1
|
Guo J, Wang X, Li G, Wang Q, Wang F, Liu J, Feng X, Wang C. Reliability of Serum-Derived Connectome Indicators in Identifying Cirrhosis. J Proteome Res 2024; 23:4729-4741. [PMID: 39305261 DOI: 10.1021/acs.jproteome.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Patients with cirrhosis face a heightened risk of complications, underscoring the importance of identification. We have developed a Connectome strategy that combines metabolites with peptide spectral matching (PSM) in proteomics to integrate metabolomics and proteomics, identifying specific metabolites bound to blood proteins in cirrhosis using open search proteomics methods. Analysis methods including Partial Least Squares Discriminant Analysis (PLS-DA), Uniform Manifold Approximation and Projection (UMAP), and hierarchical clustering were used to distinguish significant differences among the Cirrhosis group, Chronic Hepatitis B (CHB) group, and Healthy group. In this study, we identified 81 cirrhosis-associated connectomes and established an effective model distinctly distinguishing cirrhosis from chronic hepatitis B and healthy samples, confirmed by PLS-DA, hierarchical clustering analysis, and UMAP analysis, and further validated using six new cirrhosis samples. We established a Unified Indicator for Identifying cirrhosis, including tyrosine, Unnamed_189.2, thiazolidine, etc., which not only enables accurate identification of cirrhosis groups but was also further validated using six new cirrhosis samples and extensively supported by other cirrhosis research data (PXD035024). Our study reveals that characteristic cirrhosis connectomes can reliably distinguish cirrhosis from CHB and healthy groups. The established unified cirrhotic indicator facilitates the identification of cirrhosis cases in both this study and additional research data.
Collapse
Affiliation(s)
- Jisheng Guo
- College of Basic Medicine, Yantai Campus of Binzhou Medical University, Yantai 264003, China
| | - Xiaona Wang
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Guangming Li
- Department of Hepatology, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Qiong Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Fengqin Wang
- College of Basic Medicine, Shandong University, Jinan 250012, China
| | - Jinjin Liu
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Xu Feng
- Medical Laboratory, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Chao Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| |
Collapse
|
2
|
Tang J, Hu R, Liu Y, Liu J, Wang G, Lv J, Cheng L, He T, Liu Y, Shao PL, Zhang B. Deciphering ACE2-RBD binding affinity through peptide scanning: A molecular dynamics simulation approach. Comput Biol Med 2024; 173:108325. [PMID: 38513389 DOI: 10.1016/j.compbiomed.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Rapid discovery of target information for protein-protein interactions (PPIs) is significant in drug design, diagnostics, vaccine development, antibody therapy, etc. Peptide microarray is an ideal tool for revealing epitope information of PPIs. In this work, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) and the host cell receptor angiotensin-converting enzyme 2 (ACE2) were introduced as a model to study the epitope information of RBD-specific binding to ACE2 via a combination of theoretical calculations and experimental validation. Through dock and molecular dynamics simulations, it was found that among the 22 peptide fragments that consist of RBD, #14 (YNYLYRLFRKSNLKP) has the highest binding strength. Subsequently, the experiments of peptide microarray constructed based on plasmonic materials chip also confirmed the theoretical calculation data. Compared to other methods, such as phage display technology and surface plasmon resonance (SPR), this method is rapid and cost-effective, providing insights into the investigation of pathogen invasion processes and the timely development of peptide drugs and other fields.
Collapse
Affiliation(s)
- Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingchao Liu
- Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tingzhen He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Pan-Lin Shao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
4
|
McDonnell JM, Dhaliwal B, Sutton BJ, Gould HJ. IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annu Rev Immunol 2023; 41:255-275. [PMID: 36737596 DOI: 10.1146/annurev-immunol-061020-053712] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.
Collapse
Affiliation(s)
- J M McDonnell
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | | | - B J Sutton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| |
Collapse
|
5
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
6
|
Bingöl EN, Taştekil I, Yay C, Keskin N, Ozbek P. How Epstein-Barr virus envelope glycoprotein gp350 tricks the CR2? A molecular dynamics study. J Mol Graph Model 2022; 114:108196. [DOI: 10.1016/j.jmgm.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
7
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Jiang B, Zhang Z, Xu J, Jin H, Tuya, Li Y. Cloning and structural analysis of complement component 3d in wild birds provides insight into its functional evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103979. [PMID: 33338517 DOI: 10.1016/j.dci.2020.103979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Complement component 3 d (C3d) is the final cleavage product of the complement component C3 and serves as a crucial role in link innate and adaptive immunity, and increase B-cell sensitivity to an antigen by 1000-10000 fold. The crystal structure of human C3d revealed there are two distinct surfaces, a convex surface containing the thioester-constituting residues that mediate covalent binding to the target antigen, and a concave surface with an acidic pocket responsible for interaction with CR2. In this study, we cloned and sequenced cDNA fragment encoding C3d region from 15 wild bird species. Then, the C3d sequences from wild birds, chicken and mammals were aligned to construct phylogenetic trees. Phylogenetic tree displayed two main branches, indicating mammals and birds, but the bird C3d branch was divided into two main parts, with five wild birds (Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus) clustering much closer to mammals. In addition, the C3d proteins of Ardeola bacchus, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus contained a Glu163 residue at the position at which Lys163 was found in other birds. However, Glu163 have the same charge polarity as Asp163, which is the key amino acid residue comprising the acidic pocket combined with CR2 found at this position in mammals, and Zoothera also possessed Asp163 at this position. Structure modeling analyses also verified that the C3ds of these five wild bird species exhibited the amino acid sequence and structure comprising the typical acidic pocket found in mammals that is required for combination with B cell surface receptors, which contribute electrostatic forces to interact with CR2. Our investigations indicate that some bird C3ds may already have the ability to bind with CR2 by electrostatic force, like mammals. As Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus have more typical C3d concave acid pockets and thus a stronger ability to bind CR2, we speculate that these five wild birds may have a solider immunity against pathogens. Our phylogenetic and structural analyses of bird C3ds provide insights on the evolutionary divergence in the function of immune factors of avian and mammalian.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Zhenhua Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Tuya
- Beijing Rescue Center for Wild Life Animal, Beijing, 101300, PR China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China.
