1
|
Ngou E, Kim KH, Liang W. Extracellular matrix cues regulate cardiac pacemaker cell induction from ventricular myocytes. Am J Physiol Heart Circ Physiol 2025; 328:H1144-H1145. [PMID: 40209756 DOI: 10.1152/ajpheart.00217.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Affiliation(s)
- Ernest Ngou
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Wu Y, Song Y, Soto J, Hoffman T, Lin X, Zhang A, Chen S, Massad RN, Han X, Qi D, Yeh KW, Fang Z, Eoh J, Gu L, Rowat AC, Gu Z, Li S. Viscoelastic extracellular matrix enhances epigenetic remodeling and cellular plasticity. Nat Commun 2025; 16:4054. [PMID: 40307238 PMCID: PMC12043949 DOI: 10.1038/s41467-025-59190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Extracellular matrices of living tissues exhibit viscoelastic properties, yet how these properties regulate chromatin and the epigenome remains unclear. Here, we show that viscoelastic substrates induce changes in nuclear architecture and epigenome, with more pronounced effects on softer surfaces. Fibroblasts on viscoelastic substrates display larger nuclei, lower chromatin compaction, and differential expression of distinct sets of genes related to the cytoskeleton and nuclear function, compared to those on elastic surfaces. Slow-relaxing viscoelastic substrates reduce lamin A/C expression and enhance nuclear remodeling. These structural changes are accompanied by a global increase in euchromatin marks and local increase in chromatin accessibility at cis-regulatory elements associated with neuronal and pluripotent genes. Consequently, viscoelastic substrates improve the reprogramming efficiency from fibroblasts into neurons and induced pluripotent stem cells. Collectively, our findings unravel the roles of matrix viscoelasticity in epigenetic regulation and cell reprogramming, with implications for designing smart materials for cell fate engineering.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Lin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Zhang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyu Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ramzi N Massad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Han
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dongping Qi
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joon Eoh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhen Gu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Vinayak V, Basir R, Golloshi R, Toth J, Sant'Anna L, Lakadamyali M, McCord RP, Shenoy VB. Polymer model integrates imaging and sequencing to reveal how nanoscale heterochromatin domains influence gene expression. Nat Commun 2025; 16:3816. [PMID: 40268925 PMCID: PMC12019571 DOI: 10.1038/s41467-025-59001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Chromatin organization regulates gene expression, with nanoscale heterochromatin domains playing a fundamental role. Their size varies with microenvironmental stiffness and epigenetic interventions, but how these factors regulate their formation and influence transcription remains unclear. To address this, we developed a sequencing-informed copolymer model that simulates chromatin evolution through diffusion and active epigenetic reactions. Our model predicts the formation of nanoscale heterochromatin domains and quantifies how domain size scales with epigenetic reaction rates, showing that epigenetic and compaction changes primarily occur at domain boundaries. We validated these predictions via Hi-C and super-resolution imaging of hyperacetylated melanoma cells and identified differential expression of metastasis-related genes through RNA-seq. We validated our findings in hMSCs, where epigenetic reaction rates respond to microenvironmental stiffness. Conclusively, our simulations reveal that heterochromatin domain boundaries regulate gene expression and epigenetic memory. These findings demonstrate how external cues drive chromatin organization and transcriptional memory in development and disease.
Collapse
Affiliation(s)
- Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin Basir
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosela Golloshi
- Departments of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Giovanis Institute for Translational Cell Biology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Joshua Toth
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas Sant'Anna
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Yan Y, Wang Y, Chu JS, Yang L, Li X, Li S. Substrate Stiffness Modulates TGF-β1-Induced Lineage Specification in Multipotent Vascular Stem Cells. Cells 2025; 14:611. [PMID: 40277936 PMCID: PMC12025518 DOI: 10.3390/cells14080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Multipotent vascular stem cells (MVSCs) are found in the vascular wall and surrounding tissues and possess the ability to differentiate into mesenchymal lineages. Previous studies have shown that MVSCs can be activated in response to vascular injury and differentiate into vascular smooth muscle cells (SMCs), contributing to vascular remodeling and microvessel formation. However, it remains unclear as to whether and how microenvironmental changes in the extracellular matrix, such as substrate stiffness, modulates MVSC differentiation under pathological conditions. This study demonstrated that MVSCs cultured on stiff substrates exhibited increased cell spreading, stronger cell adhesion, and a higher expression of SMC markers, including myosin heavy chain (MHC), myocardin (MYCD), calponin 1 (CNN1), and smooth muscle α-actin (SMA). In contrast, MVSCs on soft substrates showed an elevated expression of the chondrogenic markers aggrecan 1 (AGC1) and collagen-II (COL2A1). The presence of TGF-β1 further increased the expression of SMC markers on stiff substrates and chondrogenic markers on the soft substrates. Collectively, these results establish substrate stiffness as a key regulator of MVSC lineage commitment through cytoskeletal reorganization, with TGF-β1 acting as a biochemical amplifier. Our findings highlight the substrate-stiffness-dependent differentiation of MVSCs and provide mechanistic insights into the role of MVSCs in vascular remodeling during atherosclerosis development and blood vessel regeneration.
