerges as a potential candidate for treating Dilated Cardiomyopathy, potentially exerting its therapeutic effects by targeted modulation of myocardial energy metabolism through NRK and NT5.
Collapse
Affiliation(s)
- Haixia Wang
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Peifeng Cai
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xiaohan Yu
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Shiqi Li
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
34
|
Mericskay M. Preventing the Fatty Acid-Transporter CD36 From Taking its Toll on the Heart. Circ Res 2024; 134:526-528. [PMID: 38422178 DOI: 10.1161/circresaha.123.323945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Mathias Mericskay
- INSERM CARPAT Signalling and Cardiovascular Pathophysiology UMR_S-1180, Faculty of Pharmacy, Paris-Saclay University, Orsay, France
| |
Collapse
|
35
|
Barber S, Gomez-Godinez V, Young J, Wei A, Chen S, Snissarenko A, Chan SS, Wu C, Shi L. Impacts of H 2O 2, SARM1 inhibition, and high NAm concentrations on Huntington's disease laser-induced degeneration. JOURNAL OF BIOPHOTONICS 2024; 17:e202300370. [PMID: 38185916 DOI: 10.1002/jbio.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024]
Abstract
Axonal degeneration is a key component of neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease, and amyotrophic lateral sclerosis. Nicotinamide, an NAD+ precursor, has long since been implicated in axonal protection and reduction of degeneration. However, studies on nicotinamide (NAm) supplementation in humans indicate that NAm has no protective effect. Sterile alpha and toll/interleukin receptor motif-containing protein 1 (SARM1) regulates several cell responses to axonal damage and has been implicated in promoting neuronal degeneration. SARM1 inhibition seems to result in protection from neuronal degeneration while hydrogen peroxide has been implicated in oxidative stress and axonal degeneration. The effects of laser-induced axonal damage in wild-type and HD dorsal root ganglion cells treated with NAm, hydrogen peroxide (H2O2), and SARM1 inhibitor DSRM-3716 were investigated and the cell body width, axon width, axonal strength, and axon shrinkage post laser-induced injury were measured.
Collapse
Affiliation(s)
- Sophia Barber
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Veronica Gomez-Godinez
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Joy Young
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Abigail Wei
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah Chen
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Anna Snissarenko
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sze Sze Chan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Chengbiao Wu
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Linda Shi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Wu Z, Zhang W, Qu J, Liu GH. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol Sci 2024; 45:157-172. [PMID: 38216430 DOI: 10.1016/j.tips.2023.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
37
|
Unno J, Mills KF, Ogura T, Nishimura M, Imai SI. Absolute quantification of nicotinamide mononucleotide in biological samples by double isotope-mediated liquid chromatography-tandem mass spectrometry (dimeLC-MS/MS). NPJ AGING 2024; 10:2. [PMID: 38167419 PMCID: PMC10762063 DOI: 10.1038/s41514-023-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite for fundamental biological phenomena, including aging. Nicotinamide mononucleotide (NMN) is a key NAD+ intermediate that has been extensively tested as an effective NAD+-boosting compound in mice and humans. However, the accurate measurement of NMN in biological samples has long been a challenge in the field. Here, we have established an accurate, quantitative methodology for measuring NMN by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) with double isotopic NMN standards. In this new methodology, the matrix effects of biological samples were properly adjusted, and the fate of NMN could be traced during sample processing. We have demonstrated that this methodology can accurately quantitate NMN levels in mouse plasma and confirmed quick, direct NMN uptake into blood circulation and cells. This double isotope-mediated LC-MS/MS (dimeLC-MS/MS) can easily be expanded to other NAD+-related metabolites as a reliable standard methodology for NAD+ biology.
Collapse
Affiliation(s)
- Junya Unno
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn F Mills
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tairo Ogura
- Innovation Center, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Masayuki Nishimura
- New Strategy Department, Shimadzu Scientific Instruments, Inc., Columbia, MD, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
38
|
Brauwers B, Machado FVC, Beijers RJHCG, Spruit MA, Franssen FME. Combined Exercise Training and Nutritional Interventions or Pharmacological Treatments to Improve Exercise Capacity and Body Composition in Chronic Obstructive Pulmonary Disease: A Narrative Review. Nutrients 2023; 15:5136. [PMID: 38140395 PMCID: PMC10747351 DOI: 10.3390/nu15245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that is associated with significant morbidity, mortality, and healthcare costs. The burden of respiratory symptoms and airflow limitation can translate to reduced physical activity, in turn contributing to poor exercise capacity, muscle dysfunction, and body composition abnormalities. These extrapulmonary features of the disease are targeted during pulmonary rehabilitation, which provides patients with tailored therapies to improve the physical and emotional status. Patients with COPD can be divided into metabolic phenotypes, including cachectic, sarcopenic, normal weight, obese, and sarcopenic with hidden obesity. To date, there have been many studies performed investigating the individual effects of exercise training programs as well as nutritional and pharmacological treatments to improve exercise capacity and body composition in patients with COPD. However, little research is available investigating the combined effect of exercise training with nutritional or pharmacological treatments on these outcomes. Therefore, this review focuses on exploring the potential additional beneficial effects of combinations of exercise training and nutritional or pharmacological treatments to target exercise capacity and body composition in patients with COPD with different metabolic phenotypes.
Collapse
Affiliation(s)
- Bente Brauwers
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, Life Sciences, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Felipe V. C. Machado
- BIOMED (Biomedical Research Institute), REVAL (Rehabilitation Research Centre), Hasselt University, 3590 Hasselt, Belgium;
| | - Rosanne J. H. C. G. Beijers
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Martijn A. Spruit
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| | - Frits M. E. Franssen
- Department of Research and Development, Ciro, Centre of Expertise for Chronic Organ Failure, 6085 NM Horn, The Netherlands; (M.A.S.); (F.M.E.F.)
- Department of Respiratory Medicine, NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
39
|
Li W, Wang X, Dong Y, Huo Q, Yue T, Wu X, Lu L, Zhang J, Zhao Y, Dong H, Li D. Nicotinamide riboside intervention alleviates hematopoietic system injury of ionizing radiation-induced premature aging mice. Aging Cell 2023; 22:e13976. [PMID: 37650560 PMCID: PMC10652312 DOI: 10.1111/acel.13976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Radiotherapy destroys cancer cells and inevitably harms normal human tissues, causing delayed effects of acute radiation exposure (DEARE) and accelerating the aging process in most survivors. However, effective methods for preventing premature aging induced by ionizing radiation are lacking. In this study, the premature aging mice of DEARE model was established after 6 Gy total body irradiation (TBI). Then the therapeutic effects and mechanism of nicotinamide riboside on the premature aging mice were evaluated. The results showed that 6 Gy TBI induced premature aging of the hematopoietic system in mice. Nicotinamide riboside treatment reversed aging spleen phenotypes by inhibiting cellular senescence and ameliorated serum metabolism profiles. Further results demonstrated that nicotinamide riboside supplementation alleviated the myeloid bias of hematopoietic stem cells and temporarily restored the regenerative capacity of hematopoietic stem cells probably by mitigating the reactive oxygen species activated GCN2/eIF2α/ATF4 signaling pathway. The results of this study firstly indicate that nicotinamide riboside shows potential as a DEARE therapeutic agent for radiation-exposed populations and patients who received radiotherapy.
Collapse
Affiliation(s)
- Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| |
Collapse
|