1
|
Abstract
Formins are well-known for promoting actin assembly, but they also play a lesser-studied role in microtubule stabilization. In this issue of Developmental Cell, Cheng et al. (2011) demonstrate that the formin homology protein mDia3 is regulated by Aurora B Kinase and contributes to the generation of kinetochore-microtubule attachments in mitosis.
Collapse
|
2
|
Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Lees JA, Hopkins N. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci U S A 2010; 107:16940-5. [PMID: 20837522 PMCID: PMC2947874 DOI: 10.1073/pnas.1011548107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy is a hallmark of human cancers, but most mouse cancer models lack the extensive aneuploidy seen in many human tumors. The zebrafish is becoming an increasingly popular model for studying cancer. Here we report that malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of mutations in either ribosomal protein (rp) genes or in p53 are highly aneuploid. Karyotyping reveals that these tumors frequently harbor near-triploid numbers of chromosomes, and they vary in chromosome number from cell to cell within a single tumor. Using array comparative genomic hybridization, we found that, as in human cancers, certain fish chromosomes are preferentially overrepresented, whereas others are underrepresented in many MPNSTs. In addition, we obtained evidence for recurrent subchromosomal amplifications and deletions that may contain genes involved in cancer initiation or progression. These focal amplifications encompassed several genes whose amplification is observed in human tumors, including met, cyclinD2, slc45a3, and cdk6. One focal amplification included fgf6a. Increasing fgf signaling via a mutation that overexpresses fgf8 accelerated the onset of MPNSTs in fish bearing a mutation in p53, suggesting that fgf6a itself may be a driver of MPNSTs. Our results suggest that the zebrafish is a useful model in which to study aneuploidy in human cancer and in which to identify candidate genes that may act as drivers in fish and potentially also in human tumors.
Collapse
Affiliation(s)
- GuangJun Zhang
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Sebastian Hoersch
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- Bioinformatics Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Adam Amsterdam
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Charles A. Whittaker
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Jacqueline A. Lees
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Nancy Hopkins
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| |
Collapse
|
3
|
|
4
|
Silkworth WT, Nardi IK, Scholl LM, Cimini D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 2009; 4:e6564. [PMID: 19668340 PMCID: PMC2719800 DOI: 10.1371/journal.pone.0006564] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022] Open
Abstract
Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells.
Collapse
Affiliation(s)
- William T. Silkworth
- Virginia Tech, Department of Biological Sciences, Blacksburg, Virginia, United States of America
| | - Isaac K. Nardi
- Virginia Tech, Department of Biological Sciences, Blacksburg, Virginia, United States of America
| | - Lindsey M. Scholl
- Department of Biology, Oberlin College, Oberlin, Ohio, United States of America
| | - Daniela Cimini
- Virginia Tech, Department of Biological Sciences, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rao CV, Yamada HY, Yao Y, Dai W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 2009; 30:1469-74. [PMID: 19372138 DOI: 10.1093/carcin/bgp081] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aneuploidy is defined as numerical abnormalities of chromosomes and is frequently (>90%) present in solid tumors. In general, tumor cells become increasingly aneuploid with tumor progression. It has been proposed that enhanced genomic instability at least contributes significantly to, if not requires, tumor progression. Two major modes for genomic instability are microsatellite instability (MIN) and chromosome instability (CIN). MIN is associated with DNA-level defects (e.g. mismatch repair defects), and CIN is associated with mitotic errors such as chromosome mis-segregation. The mitotic spindle assembly checkpoint (SAC) ensures that cells with defective mitotic spindles or defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Thus, the SAC functions to protect the cell from chromosome mis-segregation and anueploidy during cell division. A loss of the SAC function results in gross aneuploidy, a condition from which cells with an advantage for proliferation will be selected. During the past several years, a flurry of genetic studies in mice and humans strongly support the notion that an impaired SAC causes enhanced genomic instabilities and tumor development. This review article summarizes the roles of key spindle checkpoint proteins {i.e. Mad1/Mad1L1, Mad2/Mad2L1, BubR1/Bub1B, Bub3/Bub3 [conventional protein name (yeast or human)/mouse protein name]} and the modulators (i.e. Chfr/Chfr, Rae1/Rae1, Nup98/Nup98, Cenp-E/CenpE, Apc/Apc) in genomic stability and suppression of tumor development, with a focus on information from genetically engineered mouse model systems. Further elucidation of molecular mechanisms of the SAC signaling has the potential for identifying new targets for rational anticancer drug design.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Hematology/Oncology Section, University of Oklahoma Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