Collapse
Affiliation(s)
- Yujie Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (Y.W.)
| | - Yuhang Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (Y.W.)
| | - Julia S. Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China;
| | - Xian Li
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China; (Y.Y.); (Y.W.)
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
5
|
Wu Y, Song Y, Soto J, Hoffman T, Lin X, Zhang A, Chen S, Massad RN, Han X, Qi D, Yeh KW, Fang Z, Eoh J, Gu L, Rowat AC, Gu Z, Li S. Viscoelastic Extracellular Matrix Enhances Epigenetic Remodeling and Cellular Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.14.589442. [PMID: 38659850 PMCID: PMC11042188 DOI: 10.1101/2024.04.14.589442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Extracellular matrices of living tissues exhibit viscoelastic properties, yet how these properties regulate chromatin and the epigenome remains unclear. Here, we show that viscoelastic substrates induce changes in nuclear architecture and epigenome, with more pronounced effects on softer surfaces. Fibroblasts on viscoelastic substrates display larger nuclei, lower chromatin compaction, and differential expression of distinct sets of genes related to the cytoskeleton and nuclear function compared to those on purely elastic surfaces. Slow-relaxing viscoelastic substrates reduce lamin A/C expression and enhance nuclear remodeling. These structural changes are accompanied by a global increase in euchromatin marks and local increase in chromatin accessibility at cis-regulatory elements associated with neuronal and pluripotent genes. Consequently, viscoelastic substrates improve the reprogramming efficiency from fibroblasts into neurons and induced pluripotent stem cells. Collectively, our findings unravel the roles of matrix viscoelasticity in epigenetic regulation and cell reprogramming, with implications for designing smart materials for cell fate engineering.
Collapse
|
6
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Jiu J, Liu H, Li D, Li X, Zhang J, Yan L, Fan Z, Li S, Du G, Li JJ, Wu A, Liu W, Du Y, Zhao B, Wang B. 3D Mechanical Response Stem Cell Complex Repairs Spinal Cord Injury by Promoting Neurogenesis and Regulating Tissue Homeostasis. Adv Healthc Mater 2025; 14:e2404925. [PMID: 39853962 DOI: 10.1002/adhm.202404925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment. In this study, mechanical response stem cell complex (MRSCC) is created as an innovative therapeutic strategy for SCI, utilizing 3D bioprinting technology and gelatin microcarriers (GM) loaded with mesenchymal stem cells (MSCs). GM creates an optimal microenvironment for MSCs growth and paracrine activity. Meanwhile, 3D bioprinting allows accurate control of spatial pore architecture and mechanical characteristics of the cell construct to encourage neuroregeneration. The mechanical microenvironment created by MRSCC is found to activate the Piezo1 channel and prevent excessive nuclear translocation of YAP, thereby increasing neural-related gene expression in MSCs. Transplanting MRSCC in rats with spinal cord injuries boosts sensory and motor recovery, reduces inflammation, and stimulates the regeneration of neurons and glial cells. The MRSCC offers a new tissue engineering solution that can promote spinal cord repair.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dijun Li
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiaoke Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zijuan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Guangyuan Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Liu
- Development of Research, Beijing Hua Niche Biotechnology Co., LTD, Beijing, 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bin Zhao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
8
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
Ma L, Fang F, Wang H, Zhao P, Yu H, Liu X. Macrophage co-culture promotes cell reprogramming and prevents ferroptosis in aging fibroblasts for neurodegeneration therapy. J Mol Med (Berl) 2025; 103:301-310. [PMID: 39893308 DOI: 10.1007/s00109-025-02518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Ferroptosis, a form of programmed cell death associated with lipid peroxidation and iron dependency, plays a critical role in affecting neuronal function in the aging-related neurodegenerative diseases. Macrophages, influenced by these changes, contribute significantly to the progression of aging nerve diseases. Induced neuronal reprogramming is an advanced technology, which can direct convert somatic cells, such as fibroblasts, into neurons, and offers a promising approach for drug screening aimed at correcting ferroptosis and combating aging-related nerve diseases. However, the efficiency of this reprogramming process remains a significant challenge. In this study, we aimed to manipulate macrophage phenotypes to