| |
Collapse
|
9
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys 2018; 18:22129-39. [PMID: 27444142 DOI: 10.1039/c6cp03670h] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
Collapse
Affiliation(s)
- Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
11
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Abstract
![]()
Electrostatic effects
are ubiquitous in protein interactions and
are found to be pervasive in the complement system as well. The interaction
between complement fragment C3d and complement receptor 2 (CR2) has
evolved to become a link between innate and adaptive immunity. Electrostatic
interactions have been suggested to be the driving factor for the
association of the C3d:CR2 complex. In this study, we investigate
the effects of ionic strength and mutagenesis on the association of
C3d:CR2 through Brownian dynamics simulations. We demonstrate that
the formation of the C3d:CR2 complex is ionic strength-dependent,
suggesting the presence of long-range electrostatic steering that
accelerates the complex formation. Electrostatic steering occurs through
the interaction of an acidic surface patch in C3d and the positively
charged CR2 and is supported by the effects of mutations within the
acidic patch of C3d that slow or diminish association. Our data are
in agreement with previous experimental mutagenesis and binding studies
and computational studies. Although the C3d acidic patch may be locally
destabilizing because of unfavorable Coulombic interactions of like
charges, it contributes to the acceleration of association. Therefore,
acceleration of function through electrostatic steering takes precedence
to stability. The site of interaction between C3d and CR2 has been
the target for delivery of CR2-bound nanoparticle, antibody, and small
molecule biomarkers, as well as potential therapeutics. A detailed
knowledge of the physicochemical basis of C3d:CR2 association may
be necessary to accelerate biomarker and drug discovery efforts.
Collapse
Affiliation(s)
- Rohith R Mohan
- Department of Bioengineering, University of California , Riverside, California 92521, United States
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California , San Diego, California 92093, United States
| | - Dimitrios Morikis
- Department of Bioengineering, University of California , Riverside, California 92521, United States
| |
Collapse
|
14
|
Taylor RL, Cruickshank MN, Karimi M, Ng HL, Quail E, Kaufman KM, Harley JB, Abraham LJ, Tsao BP, Boackle SA, Ulgiati D. Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells. Cell Mol Immunol 2016; 13:119-31. [PMID: 25640655 PMCID: PMC4711682 DOI: 10.1038/cmi.2014.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/05/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
Collapse
Affiliation(s)
- Rhonda L Taylor
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Mark N Cruickshank
- Telethon Kids Institute, The University of Western Australia, Crawley, WA, Australia
| | - Mahdad Karimi
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Han Leng Ng
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Elizabeth Quail
- Biochemistry and Molecular Biology, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Lawrence J Abraham
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| | - Betty P Tsao
- Division of Rheumatology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniela Ulgiati
- School of Pathology and Laboratory Medicine, Centre for Genetic Origins of Health and Disease, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
15
|
Kedl RM, Tamburini BA. Antigen archiving by lymph node stroma: A novel function for the lymphatic endothelium. Eur J Immunol 2015; 45:2721-9. [PMID: 26278423 DOI: 10.1002/eji.201545739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Secondary lymphoid stroma performs far more functions than simple structural support for lymphoid tissues, providing a host of soluble and membrane-bound cues to trafficking leukocytes during inflammation and homeostasis. More recently it has become clear that stromal cells can manipulate T-cell responses, either through direct antigen-mediated stimulation of T cells or more indirectly through the retention and management of antigen after viral infection or vaccination. In light of recent data, this review provides an overview of stromal cell subsets and functions during the progression of an adaptive immune response with particular emphasis on antigen capture and retention by follicular dendritic cells as well as the recently described "antigen archiving" function of lymphatic endothelial cells (LECs). Given its impact on the maintenance of protective immune memory, we conclude by discussing the most pressing questions pertaining to LEC antigen capture, archiving and exchange with hematopoetically derived antigen-presenting cells.
Collapse
Affiliation(s)
- Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| | - Beth A Tamburini
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1111] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
17
|
E S Harrison R, Gorham RD, Morikis D. Energetic evaluation of binding modes in the C3d and Factor H (CCP 19-20) complex. Protein Sci 2015; 24:789-802. [PMID: 25628052 DOI: 10.1002/pro.2650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
Abstract
As a part of innate immunity, the complement system relies on activation of the alternative pathway (AP). While feed-forward amplification generates an immune response towards foreign surfaces, the process requires regulation to prevent an immune response on the surface of host cells. Factor H (FH) is a complement protein secreted by native cells to negatively regulate the AP. In terms of structure, FH is composed of 20 complement-control protein (CCP) modules that are structurally homologous but vary in composition and function. Mutations in these CCPs have been linked to states of autoimmunity. In particular, several mutations in CCP 19-20 are correlated to atypical hemolytic uremic syndrome (aHUS). From crystallographic structures there are three putative binding sites of CCP 19-20 on C3d. Since there has been some controversy over the primary mode of binding from experimental studies, we approach characterization of binding using computational methods. Specifically, we compare each binding mode in terms of electrostatic character, structural stability, dissociative and associative properties, and predicted free energy of binding. After a detailed investigation, we found two of the three binding sites to be similarly stable while varying in the number of contacts to C3d and in the energetic barrier to complex dissociation. These sites are likely physiologically relevant and may facilitate multivalent binding of FH CCP 19-20 to C3b and either C3d or host glycosaminoglycans. We propose thermodynamically stable binding with modules 19 and 20, the latter driven by electrostatics, acting synergistically to increase the apparent affinity of FH for host surfaces.
Collapse
Affiliation(s)
- Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, California
| | | | | |
Collapse
|
18
|
A theoretical view of the C3d:CR2 binding controversy. Mol Immunol 2014; 64:112-22. [PMID: 25433434 DOI: 10.1016/j.molimm.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
Abstract
The C3d:CR2(SCR1-2) interaction plays an important role in bridging innate and adaptive immunity, leading to enhanced antibody production at sites of complement activation. Over the past decade, there has been much debate over the binding mode of this interaction. An initial cocrystal structure (PDB: 1GHQ) was published in 2001, in which the only interactions observed were between the SCR2 domain of CR2 and a side-face of C3d whereas a cocrystal structure (PDB: 3OED) published in 2011 showed both the SCR1 and SCR2 domains of CR2 interacting with an acidic patch on the concave surface of C3d. The initial 1GHQ structure is at odds with the majority of existing biochemical data and the publication of the 3OED structure renewed uncertainty regarding the physiological relevance of 1GHQ, suggesting that crystallization may have been influenced by the presence of zinc acetate in the crystallization process. In our study, we used a variety of computational approaches to gain insight into the binding mode between C3d and CR2 and demonstrate that the binding site at the acidic patch (3OED) is electrostatically more favorable, exhibits better structural and dissociative stability, specifically at the SCR1 domain, and has higher binding affinity than the 1GHQ binding mode. We also observe that nonphysiological zinc ions enhance the formation of the C3d:CR2 complex at the side face of C3d (1GHQ) through increases in electrostatic favorability, intermolecular interactions, dissociative character and overall energetic favorability. These results provide a theoretical basis for the association of C3d:CR2 at the acidic cavity of C3d and provide an explanation for binding of CR2 at the side face of C3d in the presence of nonphysiological zinc ions.