6
|
Hebbar S, Guillotte AM, Mesngon MT, Zhou Q, Wynshaw-Boris A, Smith DS. Genetic enhancement of the Lis1+/- phenotype by a heterozygous mutation in the adenomatous polyposis coli gene. Dev Neurosci 2008; 30:157-70. [PMID: 18075263 PMCID: PMC3097246 DOI: 10.1159/000109860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 07/20/2007] [Indexed: 12/19/2022] Open
Abstract
Hemizygous Lis1 mutations cause type 1 lissencephaly, a neuronal migration disorder in humans. The Lis1+/- mouse is a model for lissencephaly; mice exhibit neuronal migration defects but are viable and fertile. On an inbred genetic background, 20% of Lis1+/- mice develop hydrocephalus and die prematurely. Lis1 functions with the microtubule motor cytoplasmic dynein. Because dynactin, a dynein regulator, interacts with end-binding protein 1 (EB1) and beta-catenin, two known binding partners of the adenomatous polyposis coli (APC) protein, we looked for a genetic interaction between Lis1 and APC. Mice with a heterozygous truncating mutation in APC (Min mutation) do not exhibit neuronal migration defects or develop hydrocephalus. However, the presence of the APC mutation increases the migration deficit and the incidence of hydrocephalus in Lis1+/- animals. Lis1 and dynein distribution is altered in cells derived from Min mice, and both Lis1 and dynein interact with the C terminus of APC in vitro. Together, our findings point to a previously unknown interaction between APC and Lis1 during mammalian brain development.
Collapse
Affiliation(s)
- Sachin Hebbar
- Department of Biological Sciences, University of South Carolina, Columbia, S.C
| | - Aimee M. Guillotte
- Department of Biological Sciences, University of South Carolina, Columbia, S.C
| | - Mariano T. Mesngon
- Department of Biological Sciences, University of South Carolina, Columbia, S.C
| | - Qin Zhou
- Zhongshan University, Guangzhou, China
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Medicine, Center for Human Genetics and Genomics, University of California, San Diego, School of Medicine, La Jolla, Calif., USA
| | - Deanna S. Smith
- Department of Biological Sciences, University of South Carolina, Columbia, S.C
| |
Collapse
|
7
|
Huang P, Senga T, Hamaguchi M. A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 2007; 26:4357-71. [PMID: 17260019 DOI: 10.1038/sj.onc.1210217] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beta-catenin is a biologically important molecule playing critical roles in both cell adhesion and transcriptional regulation in the Wnt pathway. Here, we show that phospho-beta-catenin (phosphorylated at Ser33/37/Thr41), which is reported to be degraded immediately after its phosphorylation, accumulated in the centrosome. Whereas phospho-mimicking mutant, S33/37/T41E-beta-catenin, could localize to the centrosome, S33A-beta-catenin that lacks the phosphorylation site lost its localization to the centrosome. Phospho-beta-catenin localized mainly to mother centrosome during the interphase and was recruited to daughter centrosome in M-phase. Depletion of beta-catenin with small interfering RNA or inhibition of its phosphorylation by LiCl treatment caused disruption of radial microtubule (MT) array and retardation of the MT regrowth during the recovery from nocodazole treatment. In addition, these treatments increased the frequency of mono-astral MT reorganization. Furthermore, overexpression of the nonphosphorylatable beta-catenin, but not the phospho-mimicking beta-catenin, markedly disrupted radial MT array and repressed the MT regrowth. In contrast, phospho-mimicking beta-catenin localized to both of the duplicated centrosomes with aberrant larger and denser radial MTs array formation. In addition, some of the cells overexpressing phospho-mimicking beta-catenin had multiple centrosomes. Taken together, this study demonstrates a novel role of phospho-beta-catenin in MT organization at the centrosomes.
Collapse
Affiliation(s)
- P Huang
- Department of Oncology, Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa ku, Nagoya, Japan
| | | | | |
Collapse
|
8
|
Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 2004; 428:767-71. [PMID: 15085137 DOI: 10.1038/nature02452] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 03/01/2004] [Indexed: 12/25/2022]
Abstract
During mitosis, the mitotic spindle, a bipolar structure composed of microtubules (MTs) and associated motor proteins, segregates sister chromatids to daughter cells. Initially some MTs emanating from one centrosome attach to the kinetochore at the centromere of one of the duplicated chromosomes. This attachment allows rapid poleward movement of the bound chromosome. Subsequent attachment of the sister kinetochore to MTs growing from the other centrosome results in the bi-orientation of the chromosome, in which interactions between kinetochores and the plus ends of MTs are formed and stabilized. These processes ensure alignment of chromosomes during metaphase and their correct segregation during anaphase. Although many proteins constituting the kinetochore have been identified and extensively studied, the signalling responsible for MT capture and stabilization is unclear. Small GTPases of the Rho family regulate cell morphogenesis by organizing the actin cytoskeleton and regulating MT alignment and stabilization. We now show that one member of this family, Cdc42, and its effector, mDia3, regulate MT attachment to kinetochores.
