1
|
Angehrn FN, Duan P, Zhang JY, Hong M. Binding Sites of a PET Ligand in Tau Fibrils with the Alzheimer's Disease Fold from 19F and 13C Solid-State NMR. Biochemistry 2025; 64:1624-1635. [PMID: 40068133 DOI: 10.1021/acs.biochem.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Aggregation of the tau protein into cross-β amyloid fibrils is a hallmark of Alzheimer's disease (AD) and many other neurodegenerative disorders. Developing small molecules that bind these tau fibrils is important for the diagnosis and treatment of tauopathies. Here, we report the binding sites of a positron emission tomography (PET) ligand, PI-2620, to a recombinant tau construct that adopts the C-shaped AD fold. Using solid-state NMR 13C-19F rotational-echo double-resonance (REDOR) experiments, we measured the proximity of protein residues to the fluorine atom of the ligand. These data indicate that PI-2620 binds at two main locations in the concave interior of the C-shaped structure. Molecular docking simulations constrained by these REDOR data identified five binding poses at these two locations. In addition, 2D 13C-13C correlation NMR spectra indicate that PI-2620 decreased the intensities of residues at the protofilament interfaces, indicating that the ligand disordered the filament packing. Quantitative analysis of the 19F NMR spectra indicates that PI-2620 binds these AD-fold tau fibrils with a stoichiometry of ∼20 mol %, in which 10 mol % are immobilized and the rest are mobile. These results provide experimental constraints to the interaction of this second-generation PET tracer with tau fibrils adopting the AD fold and should be useful for the development of future imaging agents with improved stoichiometry and specificity for AD tau.
Collapse
Affiliation(s)
- Frida N Angehrn
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Jia Yi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Hong M. Solid-State NMR of Virus Membrane Proteins. Acc Chem Res 2025; 58:847-860. [PMID: 40019485 DOI: 10.1021/acs.accounts.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Enveloped viruses encode ion-conducting pores that permeabilize the host cell membranes and mediate the budding of new viruses. These viroporins are some of the essential membrane proteins of viruses, and have high sequence conservation, making them important targets of antiviral drugs. High-resolution structures of viroporins are challenging to determine by X-ray crystallography and cryoelectron microscopy, because these proteins are small, hydrophobic, and prone to induce membrane curvature. Solid-state NMR (ssNMR) spectroscopy is an ideal method for elucidating the structure, dynamics, and mechanism of action of viroporins in phospholipid membranes. This Account describes our investigations of influenza M2 proteins and the SARS-CoV-2 E protein using solid-state NMR.M2 proteins form acid-activated tetrameric proton channels that initiate influenza uncoating in the cell. 15N and 13C exchange NMR revealed that M2 shuttles protons into the virion using a crucial histidine, whose imidazole nitrogens pick up and release protons on the microsecond time scale at acidic pH. This proton exchange is synchronized with and facilitated by imidazole reorientation, which is observed in NMR spectra. Quantitative 15N NMR spectra yielded the populations of neutral and cationic histidines as a function of pH, giving four proton dissociation constants (pKa's). The pKa's of influenza AM2 indicate that the +3 charged channel has the highest time-averaged single-channel conductance; thus the third protonation event defines channel activation. In comparison, influenza BM2 exhibits lower pKa's due to a second, peripheral histidine, which accelerates proton dissociation from the central proton-selective histidine. Amantadine binding to AM2 suppressed proton exchange and imidazole reorientation, indicating that this antiviral drug acts by inhibiting proton shuttling. Solid-state NMR 13C-2H distance measurements revealed that amantadine binds the N-terminal pore of the channel near a crucial Ser31, whose mutation to asparagine causes amantadine resistance in circulating influenza A viruses. A second binding site, on the lipid-facing surface of the protein, only occurs when amantadine is in large excess in lipid bilayers. M2 not only functions as a proton channel but also conducts membrane scission during influenza budding in a cholesterol-dependent manner. Solid-state NMR distance experiments revealed that two cholesterol