Collapse
|
19
|
Gorham RD, Rodriguez W, Morikis D. Molecular analysis of the interaction between staphylococcal virulence factor Sbi-IV and complement C3d. Biophys J 2014; 106:1164-73. [PMID: 24606940 DOI: 10.1016/j.bpj.2014.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/29/2013] [Accepted: 01/23/2014] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus expresses numerous virulence factors that aid in immune evasion. The four-domain staphylococcal immunoglobulin binding (Sbi) protein interacts with complement component 3 (C3) and its thioester domain (C3d)-containing fragments. Recent structural data suggested two possible modes of binding of Sbi domain IV (Sbi-IV) to C3d, but the physiological binding mode remains unclear. We used a computational approach to provide insight into the C3d-Sbi-IV interaction. Molecular dynamics (MD) simulations showed that the first binding mode (PDB code 2WY8) is more robust than the second (PDB code 2WY7), with more persistent polar and nonpolar interactions, as well as conserved interfacial solvent accessible surface area. Brownian dynamics and steered MD simulations revealed that the first binding mode has faster association kinetics and maintains more stable intermolecular interactions compared to the second binding mode. In light of available experimental and structural data, our data confirm that the first binding mode represents Sbi-IV interaction with C3d (and C3) in a physiological context. Although the second binding mode is inherently less stable, we suggest a possible physiological role. Both binding sites may serve as a template for structure-based design of novel complement therapeutics.
Collapse
Affiliation(s)
- Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, California
| | - Wilson Rodriguez
- Department of Bioengineering, University of California, Riverside, California
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, California.
| |
Collapse
|
20
|
Williams M, Baxter R. The structure and function of thioester-containing proteins in arthropods. Biophys Rev 2014; 6:261-272. [PMID: 28510031 DOI: 10.1007/s12551-014-0142-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022] Open
Abstract
Thioester-containing proteins (TEPs) form an ancient and diverse family of secreted proteins that play central roles in the innate immune response. Two families of TEPs, complement factors and α2-macroglobulins, have been known and studied in vertebrates for many years, but only in the last decade have crystal structures become available. In the same period, the presence of two additional classes of TEPs has been revealed in arthropods. In this review, we discuss the common structural features TEPs and how this knowledge can be applied to the many arthropod TEPs of unknown function. TEPs perform a wide variety of functions that are driven by different quaternary structures and protein-protein interactions between a common set of folded domains. A common theme is regulated conformational change triggered by proteolysis. Structure-function analysis of the diverse arthropod TEPs may identify not just new mechanisms in innate immunity but also interfaces between immunity, development and cell death.
Collapse
Affiliation(s)
- Marni Williams
- Department. of Chemistry, Yale University, New Haven, CT, USA
| | - Richard Baxter
- Department. of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Abstract
Follicular dendritic cells (FDCs) are essential for high-affinity antibody production and for the development of B cell memory. Historically, FDCs have been characterized as 'accessory' cells that passively support germinal centre (GC) responses. However, recent observations suggest that FDCs actively shape humoral immunity. In this Review, we discuss recent findings concerning the antigen acquisition and retention functions of FDCs, and relevant implications for protective immunity. Furthermore, we describe the roles of FDCs within GCs in secondary lymphoid organs and discuss FDC development within this dynamic environment. Finally, we discuss how a better understanding of FDCs could facilitate the design of next-generation vaccines.
Collapse
|
22
|
Di H, Zhang Y, Chen D. An anti-complementary polysaccharide from the roots of Bupleurum chinense. Int J Biol Macromol 2013; 58:179-85. [DOI: 10.1016/j.ijbiomac.2013.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/03/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
23
|
Nan R, Tetchner S, Rodriguez E, Pao PJ, Gor J, Lengyel I, Perkins SJ. Zinc-induced self-association of complement C3b and Factor H: implications for inflammation and age-related macular degeneration. J Biol Chem 2013; 288:19197-210. [PMID: 23661701 PMCID: PMC3696691 DOI: 10.1074/jbc.m113.476143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/30/2013] [Indexed: 11/08/2022] Open
Abstract
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μM zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μM zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μM zinc and even more so at >100 μM zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients.
Collapse
Affiliation(s)
- Ruodan Nan
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart Tetchner
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Elizabeth Rodriguez
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Po-Jung Pao
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Imre Lengyel
- the Department of Ocular Biology and Therapeutics, UCL
Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Stephen J. Perkins
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
24
|
Primary immunodeficiencies: a rapidly evolving story. J Allergy Clin Immunol 2013; 131:314-23. [PMID: 23374262 DOI: 10.1016/j.jaci.2012.11.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/28/2022]
Abstract
The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.
Collapse
|
25
|
Wan H, Hu JP, Tian XH, Chang S. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys Chem Chem Phys 2013; 15:1241-51. [DOI: 10.1039/c2cp41388d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Makou E, Mertens HD, Maciejewski M, Soares DC, Matis I, Schmidt CQ, Herbert AP, Svergun DI, Barlow PN. Solution structure of CCP modules 10-12 illuminates functional architecture of the complement regulator, factor H. J Mol Biol 2012; 424:295-312. [PMID: 23017427 PMCID: PMC4068365 DOI: 10.1016/j.jmb.2012.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 01/08/2023]
Abstract
The 155-kDa plasma glycoprotein factor H (FH), which consists of 20 complement control protein (CCP) modules, protects self-tissue but not foreign organisms from damage by the complement cascade. Protection is achieved by selective engagement of FH, via CCPs 1-4, CCPs 6-8 and CCPs 19-20, with polyanion-rich host surfaces that bear covalently attached, activation-specific, fragments of complement component C3. The role of intervening CCPs 9-18 in this process is obscured by lack of structural knowledge. We have concatenated new high-resolution solution structures of overlapping recombinant CCP pairs, 10-11 and 11-12, to form a three-dimensional structure of CCPs 10-12 and validated it by small-angle X-ray scattering of the recombinant triple-module fragment. Superimposing CCP 12 of this 10-12 structure with CCP 12 from the previously solved CCP 12-13 structure yielded an S-shaped structure for CCPs 10-13 in which modules are tilted by 80-110° with respect to immediate neighbors, but the bend between CCPs 10 and 11 is counter to the arc traced by CCPs 11-13. Including this four-CCP structure in interpretation of scattering data for the longer recombinant segments, CCPs 10-15 and 8-15, implied flexible attachment of CCPs 8 and 9 to CCP 10 but compact and intimate arrangements of CCP 14 with CCPs 12, 13 and 15. Taken together with difficulties in recombinant production of module pairs 13-14 and 14-15, the aberrant structure of CCP 13 and the variability of 13-14 linker sequences among orthologues, a structural dependency of CCP 14 on its neighbors is suggested; this has implications for the FH mechanism.