Collapse
Affiliation(s)
- Shingo Yasuda
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The acquisition of genomic instability is a crucial step in the development of human cancer. Genomic instability has multiple causes of which chromosomal instability (CIN) and microsatellite instability (MIN) have received the most attention. Whereas the connection between a MIN phenotype and cancer is now proven, the argument that CIN causes cancer remains circumstantial. Nonetheless, the ubiquity of aneuploidy in human cancers, particularly solid tumors, suggests a fundamental link between errors in chromosome segregation and tumorigenesis. Current research in the field is focused on elucidating the molecular basis of CIN, including the possible roles of defects in the spindle checkpoint and other regulators of mitosis.
Collapse
Affiliation(s)
- Viji M Draviam
- Department of Biology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
10
|
|
11
|
Kotsinas A, Evangelou K, Zacharatos P, Kittas C, Gorgoulis VG. Proliferation, but not apoptosis, is associated with distinct beta-catenin expression patterns in non-small-cell lung carcinomas: relationship with adenomatous polyposis coli and G(1)-to S-phase cell-cycle regulators. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1619-34. [PMID: 12414510 PMCID: PMC1850775 DOI: 10.1016/s0002-9440(10)64440-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
beta-catenin (beta-cat) is a versatile component of homotypic cell adhesion and signaling. Its subcellular localization and cytoplasmic levels are tightly regulated by the adenomatous polyposis coli (APC) protein. Mutations in beta-cat (exon 3) or APC (MCR) result in beta-cat aberrant overexpression that is associated with its nuclear accumulation and improper gene activation. Data from experimental models have shown that beta-cat overexpression has a multitude of effects on cell-cycle behavior. In many of these aspects its function depends on major G(1) phase regulators. To the best of our knowledge, most of these issues have never been addressed concurrently in tumors. For this reason we investigated in a panel of 92 non-small-cell lung carcinomas, beta-cat and APC expression, and their relationship with cell-cycle kinetics (PI and AI) and ploidy status. Moreover, the above correlations were examined in relation to the main G(1)/S-phase checkpoint regulators. Four beta-cat immunohistochemical expression patterns [membranous (11.1%), membranous-cytoplasmic (54.3%), cytoplasmic (9.9%), cytoplasmic-nuclear (24.7%)] and three APC immunohistochemical expression patterns [cytoplasmic (37.7%), cytoplasmic-nuclear (58%), nuclear (4.3%)] were observed, which were further confirmed by Western blot analysis on subcellular fractions in representative samples. The frequent presence of beta-cat in the cytoplasm is an indication of aberrant expression, whereas membranous and nuclear localization were inversely related. Absence of mutations in beta-cat (exon 3) and APC (MCR) suggest that beta-cat destruction mechanisms may be functional. However, expression analysis revealed attenuated levels for APC, indicating a residual ability to degrade beta-cat. Decreased levels were associated with loss of heterozygosity at the APC region in 24% of the cases suggesting that additional silencing mechanisms may be involved. Interestingly, the 90-kd APC isoform associated with apoptosis, was found to be the predominant isoform in normal and cancerous lung tissues. The most important finding in our study, was the correlation of nuclear beta-cat immunohistochemical localization with increased proliferation, overexpression of E2F1 and MDM2, aberrant p53, and low expression of p27(KIP), providing for the first time in vivo evidence that beta-cat-associated proliferation correlates with release of E2F1 activity and loss of p53- and p27(KIP)-dependent cell-cycle checkpoints. Loss of these checkpoints is accompanied by low levels of APC, which possibly reflects a diminished ability to degrade beta-cat. Taken together our data indicate that cases with nuclear beta-cat immunohistochemical expression represent a subset of non-small-cell lung carcinomas that have gained an increased proliferation advantage in contrast to the other beta-cat immunohistochemical expression profiles.