molecules bind asymmetrically to the surface of the tetrameric channel, thus recruiting the protein to the cholesterol-rich budding region of the cell membrane to cause membrane scission.To accelerate full structure determination of viroporins, we developed a suite of 19F solid-state NMR techniques that measure interatomic distances to 1-2 nm. Using this approach, we determined the atomic structures of influenza BM2, SARS-CoV-2 E, and EmrE, a multidrug-resistance bacterial transporter. pH-induced structural changes of these proteins gave detailed insights into the activation mechanisms of BM2 and E and the proton-coupled substrate transport mechanism of EmrE. The SARS-CoV-2 E protein forms pentameric helical bundles whose structures are distinct between the closed state at neutral pH and the open state at acidic pH. These 19F-enabled distance NMR experiments are also instrumental for identifying the binding mode and binding site of hexamethylene amiloride in E, paving the way for developing new antiviral drugs that target these pathogenic virus ion channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Hinkle JJ, Trychta KA, Wires ES, Osborn RM, Leach JR, Faraz ZF, Svarcbahs R, Richie CT, Dewhurst S, Harvey BK. Subcellular localization of SARS-CoV-2 E and 3a proteins along the secretory pathway. J Mol Histol 2025; 56:98. [PMID: 40025386 PMCID: PMC11872775 DOI: 10.1007/s10735-025-10375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
SARS-CoV-2 E and 3a proteins are important for the assembly, budding, and release of viral particles. These two transmembrane proteins have been implicated in forming channels in the membrane that allow the transport of ions to favor viral replication. During an active infection, both proteins generally localize to the endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), and the Golgi where viral assembly occurs. The ER and Golgi are critical for the proper packaging and trafficking of cellular proteins along the secretory pathways which determine a protein's final destination inside or outside of the cell. The SARS-CoV-2 virus primarily infects epithelial cells that are highly secretory in nature such as those in the lung and gut. Here we quantified the distribution of SARS-CoV-2 E and 3a proteins along the secretory pathways in a human intestinal epithelial cell line. We used NaturePatternMatch to demonstrate that epitope-tagged E and 3a proteins expressed alone via transient transfection have a similar immunoreactivity pattern as E and 3a proteins expressed by wild-type viral infection. While E and 3a proteins localized with all selected cellular markers to varying degrees, 3a protein displayed a higher correlation coefficient with the Golgi, early/late endosome, lysosome, and plasma membrane when compared to E protein. This work is the first to provide quantification of the subcellular distribution of E and 3a proteins along the multiple components of the secretory pathway and serves as a basis to develop models for examining how E and 3a alter proteostasis within these structures and affect their function.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Kathleen A Trychta
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Raven M Osborn
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Justin R Leach
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Zoha F Faraz
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Reinis Svarcbahs
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Stephen Dewhurst
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
5
|
Gebert JT, Scribano FJ, Engevik KA, Huleatt EM, Eledge MR, Dorn LE, Philip AA, Kawagishi T, Greenberg HB, Patton JT, Hyser JM. Viroporin activity is necessary for intercellular calcium signals that contribute to viral pathogenesis. SCIENCE ADVANCES 2025; 11:eadq8115. [PMID: 39823322 PMCID: PMC11740935 DOI: 10.1126/sciadv.adq8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, NSP4, induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea. This implicates nonstructural protein 4 (NSP4) as a virulence factor and provides mechanistic insight into its mode of action. Critically, this signaling induces a transcriptional signature characteristic of interferon-independent innate immune activation, which is not observed in response to a mutant NSP4 that does not conduct calcium. This implicates calcium dysregulation as a means of pathogen recognition, a theme broadly applicable to calcium-altering pathogens beyond rotavirus.