Collapse
Key Words
- ccp, complement control protein
- cr1, complement receptor type 1
- daf, decay accelerating factor
- fh, factor h
- eom, ensemble optimization method
- hsqc, heteronuclear single quantum coherence
- mcp, membrane cofactor protein
- noe, nuclear overhauser enhancement
- saxs, small-angle x-ray scattering
- tocsy, total correlated spectroscopy
- protein nmr
- protein domains
- complement system
- small-angle x-ray scattering
- regulators of complement activation
Collapse
Affiliation(s)
- Elisavet Makou
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Haydyn D.T. Mertens
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen‐Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Mateusz Maciejewski
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Dinesh C. Soares
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ilias Matis
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Christoph Q. Schmidt
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Andrew P. Herbert
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen‐Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Paul N. Barlow
- Schools of Chemistry and Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| |
Collapse
|
27
|
Regulation of humoral immunity by complement. Immunity 2012; 37:199-207. [PMID: 22921118 DOI: 10.1016/j.immuni.2012.08.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/13/2012] [Accepted: 08/03/2012] [Indexed: 12/19/2022]
Abstract
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity.
Collapse
|
28
|
Asokan R, Banda NK, Szakonyi G, Chen XS, Holers VM. Human complement receptor 2 (CR2/CD21) as a receptor for DNA: implications for its roles in the immune response and the pathogenesis of systemic lupus erythematosus (SLE). Mol Immunol 2012; 53:99-110. [PMID: 22885687 DOI: 10.1016/j.molimm.2012.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023]
Abstract
Human CR2 is a B cell membrane glycoprotein that plays a central role in autoimmunity. Systemic lupus erythematosus (SLE) patients show reduced CR2 levels, and complete deficiency of CR2 and CR1 promotes the development of anti-DNA antibodies in mouse models of SLE. Here we show that multiple forms of DNA, including bacterial, viral and mammalian DNA, bind to human CR2 with moderately high affinity. Surface plasmon resonance studies showed that methylated DNA bound with high affinity with CR2 at a maximal K(D) of 6nM. DNA was bound to the first two domains of CR2 and this binding was blocked by using a specific inhibitory anti-CR2 mAb. DNA immunization in Cr2(-/-) mice revealed a specific defect in immune responses to bacterial DNA. CR2 can act as a receptor for DNA in the absence of complement C3 fixation to this ligand. These results suggest that CR2 plays a role in the recognition of foreign DNA during host-immune responses. This recognition function of CR2 may be a mechanism that influences the development of autoimmunity to DNA in SLE.
Collapse
Affiliation(s)
- Rengasamy Asokan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
29
|
Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC STRUCTURAL BIOLOGY 2012; 12:6. [PMID: 22554255 PMCID: PMC3427047 DOI: 10.1186/1472-6807-12-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/05/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" RESULTS A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex.Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. CONCLUSIONS The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.
Collapse
Affiliation(s)
| | - Swapnil Mahajan
- Univ de la Réunion, UMR_S 665, F-97715, Saint-Denis, France
- INSERM, U 665, Saint-Denis, F-97715, France
| | - Alexandre G de Brevern
- INSERM, U 665 DSIMB, Paris, F-75739, France
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, F- 75739, France
- INTS, F-75739, Paris, France
| | | |
Collapse
|
30
|
Li K, Gor J, Holers VM, Storek MJ, Perkins SJ. Solution structure of TT30, a novel complement therapeutic agent, provides insight into its joint binding to complement C3b and C3d. J Mol Biol 2012; 418:248-63. [PMID: 22387467 DOI: 10.1016/j.jmb.2012.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 12/21/2022]
Abstract
A novel therapeutic reagent TT30 was designed to be effective in diseases of the alternative pathway of complement such as paroxysmal nocturnal hemoglobinuria and other diseases. TT30 is constructed from the first four short complement regulator (SCR) domains of complement receptor type 2 (CR2) that bind to complement C3d, followed by the first five SCR domains of complement factor H that bind to complement C3b. In order to assess how TT30 binds to C3d and C3b, we determined the TT30 solution structure by a combination of analytical ultracentrifugation, X-ray scattering and constrained modeling. The sedimentation coefficients and radius of gyration of TT30 were unaffected by citrate or phosphate-buffered saline buffers and indicate an elongated monomeric structure with a sedimentation coefficient of 3.1 S and a radius of gyration R(G) of 6.9 nm. Molecular modeling starting from 3000 randomized TT30 conformations showed that high-quality X-ray curve fits were obtained with extended SCR arrangements, showing that TT30 has a limited degree of inter-SCR flexibility in its solution structure. The best-fit TT30 structural models are readily merged with the crystal structure of C3b to show that the four CR2 domains extend freely into solution when the five complement factor H domains are bound within C3b. We reevaluated the solution structure of the CR2-C3d complex that confirmed its recent crystal structure. This recent CR2-C3d crystal structure showed that TT30 is able to interact readily with C3d ligands in many orientations when TT30 is bound to C3b.
Collapse
Affiliation(s)
- Keying Li
- Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
31
|
Pechtl IC, Neely RK, Dryden DTF, Jones AC, Barlow PN. Use of time-resolved FRET to validate crystal structure of complement regulatory complex between C3b and factor H (N terminus). Protein Sci 2012; 20:2102-12. [PMID: 21936007 DOI: 10.1002/pro.738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural knowledge of interactions amongst the ~ 40 proteins of the human complement system, which is central to immune surveillance and homeostasis, is expanding due primarily to X-ray diffraction of co-crystallized proteins. Orthogonal evidence, in solution, for the physiological relevance of such co-crystal structures is valuable since intermolecular affinities are generally weak-to-medium and inter-domain mobility may be important. In this current work, Förster resonance energy transfer (FRET) was used to investigate the 10 μM K(D) (210 kD) complex between the N-terminal region of the soluble complement regulator, factor H (FH1-4), and the key activation-specific complement fragment, C3b. Using site-directed mutagenesis, seven cysteines were introduced individually at potentially informative positions within the four CCP modules comprising FH1-4, then used for fluorophore attachment. C3b possesses a thioester domain featuring an internal cycloglutamyl cysteine thioester; upon hydrolysis this yields a free thiol (Cys988) that was also fluorescently tagged. Labeled proteins were functionally active as cofactors for cleavage of C3b to iC3b except for FH1-4(Q40C) where conjugation with the fluorophore likely abrogated interaction with the protease, factor I. Time-resolved FRET measurements were undertaken to explore interactions between FH1-4 and C3b in fluid phase and under near-physiological conditions. These experiments confirmed that, as in the cocrystal structure, FH1-4 binds to C3b with CCP module 1 furthest from, and CCP module 4 closest to, the thioester domain, placing subsequent modules of FH near to any surface to which C3b is attached. The data do not rule out flexibility of the thioester domain relative to the remainder of the complex.