Collapse
Affiliation(s)
- Athamassios Kotsinas
- Department of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, University of Athens, Greece
| | | | | | | | | |
Collapse
|
12
|
Rehberg M, Gräf R. Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 2002; 13:2301-10. [PMID: 12134070 PMCID: PMC117314 DOI: 10.1091/mbc.e02-01-0054] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EB1 proteins are ubiquitous microtubule-associated proteins involved in microtubule search and capture, regulation of microtubule dynamics, cell polarity, and chromosome stability. We have cloned a complete cDNA of Dictyostelium EB1 (DdEB1), the largest known EB1 homolog (57 kDa). Immunofluorescence analysis and expression of a green fluorescent protein-DdEB1 fusion protein revealed that DdEB1 localizes along microtubules, at microtubule tips, centrosomes, and protruding pseudopods. During mitosis, it was found at the spindle, spindle poles, and kinetochores. DdEB1 is the first EB1-homolog that is also a genuine centrosomal component, because it was localized at isolated centrosomes that are free of microtubules. Furthermore, centrosomal DdEB1 distribution was unaffected by nocodazole treatment. DdEB1 colocalized with DdCP224, the XMAP215 homolog, at microtubule tips, the centrosome, and kinetochores. Furthermore, both proteins were part of the same cytosolic protein complex, suggesting that they may act together in their functions. DdEB1 deletion mutants expressed as green fluorescent protein or maltose-binding fusion proteins indicated that microtubule binding requires homo-oligomerization, which is mediated by a coiled-coil domain. A DdEB1 null mutant was viable but retarded in prometaphase progression due to a defect in spindle formation. Because spindle elongation was normal, DdEB1 seems to be required for the initiation of the outgrowth of spindle microtubules.
Collapse
Affiliation(s)
- Markus Rehberg
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany
| | | |
Collapse
|
13
|
Karbova E, Davidson B, Metodiev K, Tropé CG, Nesland JM. Adenomatous polyposis coli (APC) protein expression in primary and metastatic serous ovarian carcinoma. Int J Surg Pathol 2002; 10:175-80. [PMID: 12232570 DOI: 10.1177/106689690201000302] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate protein expression of adenomatous polyposis coli (APC) in primary and metastatic serous ovarian carcinoma. The expression of beta-catenin and E-cadherin was additionally analyzed. One hundred and thirteen primary (n = 56) and metastatic (n = 57) lesions were immunohistochemically stained for APC, E-cadherin, and beta-catenin. Staining extent was scored. Possible differences in immunoreactivity in primary and metastatic sites and the association between the proteins analyzed were evaluated statistically. Cytoplasmic immunoreactivity for APC was found in 67/113 (59%) tumors, most often in the majority (> 50%) of cells. E-cadherin was detected in 102/113 (90%) carcinomas, while beta-catenin was expressed in 109/113 (97%) specimens. Nuclear expression of beta-catenin was seen in 3/113 (3%) specimens, all negative for APC. APC and beta-catenin were often coexpressed, but this finding failed to reach statistical significance (p = 0.11). A significant association was seen between E-cadherin and beta-catenin expression (p = 0.001). APC expression was comparable in primary and metastatic tumors (p > 0.05). In conclusion, APC expression is absent in a considerable number of both primary and metastatic ovarian carcinomas, but this finding is only rarely coupled to nuclear accumulation of beta-catenin. These findings support the role for beta-catenin signaling via the Wingless/Wnt pathway in ovarian carcinoma. The mechanism behind the down-regulated expression of APC in serous ovarian carcinoma and its significance has yet to be elucidated.
Collapse
Affiliation(s)
- Eleonora Karbova
- Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
14
|
Abstract
Accurate spindle positioning is crucial for spatial control of cell division. During metazoan development, coordination between polarity cues and spindle position also ensures correct segregation of cell fate determinants. Converging evidence indicates that spindle positioning is achieved through interactions between cortical anchors and the plus ends of microtubules, generating pulling forces acting on spindle poles. This article discusses recent findings that indicate how this mechanism might be used for spindle positioning during Drosophila and Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), 155 ch. des Boveresses, CH-1066 Epalinges/Lausanne, Switzerland.
| |
Collapse
|
15
|
Abstract
Cells in a developing embryo communicate with each other through a limited number of intercellular signalling pathways, of which the Wnt signalling pathway is one. Little is known about the function of Wnt signalling beyond that in embryogenesis. However, recent insights into the molecular etiology of colon cancer have implied a central role for the Wnt signalling pathway. The malignant transformation of colorectal epithelium is well defined, leading to adenoma and sequentially carcinoma formation. Several genes that regulate the Wnt pathway are mutated in cancer of the human colon and other organs. All of these mutations lead to the inappropriate activation of the pathway, which instructs the cell to divide unrestrictedly. These insights now allow the Wnt pathway to be exploited as a new target for drug development in colon cancer.