Collapse
Affiliation(s)
- J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan M. Huleatt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael R. Eledge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asha A. Philip
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Takahiro Kawagishi
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
7
|
Medeiros-Silva J, Pankratova Y, Sučec I, Dregni AJ, Hong M. Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein. J Am Chem Soc 2025; 147:746-757. [PMID: 39726395 DOI: 10.1021/jacs.4c13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive. Here, we use solid-state NMR spectroscopy to investigate the side chain structure, dynamics, and interactions of five polar residues at the N-terminal entrance of the channel and three polar residues at the C-terminal end. The chemical shifts of the N-terminal Glu8 reveal that the Glu side chain interacts with protons, Ca2+ and two neighboring Thr residues, and adopts distinct motionally averaged conformational ensembles. These polar interactions are sensitive to the presence of negatively charged lipids in the membrane. A T9I mutation, prevalent in the Omicron variants of SARS-CoV-2 E, perturbs these interactions and partially immobilizes the N-terminal segment. Deeper into the channel, two polar residues, Asn15 and Ser16, form interhelical hydrogen bonds in the closed state but become separated by water molecules in the open state. This is manifested by Asn15-Ser16 correlation signals at neutral pH and the loss of these correlations and the appearance of water cross peaks with Ser16 at acidic pH in the presence of Ca2+. Finally, the guanidinium side chain of the C-terminal Arg38 undergoes fast reorientations in the closed state but becomes more restricted in the open state. These results provide evidence for a dynamic and hydrogen-bonded N-terminal polar network that recruits and relays protons and Ca2+ in a lipid-dependent manner. Once inside, the ions permeate past the hydrophobic middle of the transmembrane domain with the help of enhanced hydrophilicity of the C-terminal channel lumen due to the insertion of the Arg38 side chain into the pore.
Collapse
Affiliation(s)
- João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Torres J, Pervushin K, Surya W. Prediction of conformational states in a coronavirus channel using Alphafold-2 and DeepMSA2: Strengths and limitations. Comput Struct Biotechnol J 2024; 23:3730-3740. [PMID: 39525089 PMCID: PMC11543627 DOI: 10.1016/j.csbj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
The envelope (E) protein is present in all coronavirus genera. This protein can form pentameric oligomers with ion channel activity which have been proposed as a possible therapeutic target. However, high resolution structures of E channels are limited to those of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the recent COVID-19 pandemic. In the present work, we used Alphafold-2 (AF2), in ColabFold without templates, to predict the transmembrane domain (TMD) structure of six E-channels representative of genera alpha-, beta- and gamma-coronaviruses in the Coronaviridae family. High-confidence models were produced in all cases when combining multiple sequence alignments (MSAs) obtained from DeepMSA2. Overall, AF2 predicted at least two possible orientations of the α-helices in E-TMD channels: one where a conserved polar residue (Asn-15 in the SARS sequence) is oriented towards the center of the channel, 'polar-in', and one where this residue is in an interhelical orientation 'polar-inter'. For the SARS models, the comparison with the two experimental models 'closed' (PDB: 7K3G) and 'open' (PDB: 8SUZ) is described, and suggests a ∼60˚ α-helix rotation mechanism involving either the full TMD or only its N-terminal half, to allow the passage of ions. While the results obtained are not identical to the two high resolution models available, they suggest various conformational states with striking similarities to those models. We believe these results can be further optimized by means of MSA subsampling, and guide future high resolution structural studies in these and other viral channels.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
9
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Zhou Y, Liao Y, Fan L, Wei X, Huang Q, Yang C, Feng W, Wu Y, Gao X, Shen X, Zhou J, Xia Z, Zhang Z. Lung-Targeted Lipid Nanoparticle-Delivered siUSP33 Attenuates SARS-CoV-2 Replication and Virulence by Promoting Envelope Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406211. [PMID: 39301916 PMCID: PMC11558077 DOI: 10.1002/advs.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