Collapse
Affiliation(s)
- Isabell C Pechtl
- EaStCHEM School of Chemistry and Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre (COSMIC), University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
33
|
Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol 2011; 129:801-810.e6. [PMID: 22035880 DOI: 10.1016/j.jaci.2011.09.027] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/25/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Complement receptor 2 (CR2/CD21) is part of the B-cell coreceptor and expressed by mature B cells and follicular dendritic cells. CD21 is a receptor for C3d-opsonized immune complexes and enhances antigen-specific B-cell responses. OBJECTIVE Genetic inactivation of the murine CR2 locus results in impaired humoral immune responses. Here we report the first case of a genetic CD21 deficiency in human subjects. METHODS CD21 protein expression was analyzed by means of flow cytometry and Western blotting. CD21 transcripts were quantified by using real-time PCR. The CD21 gene was sequenced. Wild-type and mutant CD21 cDNA expression was studied after transfection of 293T cells. Binding of EBV-gp350 or C3d-containing immune complexes and induction of calcium flux in CD21-deficient B cells were analyzed by means of flow cytometry. Antibody responses to protein and polysaccharide vaccines were measured. RESULTS A 28-year-old man presented with recurrent infections, reduced class-switched memory B cells, and hypogammaglobulinemia. CD21 receptor expression was undetectable. Binding of C3d-containing immune complexes and EBV-gp350 to B cells was severely reduced. Sequence analysis revealed a compound heterozygous deleterious mutation in the CD21 gene. Functional studies with anti-immunoglobulin- and C3d-containing immune complexes showed a complete loss of costimulatory activity of C3d in enhancing suboptimal B-cell receptor stimulation. Vaccination responses to protein antigens were normal, but the response to pneumococcal polysaccharide vaccination was moderately impaired. CONCLUSIONS Genetic CD21 deficiency adds to the molecular defects observed in human subjects with hypogammaglobulinemia.
Collapse
|
34
|
Mitra P, Pal D. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Structure 2011; 19:304-12. [PMID: 21397182 DOI: 10.1016/j.str.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces ≥90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Collapse
Affiliation(s)
- Pralay Mitra
- Bioinformatics Centre, Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
35
|
Decreasing the configurational entropy and the hydrophobicity of EBV-derived peptide 11389 increased its antigenicity, immunogenicity and its ability of inducing IL-6. Amino Acids 2011; 42:2165-75. [DOI: 10.1007/s00726-011-0954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/27/2011] [Indexed: 11/28/2022]
|
36
|
Mauri I, Roher N, MacKenzie S, Romero A, Manchado M, Balasch JC, Béjar J, Alvarez MC, Tort L. Molecular cloning and characterization of European seabass (Dicentrarchus labrax) and Gilthead seabream (Sparus aurata) complement component C3. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1310-1322. [PMID: 21421056 DOI: 10.1016/j.fsi.2011.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 05/30/2023]
Abstract
We present the complete C3 cDNA sequence of Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) and its molecular characterization with a descriptive analysis of their structural elements. We obtained one sequence for Gilthead seabream (gsbC3) which encodes a predicted protein of 1656 amino acids, and two sequences for European seabass (esbC3_1 and esbC3_2) which encode two predicted proteins of 1654 and 1587 amino acids respectively. All sequences present the characteristic structural features of C3 but interestingly esbC3_2 lacks the anaphylotoxin domain and the cysteine residue responsible for thiolester bond formation. Moreover, we have detected and quantified (by real-time PCR-based absolute quantification) specific isoform expression in European seabass depending on pathogen and density conditions in vivo. In addition, we have analyzed the tissue distribution pattern of European seabass and Gilthead seabream C3 genes under crowding stress and under pathological challenges in vivo, and we have observed that crowding and infection status provoke changes in expression levels, tissue expression pattern and C3 isoform expression balance.
Collapse
Affiliation(s)
- I Mauri
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, O8193 Cerdanyola, Catalunya, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
van den Elsen JMH, Isenman DE. A crystal structure of the complex between human complement receptor 2 and its ligand C3d. Science 2011; 332:608-11. [PMID: 21527715 DOI: 10.1126/science.1201954] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The interaction of complement receptor 2 (CR2)--which is present on B cells and follicular dendritic cells--with its antigen-bound ligand C3d results in an enhanced antibody response, thus providing an important link between the innate and adaptive immune systems. Although a cocrystal structure of a complex between C3d and the ligand-binding domains of CR2 has been published, several aspects of this structure, including the position in C3d of the binding interface, remained controversial because of disagreement with biochemical data. We now report a cocrystal structure of a CR2(SCR1-2):C3d complex at 3.2 angstrom resolution in which the interaction interfaces differ markedly from the previously published structure and are consistent with the biochemical data. It is likely that, in the previous structure, the interaction was influenced by the presence of zinc acetate additive in the crystallization buffer, leading to a nonphysiological complex. Detailed knowledge of the binding interface now at hand gives the potential to exploit the interaction in vaccine design or in therapeutics directed against autoreactive B cells.
Collapse
|
38
|
Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, Herbert AP, Kavanagh D, Mertens HDT, Svergun DI, Johansson CM, Uhrín D, Barlow PN, Hannan JP. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 2011; 18:463-70. [PMID: 21317894 PMCID: PMC3512577 DOI: 10.1038/nsmb.2018] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/14/2011] [Indexed: 12/15/2022]
Abstract
Complement factor H (FH) attenuates C3b molecules tethered by their thioester domains to self surfaces and thereby protects host tissues. Factor H is a cofactor for initial C3b proteolysis that ultimately yields a surface-attached fragment (C3d) corresponding to the thioester domain. We used NMR and X-ray crystallography to study the C3d-FH19-20 complex in atomic detail and identify glycosaminoglycan-binding residues in factor H module 20 of the C3d-FH19-20 complex. Mutagenesis justified the merging of the C3d-FH19-20 structure with an existing C3b-FH1-4 crystal structure. We concatenated the merged structure with the available FH6-8 crystal structure and new SAXS-derived FH1-4, FH8-15 and FH15-19 envelopes. The combined data are consistent with a bent-back factor H molecule that binds through its termini to two sites on one C3b molecule and simultaneously to adjacent polyanionic host-surface markers.