Collapse
Affiliation(s)
- Irma M Oving
- Department of Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol 2002; 16:903-11. [PMID: 11981026 DOI: 10.1210/mend.16.5.0838] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid follicular neoplasms commonly have aneuploidy, presumably due to chromosomal instability. This property is associated with a greater malignant potential and worse prognosis. Recently, there has been considerable progress in our understanding of mechanisms that may account for chromosomal instability in cancer cells. Many tumors with chromosomal instability have abnormalities in the cell cycle checkpoint that monitors the fidelity of mitosis. Mutations of Bub1 or BubR1, genes coding for kinases involved in mitotic spindle assembly checkpoint signaling, are found in a small subset of aneuploid tumors. Other components of protein complexes responsible for attachment of kinetochores to microtubules, or for cohesion between sister chromatids, may also be subject to alterations during tumor progression. Here, we also discuss the evidence that certain oncogenic events, such as Ras mutations, may predispose cells to chromosomal instability by favoring inappropriate posttranslational changes in mitotic checkpoint components through activation of upstream kinases during tumor initiation or progression.
Collapse
Affiliation(s)
- James A Fagin
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0547, USA.
| |
Collapse
|
17
|
Lin H, de Carvalho P, Kho D, Tai CY, Pierre P, Fink GR, Pellman D. Polyploids require Bik1 for kinetochore-microtubule attachment. J Cell Biol 2001; 155:1173-84. [PMID: 11756471 PMCID: PMC2199317 DOI: 10.1083/jcb.200108119] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The attachment of kinetochores to spindle microtubules (MTs) is essential for maintaining constant ploidy in eukaryotic cells. Here, biochemical and imaging data is presented demonstrating that the budding yeast CLIP-170 orthologue Bik1is a component of the kinetochore-MT binding interface. Strikingly, Bik1 is not required for viability in haploid cells, but becomes essential in polyploids. The ploidy-specific requirement for BIK1 enabled us to characterize BIK1 without eliminating nonhomologous genes, providing a new approach to circumventing the overlapping function that is a common feature of the cytoskeleton. In polyploid cells, Bik1 is required before anaphase to maintain kinetochore separation and therefore contributes to the force that opposes the elastic recoil of attached sister chromatids. The role of Bik1 in kinetochore separation appears to be independent of the role of Bik1 in regulating MT dynamics. The finding that a protein involved in kinetochore-MT attachment is required for the viability of polyploids has potential implications for cancer therapeutics.
Collapse
Affiliation(s)
- H Lin
- Department of Pediatric Oncology, The Dana-Farber Cancer Institute, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Nakamura M, Zhou XZ, Lu KP. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001; 11:1062-7. [PMID: 11470413 DOI: 10.1016/s0960-9822(01)00297-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human EB1 was originally cloned as a protein that interacts with the COOH terminus of adenomatous polyposis coli (APC). Interestingly, this interaction is often disrupted in colon cancer, due to mutations in APC. EB1 also interacts with the plus-ends of microtubules and targets APC to microtubule tips. Since APC is detected on the kinetochores of chromosomes, it has been hypothesized that the EB1-APC interaction connects microtubule spindles to the kinetochores and regulates microtubule stability. In yeast, EB1 regulates microtubule dynamics, and its binding domain in APC may be conserved in Kar9, an EB1 binding protein involved in the microtubule-capturing mechanism. These results suggest that the interaction of EB1 and APC is important and may be conserved. However, it is largely unknown whether the EB1-APC interaction affects microtubule dynamics. Here, we show that EB1 potently promotes microtubule polymerization in vitro and in permeabilized cells, but, surprisingly, only in the presence of the COOH-terminal EB1 binding domain of APC (C-APC). Significantly, this C-APC activity is abolished by phosphorylation, which also disrupts its ability to bind to EB1. Furthermore, yeast EB1 protein effectively substitutes for the human protein but also requires C-APC in promoting microtubule polymerization. Finally, C-APC is able to promote microtubule polymerization when stably expressed in APC mutant cells, demonstrating the ability of C-APC to promote microtubule assembly in vivo. Thus, the interaction between EB1 and APC plays an essential role in the regulation of microtubule polymerization, and a similar mechanism may be conserved in yeast.
Collapse
Affiliation(s)
- M Nakamura
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|