As a structural protein of SARS-CoV-2, the envelope (E) protein not only plays a key role in the formation of viral particles, but also forms ion channels and has pathogenic functions, including triggering cell death and inflammatory responses. The stability of E proteins is controlled by the host ubiquitin-proteasome system. By screening human deubiquitinases, it is found that ubiquitin-specific protease 33 (USP33) can enhance the stability of E proteins depending on its deubiquitinase activity, thereby promoting viral replication. In the absence of USP33, E proteins are rapidly degraded, leading to a reduced viral load and inflammation. Using lipid nanoparticle (LNP) encapsulation of siUSP33 by adjusting the lipid components (ionizable cationic lipids), siUSP33 is successfully delivered to mouse lung tissues, rapidly reducing USP33 expression in the lungs and maintaining knockdown for at least 14 days, effectively suppressing viral replication and virulence. This method of delivery allows efficient targeting of the lungs and a response to acute infections without long-term USP33 deficiency. This research, based on the deubiquitination mechanism of USP33 on the E protein, demonstrates that LNP-mediated siRNA delivery targeting USP33 plays a role in antiviral and anti-inflammatory responses, offering a novel strategy for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yujie Liao
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
| | - Lujie Fan
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Guangzhou LaboratoryGuangzhou510700China
| | - Xiafei Wei
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Qiang Huang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Chuwei Yang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Wei Feng
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yezi Wu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiang Gao
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiaotong Shen
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Jian Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Zanxian Xia
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
- Hunan Key Laboratory of Animal Models for Human DiseasesHunan Key Laboratory of Medical Genetics & Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangsha410013China
| | - Zheng Zhang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Shenzhen Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesShenzhen518112China
| |
Collapse
|
11
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
12
|
Iosef C, Matusa AM, Han VKM, Fraser DD. Endocrine dysregulation in COVID-19: molecular mechanisms and insights. Front Endocrinol (Lausanne) 2024; 15:1459724. [PMID: 39502570 PMCID: PMC11534806 DOI: 10.3389/fendo.2024.1459724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
This review describes the impact of COVID-19 on the endocrine system, focusing on cortisol signaling and growth factor-induced endocrine resistance. As expected, SARS-CoV-2 infection induces systemic inflammation, resulting in stimulation of the adrenal glands leading to elevated cortisol levels with normal adrenocorticotropic hormone (ACTH) levels. The cytokine storm could also stimulate cortisol production. However, in some instances, cortisol levels rise independently of ACTH due to a phenomenon known as "pseudo-Cushing's syndrome," where adrenal glands become less responsive to ACTH. Plasma proteomic analyses showed that this pattern was variably observed among COVID-19 patients, potentially involving calcium dysregulation and GNAS-regulated activities, ultimately impacting the regulation of microvascular permeability. COVID-19 also exhibited a syndrome resembling endocrine resistance, governed by receptor tyrosine kinase signaling pathways. Mild cases displayed elevated activity of EGFR and MMP9, along with increased expression of survival factors like Bax and Bcl2. In contrast, more severe cases involved IGFR-I and enhanced NOTCH signaling, with altered expression of Bcl2, AKT1, and MAPK8. In summary, these findings describe the complex interplay between COVID-19 and endocrine pathology, particularly endocrine resistance. These insights suggest potential endocrine targets for therapeutic interventions to improve short- and long-term outcomes for COVID-19 patients.