Collapse
Affiliation(s)
- Hugh P Morgan
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kieslich CA, Morikis D, Yang J, Gunopulos D. Automated computational framework for the analysis of electrostatic similarities of proteins. Biotechnol Prog 2011; 27:316-25. [PMID: 21485028 DOI: 10.1002/btpr.541] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Indexed: 12/14/2022]
Abstract
Charge plays an important role in protein-protein interactions. In the case of excessively charged proteins, their electrostatic potentials contribute to the processes of recognition and binding with other proteins or ligands. We present an automated computational framework for determining the contribution of each charged amino acid to the electrostatic properties of proteins, at atomic resolution level. This framework involves computational alanine scans, calculation of Poisson-Boltzmann electrostatic potentials, calculation of electrostatic similarity distances (ESDs), hierarchical clustering analysis of ESDs, calculation of solvation free energies of association, and visualization of the spatial distributions of electrostatic potentials. The framework is useful to classify families of mutants with similar electrostatic properties and to compare them with the parent proteins in the complex. The alanine scan mutants introduce perturbations in the local electrostatic properties of the proteins and aim in delineating the contribution of each mutated amino acid in the spatial distribution of electrostatic potential, and in biological function when electrostatics is a dominant contributing factor in protein-protein interactions. The framework can be used to design new proteins with tailored electrostatic properties, such as immune system regulators, inhibitors, and vaccines, and in guiding experimental studies. We present an example for the interaction of the immune system protein C3d (the d-fragment of complement protein C3) with its receptor CR2, and we discuss our data in view of a binding site controversy.
Collapse
Affiliation(s)
- Chris A Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
40
|
Clark EA, Crennell S, Upadhyay A, Zozulya AV, Mackay JD, Svergun DI, Bagby S, van den Elsen JM. A structural basis for Staphylococcal complement subversion: X-ray structure of the complement-binding domain of Staphylococcus aureus protein Sbi in complex with ligand C3d. Mol Immunol 2011; 48:452-62. [PMID: 21055811 PMCID: PMC3025320 DOI: 10.1016/j.molimm.2010.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 01/07/2023]
Abstract
The structure of the complement-binding domain of Staphylococcus aureus protein Sbi (Sbi-IV) in complex with ligand C3d is presented. The 1.7Å resolution structure reveals the molecular details of the recognition of thioester-containing fragment C3d of the central complement component C3, involving interactions between residues of Sbi-IV helix α2 and the acidic concave surface of C3d. The complex provides a structural basis for the binding preference of Sbi for native C3 over C3b and explains how Sbi-IV inhibits the interaction between C3d and complement receptor 2. A second C3d binding site on Sbi-IV is identified in the crystal structure that is not observed in related S. aureus C3 inhibitors Efb-C and Ehp. This binding mode perhaps hints as to how Sbi-IV, as part of Sbi, forms a C3b-Sbi adduct and causes futile consumption of C3, an extraordinary aspect of Sbi function that is not shared by any other known Staphylococcal complement inhibitor.
Collapse
Affiliation(s)
- Elizabeth A. Clark
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Susan Crennell
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Abhishek Upadhyay
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Julia D. Mackay
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Stefan Bagby
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Jean M.H. van den Elsen
- University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom,Corresponding author. Tel.: +44 1225 383639; fax: +44 1225 386779.
| |
Collapse
|
41
|
Bowles SL, Jaeger C, Ferrara C, Fingeroth J, Van De Venter M, Oosthuizen V. Comparative binding of soluble fragments (derCD23, sCD23, and exCD23) of recombinant human CD23 to CD21 (SCR 1-2) and native IgE, and their effect on IgE regulation. Cell Immunol 2011; 271:371-8. [DOI: 10.1016/j.cellimm.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/20/2011] [Accepted: 08/04/2011] [Indexed: 11/24/2022]
|
42
|
Shaw CD, Storek MJ, Young KA, Kovacs JM, Thurman JM, Holers VM, Hannan JP. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking. J Mol Biol 2010; 404:697-710. [PMID: 20951140 DOI: 10.1016/j.jmb.2010.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/01/2022]
Abstract
The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is docked within the concave surface of C3d.
Collapse
Affiliation(s)
- Craig D Shaw
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, Mayfield Road, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu D, Wang J, Niu ZX. Contribution of Chinese Pekin duck complement component C3d-P29 repeats to enhancement of Th2-biased immune responses against NDV F gene induced by DNA immunization. Immunopharmacol Immunotoxicol 2010; 32:297-306. [PMID: 20148704 DOI: 10.3109/08923970903311802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM C3d, a split product of C3, interacts with its receptor (CR2 or CD21) on B cells and follicular dendritic cells (FDCs) and is crucial for induction and maintenance of a normal humoral immune response. This fragment of complement protein C3 (C3d) has also been shown to enhance B cell responses when complexed with antigen and C3d fusion increased Th2-biased immune response by inducing IL-4 production. MATERIALS AND METHODS The gene fragment coding for Chinese Pekin duck (Anas platyrhynchos) C3d gene (duC3d) was cloned and expressed as a component of fusion proteins destined for use in in vitro experiments. Two, four and six copies of CR2-binding domain duC3d-P29 were fused, respectively, to truncated Newcastle disease virus (NDV) F gene encoding soluble glycoprotein F in pcDNA3.1.All recombinant proteins were analyzed by SDS-PAGE and Western immunoblot. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. RESULTS The result of immunogenicity detections of The IL-4 level for F-C3d-P29.6 DNA immunization approached that for the inactivated vaccine. Compared to C3d-P29.6, C3d-P29.4 enhanced F DNA immunogenicity to a lesser extent. Furthermore, C3d-P29.n fusion increased Th2-biased immune response by inducing IL-4 production. CONCLUSION We demonstrated that C3d-P29 could enhance immunogenicity by directing Th1-biased to a balanced and more effective Th1/Th2 response. The expression of the duck C3d fusion proteins in this study which was the first reported, and the detections of the cytokine level for F-C3d-P29.n in DNA immunization using the BALB/c mice as the model animal, will provide the basis for immunization trials in chicken or other poultry, studies of receptor binding and cell activation of animal lymphocytes, and investigations of new types of vaccine, including genetic recombinant and DNA vaccines for the future against relevant pathogens.