enhance the direct conversion of fibroblasts into neurons. Specifically, we sought to correct ferroptosis through screening natural compounds using aged fibroblasts and utilizing macrophages to promote induced neuronal (iN) reprogramming. Our findings demonstrate that M2 macrophages effectively promote the direct reprogramming of fibroblasts into iNs. In a novel macrophage-fibroblast co-culture system, M2 macrophages facilitate iN reprogramming by reducing fibroblast adhesion forces and promoting asymmetric cell division. Furthermore, we discovered that manipulating matrix stiffness can induce polarization of macrophages towards the M2 phenotype, thereby enhancing fibroblast reprogramming into iNs. To facilitate these findings, we developed a mechano-cue-based drug screening chip, where soft hydrogels induced and maintained the phenotype of M2 macrophages and effectively promoted cell reprogramming. Using a combinatorial approach with 36 such chips, we screened natural compounds for their anti-aging properties, focusing on reversing fibroblast aging and inducing their conversion into neuronal cells. Notably, Vitexin, an apigenin flavone glycoside with a role as a platelet aggregation inhibitor, emerged as a promising candidate to achieve our therapeutic goals. This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases. KEY MESSAGE: This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases.
Collapse
Affiliation(s)
- Lunjie Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haonan Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ping Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff JL, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2025; 14:e2401192. [PMID: 38837879 PMCID: PMC11617604 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S. Britto
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Neev Trehan
- St Richards HospitalUniversity Hospitals Sussex NHS Foundation TrustChichesterWest SussexPO19 6SEUK
| | - Ethel Cesarman
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Jean L. Koff
- Winship Cancer CenterEmory University School of MedicineAtlantaGA30307USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30318USA
- Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
11
|
Li ZY, Li TY, Yang HC, Ding MH, Chen LJ, Yu SY, Meng XS, Jin JJ, Sun SZ, Zhang J, Tian H. Design and Fabrication of Viscoelastic Hydrogels as Extracellular Matrix Mimicry for Cell Engineering. CHEM & BIO ENGINEERING 2024; 1:916-933. [PMID: 39975568 PMCID: PMC11835267 DOI: 10.1021/cbe.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 02/21/2025]
Abstract
The extracellular matrix (ECM) performs both as a static scaffold and as a dynamic, viscoelastic milieu that actively participates in cell signaling and mechanical feedback loops. Recently, biomaterials with tunable viscoelastic properties have been utilized to mimic the native ECM in the fields of tissue engineering and regenerative medicines. These materials can be designed to support cell attachment, proliferation, and differentiation, facilitating the repair or replacement of damaged tissues. Moreover, viscoelasticity modulation of ECM mimicry helps to develop therapeutic strategies for diseases involving altered mechanical properties of tissues such as fibrosis or cancer. The study of biomaterial viscoelasticity thus intersects with a broad spectrum of biological and medical disciplines, offering insights into fundamental cell biology and practical solutions for improving human health. This review delves into the design and fabrication strategies of viscoelastic hydrogels, focusing particularly on two major viscoelastic parameters, mechanical strength and stress relaxation, and how the hydrogel mechanics influence the interactions between living cells and surrounding microenvironments. Meanwhile, this review discusses current bottlenecks in hydrogel-cell mechanics studies, highlighting the challenges in viscoelastic parameter decoupling, long-term stable maintenance of viscoelastic microenvironment, and the general applicability of testing standards and conversion protocols.
Collapse
Affiliation(s)
- Zi-Yuan Li
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tian-Yue Li
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao-Chen Yang
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mu-Hua Ding
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lin-Jie Chen
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Yun Yu
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang-Sen Meng
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Jun Jin
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhe Sun
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials
and Joint International Research Laboratory of Precision Chemistry
and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research
Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|