Collapse
Affiliation(s)
- Cristiana Iosef
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | | | - Victor K. M. Han
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Douglas D. Fraser
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| |
Collapse
|
13
|
Somberg NH, Sučec I, Medeiros-Silva J, Jo H, Beresis R, Syed AM, Doudna JA, Hong M. Oligomeric State and Drug Binding of the SARS-CoV-2 Envelope Protein Are Sensitive to the Ectodomain. J Am Chem Soc 2024; 146:24537-24552. [PMID: 39167680 DOI: 10.1021/jacs.4c07686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent 19F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, 19F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between 13C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional 13C-19F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Richard Beresis
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Abdullah M Syed
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, California 94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Wu G, Chen J, Wang A, Yan F. Unveiling the viroporin arsenal in plant viruses: Implications for the future. PLoS Pathog 2024; 20:e1012473. [PMID: 39235994 PMCID: PMC11376509 DOI: 10.1371/journal.ppat.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Provincial Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
16
|
Balasco N, Damaggio G, Esposito L, Colonna V, Vitagliano L. A comprehensive analysis of SARS-CoV-2 missense mutations indicates that all possible amino acid replacements in the viral proteins occurred within the first two-and-a-half years of the pandemic. Int J Biol Macromol 2024; 266:131054. [PMID: 38522702 DOI: 10.1016/j.ijbiomac.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, Milan, Italy; University of Naples Federico II, Naples, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
17
|
Sučec I, Pankratova Y, Parasar M, Hong M. Transmembrane conformation of the envelope protein of an alpha coronavirus, NL63. Protein Sci 2024; 33:e4923. [PMID: 38501465 PMCID: PMC10949323 DOI: 10.1002/pro.4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024]
Abstract
The envelope (E) proteins of coronaviruses (CoVs) form cation-conducting channels that are associated with the pathogenicity of these viruses. To date, high-resolution structural information about these viroporins is limited to the SARS-CoV E protein. To broaden our structural knowledge of other members of this family of viroporins, we now investigate the conformation of the E protein of the human coronavirus (hCoV), NL63. Using two- and three-dimensional magic-angle-spinning NMR, we have measured 13 C and 15 N chemical shifts of the transmembrane domain of E (ETM), which yielded backbone (ϕ, ψ) torsion angles. We further measured the water accessibility of NL63 ETM at neutral pH versus acidic pH in the presence of Ca2+ ions. These data show that NL63 ETM adopts a regular α-helical conformation that is unaffected by pH and the N-terminal ectodomain. Interestingly, the water accessibility of NL63 ETM increases only modestly at acidic pH in the presence of Ca2+ compared to neutral pH, in contrast to SARS ETM, which becomes much more hydrated at acidic pH. This difference suggests a structural basis for the weaker channel conductance of α-CoV compared to β-CoV E proteins. The weaker E channel activity may in turn contribute to the reduced virulence of hCoV-NL63 compared to SARS-CoV viruses.
Collapse
Affiliation(s)
- Iva Sučec
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Yanina Pankratova
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mriganka Parasar
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mei Hong
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
18
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
19
|
Medeiros-Silva J, Dregni AJ, Hong M. Distinguishing Different Hydrogen-Bonded Helices in Proteins by Efficient 1H-Detected Three-Dimensional Solid-State NMR. Biochemistry 2024; 63:181-190. [PMID: 38127783 PMCID: PMC10880114 DOI: 10.1021/acs.biochem.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Helical structures in proteins include not only α-helices but also 310 and π helices. These secondary structures differ in the registry of the C═O···H-N hydrogen bonds, which are i to i + 4 for α-helices, i to i + 3 for 310 helices, and i to i + 5 for π-helices. The standard NMR observable of protein secondary structures are chemical shifts, which are, however, insensitive to the precise type of helices. Here, we introduce a three-dimensional (3D) 1H-detected experiment that measures and assigns CO-HN cross-peaks to distinguish the different types of hydrogen-bonded helices. This hCOhNH experiment combines efficient cross-polarization from CO to HN with 13C, 15N, and 1H chemical shift correlation to detect the relative proximities of the COi-Hi+jN spin pairs. We demonstrate this experiment on the membrane-bound transmembrane domain of the SARS-CoV-2 envelope (E) protein (ETM). We show that the C-terminal five residues of ETM form a 310-helix, whereas the rest of the transmembrane domain have COi-Hi+4N hydrogen bonds that are characteristic of α-helices. This result confirms the recent high-resolution solid-state NMR structure of the open state of ETM, which was solved in the absence of explicit hydrogen-bonding restraints. This C-terminal 310 helix may facilitate proton and calcium conduction across the hydrophobic gate of the channel. This hCOhNH experiment is generally applicable and can be used to distinguish not only different types of helices but also different types of β-strands and other hydrogen-bonded conformations in proteins.
Collapse
Affiliation(s)
- Joao Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|