Collapse
Affiliation(s)
- Dong Liu
- College of Animal Science & Veterinary Medicine, Shandong Agriculture University, Tai'an, People's Republic of China
| | | | | |
Collapse
|
44
|
Cribbs DH. Abeta DNA vaccination for Alzheimer's disease: focus on disease prevention. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:207-16. [PMID: 20205639 PMCID: PMC3153446 DOI: 10.2174/187152710791012080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/05/2010] [Indexed: 12/18/2022]
Abstract
Pre-clinical and clinical data suggest that the development of a safe and effective anti-amyloid-beta (Abeta) immunotherapy for Alzheimer's disease (AD) will require therapeutic levels of anti-Abeta antibodies, while avoiding proinflammatory adjuvants and autoreactive T cells which may increase the incidence of adverse events in the elderly population targeted to receive immunotherapy. The first active immunization clinical trial with AN1792 in AD patients was halted when a subset of patients developed meningoencephalitis. The first passive immunotherapy trial with bapineuzumab, a humanized monoclonal antibody against the end terminus of Abeta, also encountered some dose dependent adverse events during the Phase II portion of the study, vasogenic edema in 12 cases, which were significantly over represented in ApoE4 carriers. The proposed remedy is to treat future patients with lower doses, particularly in the ApoE4 carriers. Currently there are at least five ongoing anti-Abeta immunotherapy clinical trials. Three of the clinical trials use humanized monoclonal antibodies, which are expensive and require repeated dosing to maintain therapeutic levels of the antibodies in the patient. However in the event of an adverse response to the passive therapy antibody delivery can simply be halted, which may provide a resolution to the problem. Because at this point we cannot readily identify individuals in the preclinical or prodromal stages of AD pathogenesis, passive immunotherapy is reserved for those that already have clinical symptoms. Unfortunately those individuals have by that point accumulated substantial neuropathology in affected regions of the brain. Moreover, if Abeta pathology drives tau pathology as reported in several transgenic animal models, and once established if tau pathology can become self propagating, then early intervention with anti-Abeta immunotherapy may be critical for favorable clinical outcomes. On the other hand, active immunization has several significant advantages, including lower cost and the typical immunization protocol should be much less intrusive to the patient relative to passive therapy, in the advent of Abeta-antibody immune complex-induced adverse events the patients will have to receive immuno-supperssive therapy for an extended period until the anti Abeta antibody levels drop naturally as the effects of the vaccine decays over time. Obviously, improvements in vaccine design are needed to improve both the safety, as well as the efficacy of anti-Abeta immunotherapy. The focus of this review is on the advantages of DNA vaccination for anti-Abeta immunotherapy, and the major hurdles, such as immunosenescence, selection of appropriate molecular adjuvants, universal T cell epitopes, and possibly a polyepitope design based on utilizing existing memory T cells in the general population that were generated in response to childhood or seasonal vaccines, as well as various infections. Ultimately, we believe that the further refinement of our AD DNA epitope vaccines, possibly combined with a prime boost regime will facilitate translation to human clinical trials in either very early AD, or preferably in preclinical stage individuals identified by validated AD biomarkers.
Collapse
Affiliation(s)
- David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-4540, USA.
| |
Collapse
|
45
|
Isenman DE, Leung E, Mackay JD, Bagby S, van den Elsen JMH. Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: implications for the controversy regarding the CR2/C3d cocrystal structure. THE JOURNAL OF IMMUNOLOGY 2010; 184:1946-55. [PMID: 20083651 DOI: 10.4049/jimmunol.0902919] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently characterized an interaction between the Staphylococcus aureus immune evasion molecule Staphylococcus aureus binder of Ig (Sbi) and complement C3, an interaction mediated primarily through the binding of C3d(g) to Sbi domain IV. Events related to these studies prompted us to investigate via mutagenesis the binding interface of C3d for Sbi domain IV (Sbi-IV), as well as to revisit the controversial issue of the complement receptor 2 (CR2) binding site of C3d. Specifically, we had shown that Sbi domains III and IV fragment binding to C3dg inhibited the latter's binding to CR2. Moreover, a published cocrystal structure of C3d bound to complement inhibitory C-terminal domain of extracellular fibrinogen-binding protein (Efb-C), a structural and functional homolog of Sbi-IV, showed Efb-C binding to a region on the concave face of C3d previously implicated in CR2 binding by our mutagenesis data but not confirmed in the CR2(short consensus repeat [SCR]1-2):C3d cocrystal structure. We have now analyzed by surface plasmon resonance the binding of a series of variant C3dg molecules to biosensor-bound Sbi-IV or CR2(SCR1-2). We found that mutations to the concave face acidic pocket of C3d significantly affected binding to both Sbi-IV and CR2, although there was divergence in which residues were most important in each case. By contrast, no binding defects were seen for mutations made to the sideface of C3d implicated from the cocrystal structure to be involved in binding CR2(SCR1-2). The results with Sbi-IV suggest a mode of binding highly similar to that visualized in the Efb-C:C3d complex. The results with CR2 confirm our earlier mapping studies and cast even further doubt on the physiologic relevance of the complex visualized in the C3d:CR2 cocrystal.
Collapse
Affiliation(s)
- David E Isenman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
46
|
C3d adjuvant activity is reduced by altering residues involved in the electronegative binding of C3d to CR2. Immunol Lett 2010; 129:32-8. [PMID: 20064559 DOI: 10.1016/j.imlet.2009.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/18/2022]
Abstract
The final degradation product of the complement protein C3, C3d, has been used as a molecular adjuvant to various antigens. Chimera proteins of the antigen and multiple copies of C3d were developed to test the adjuvant effect of this molecule. The main mechanism by which C3d enhances the immune response is interaction with CR2. In vitro studies showed that the avidity of C3d for CR2 is affected by residues located at the interacting surface (e.g. 170N) as well as by residues located in other areas. The role of the latter residues has been proposed to depend on the electrostatic nature of the C3d-CR2 interaction, where the charges of the whole molecules are responsible for their binding. C3d is primarily a negatively charged molecule, while CR2 is a positive one. Previous experiments demonstrated that elimination of a positive charge (K162A) in C3d enhanced its avidity for CR2, while elimination of negative charges or addition positives ones (D163A, N170R, respectively), impaired the avidity for CR2. Despite the extensive in vitro research, the role of these residues in the adjuvant effect of C3d is unclear. To study the role of residues at the interacting and non-interacting surface of C3d on the adjuvanticity, single as well as a double residue substitutions were engineered in the murine C3d (R162A, D163A, N170R and D163A-N170R) gene. Two copies of these mutant molecules were fused to HIV-1 Env(gp120) and the proteins were tested for their avidity to bind CR2 (sCR2). Later, these DNA constructs were tested in mice to determine their adjuvant capability. Mutation at residue 162 (R162A) neither enhanced nor impaired the avidity of Env(gp120)-C3d(2) for sCR2 in vitro. Mutations at residues D163A and N170R, on the other hand, reduced the binding affinity of Env(gp120)-C3d(2) for sCR2. Furthermore, these mutations synergized and abolished the interaction of C3d for CR2. The data correlated with the adjuvant capability of these molecules in the mouse model. In summary, residues that alter the electronegative status of C3d (D163A and N170R) impair the binding of chimera proteins to CR2, reducing the adjuvant activity of this molecule.
Collapse
|
47
|
Perkins SJ, Nan R, Okemefuna AI, Li K, Khan S, Miller A. Multiple interactions of complement Factor H with its ligands in solution: a progress report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 703:25-47. [PMID: 20711705 DOI: 10.1007/978-1-4419-5635-4_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Factor H (FH) is the major regulator of the central complement protein C3b in the alternative pathway of complement activation, and is comprised of 20 SCR domains. A FH Tyr402His polymorphism in SCR-7 is associated with age-related macular degeneration (AMD) and leads to deposition of complement in drusen. The unravelling of how FH interacts with five major physiological and patho-physiological ligands is complicated by the weak nature of these interactions, coupled with the multivalency of FH. Using multiple biophysical methods, we summarise our recent results for these five FH ligands: (1) FH by itself shows a folded-back SCR domain structure in solution, and self-associates in a manner dependent on electrostatic forces. (2) FH activity is inhibited by zinc, which causes FH to aggregate. The onset of FH-zinc aggregation for zinc concentrations above 20 muM appears to be enhanced with the His402 allotype, and may be relevant to AMD. (3) The FH and C-reactive protein (CRP) interaction has been controversial; however our new work resolves earlier discrepancies. The FH-CRP interaction is only observed when native CRP is at high acute-phase concentration levels, and CRP binds weakly to the His402 FH allotype to suggest a molecular mechanism that leads to AMD. (4) Heparin is an analogue of the polyanionic host cell surface, and FH forms higher oligomers with larger heparin fragments, suggesting a mechanism for more effective FH regulation. (5) The interaction of C3b with FH also depends on buffer, and FH forms multimers with the C3d fragment of C3b. This FH-C3d interaction at high FH concentration may also facilitate complement regulation. Overall, our results to date suggest that the FH interactions involving zinc and native CRP have the closest relevance for explaining the onset of AMD.
Collapse
Affiliation(s)
- Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
48
|
The central portion of factor H (modules 10-15) is compact and contains a structurally deviant CCP module. J Mol Biol 2009; 395:105-22. [PMID: 19835885 PMCID: PMC2806952 DOI: 10.1016/j.jmb.2009.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/01/2009] [Accepted: 10/08/2009] [Indexed: 11/21/2022]
Abstract
The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10–15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180° bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12–13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12–13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11–14 and fH10–15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10–15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10–15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely.
Collapse
|
49
|
Perkins SJ, Okemefuna AI, Nan R, Li K, Bonner A. Constrained solution scattering modelling of human antibodies and complement proteins reveals novel biological insights. J R Soc Interface 2009; 6 Suppl 5:S679-96. [PMID: 19605402 PMCID: PMC2843969 DOI: 10.1098/rsif.2009.0164.focus] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/16/2009] [Indexed: 11/12/2022] Open
Abstract
X-ray and neutron-scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are useful when either a large protein cannot be crystallized, in which case scattering yields a solution structure, or a crystal structure has been determined and requires validation in solution. These solution structures are determined by the application of constrained modelling methods based on known subunit structures. First, an appropriate starting model is generated. Next, its conformation is randomized to generate thousands of models for trial-and-error fits. Comparison with the experimental data identifies a small family of best-fit models. Finally, their significance for biological function is assessed. We illustrate this in application to structure determinations for secretory immunoglobulin A, the most prevalent antibody in the human body and a first line of defence in mucosal immunity. We also discuss the applications to the large multi-domain proteins of the complement system, most notably its major regulator factor H, which is important in age-related macular degeneration and renal diseases. We discuss the importance of complementary data from analytical ultracentrifugation, and structural studies of protein-protein complexes. We conclude that constrained scattering modelling makes useful contributions to our understanding of antibody and complement structure and function.
Collapse
Affiliation(s)
- Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
50
|
Okemefuna AI, Nan R, Gor J, Perkins SJ. Electrostatic interactions contribute to the folded-back conformation of wild type human factor H. J Mol Biol 2009; 391:98-118. [PMID: 19505476 DOI: 10.1016/j.jmb.2009.06.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 11/28/2022]
Abstract
Factor H (FH), a major serum regulator of C3b in the complement alternative pathway, is composed of 20 short complement regulator (SCR) domains. Earlier solution structures for FH showed that this has a folded-back domain arrangement and exists as oligomers. To clarify the molecular basis for this, analytical ultracentrifugation and X-ray scattering studies of native FH were performed as a function of NaCl concentration and pH. The sedimentation coefficient for the FH monomer decreased from 5.7 S to 5.3 S with increase in NaCl concentration, showing that weak electrostatic inter-domain interactions affect its folded-back structure. FH became more elongated at pH 9.4, showing the involvement of histidine residue(s) in its folded-back structure. Similar studies of partially deglycosylated FH suggested that oligosaccharides were not significant in determining the FH domain structure. The formation of FH oligomers decreased with increased NaCl concentration, indicating that electrostatic interactions also affect this. X-ray scattering showed that the maximum length of FH increased from 32 nm in low salt to 38 nm in high salt. Constrained X-ray scattering modelling was used to generate significantly improved FH molecular structures at medium resolution. In 50 mM NaCl, the modelled structures showed that inter-SCR domain contacts are likely, while these contacts are fewer in 250 mM NaCl. The results of this study show that the conformation of FH is affected by its local environment, and this may be important for its interactions with C3b and when bound to polyanionic cell surfaces.
Collapse
Affiliation(s)
- Azubuike I Okemefuna
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London, UK
| | | | | | | |
Collapse
|