1
|
Huang Y, Mao Z, Zhang Y, Zhao J, Luan X, Wu K, Yun L, Yu J, Shi Z, Liao X, Ma H. Omics data analysis reveals the system-level constraint on cellular amino acid composition. Synth Syst Biotechnol 2024; 9:304-311. [PMID: 38510205 PMCID: PMC10951587 DOI: 10.1016/j.synbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins play a pivotal role in coordinating the functions of organisms, essentially governing their traits, as the dynamic arrangement of diverse amino acids leads to a multitude of folded configurations within peptide chains. Despite dynamic changes in amino acid composition of an individual protein (referred to as AAP) and great variance in protein expression levels under different conditions, our study, utilizing transcriptomics data from four model organisms uncovers surprising stability in the overall amino acid composition of the total cellular proteins (referred to as AACell). Although this value may vary between different species, we observed no significant differences among distinct strains of the same species. This indicates that organisms enforce system-level constraints to maintain a consistent AACell, even amid fluctuations in AAP and protein expression. Further exploration of this phenomenon promises insights into the intricate mechanisms orchestrating cellular protein expression and adaptation to varying environmental challenges.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jianxiao Zhao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Xiaodi Luan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ke Wu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lili Yun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jing Yu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhenkun Shi
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Huang Q, Szklarczyk D, Wang M, Simonovic M, von Mering C. PaxDb 5.0: Curated Protein Quantification Data Suggests Adaptive Proteome Changes in Yeasts. Mol Cell Proteomics 2023; 22:100640. [PMID: 37659604 PMCID: PMC10551891 DOI: 10.1016/j.mcpro.2023.100640] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
The "Protein Abundances Across Organisms" database (PaxDb) is an integrative metaresource dedicated to protein abundance levels, in tissue-specific or whole-organism proteomes. PaxDb focuses on computing best-estimate abundances for proteins in normal/healthy contexts and expresses abundance values for each protein in "parts per million" in relation to all other protein molecules in the cell. The uniform data reprocessing, quality scoring, and integrated orthology relations have made PaxDb one of the preferred tools for comparisons between individual datasets, tissues, or organisms. In describing the latest version 5.0 of PaxDb, we particularly emphasize the data integration from various types of raw data and how we expanded the number of organisms and tissue groups as well as the proteome coverage. The current collection of PaxDb includes 831 original datasets from 170 species, including 22 Archaea, 81 Bacteria, and 67 Eukaryota. Apart from detailing the data update, we also present a comparative analysis of the human proteome subset of PaxDb against the two most widely used human proteome data resources: Human Protein Atlas and Genotype-Tissue Expression. Lastly, through our protein abundance data, we reveal an evolutionary trend in the usage of sulfur-containing amino acids in the proteomes of Fungi.
Collapse
Affiliation(s)
- Qingyao Huang
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Damian Szklarczyk
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mingcong Wang
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Milan Simonovic
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
4
|
Jeyasingh PD, Sherman RE, Prater C, Pulkkinen K, Ketola T. Adaptation to a limiting element involves mitigation of multiple elemental imbalances. J R Soc Interface 2023; 20:20220472. [PMID: 36596454 PMCID: PMC9810419 DOI: 10.1098/rsif.2022.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
About 20 elements underlie biology and thus constrain biomass production. Recent systems-level observations indicate that altered supply of one element impacts the processing of most elements encompassing an organism (i.e. ionome). Little is known about the evolutionary tendencies of ionomes as populations adapt to distinct biogeochemical environments. We evolved the bacterium Serratia marcescens under five conditions (i.e. low carbon, nitrogen, phosphorus, iron or manganese) that limited the yield of the ancestor compared with replete medium, and measured the concentrations and use efficiency of these five, and five other elements. Both physiological responses of the ancestor, as well as evolutionary responses of descendants to experimental environments involved changes in the content and use efficiencies of the limiting element, and several others. Differences in coefficients of variation in elemental contents based on biological functions were evident, with those involved in biochemical building (C, N, P, S) varying least, followed by biochemical balance (Ca, K, Mg, Na), and biochemical catalysis (Fe, Mn). Finally, descendants evolved to mitigate elemental imbalances evident in the ancestor in response to limiting conditions. Understanding the tendencies of such ionomic responses will be useful to better forecast biological responses to geochemical changes.
Collapse
Affiliation(s)
- Punidan D. Jeyasingh
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Ryan E. Sherman
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Clay Prater
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Katja Pulkkinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland
| |
Collapse
|
5
|
Lan Y, Liang Y, Xiao X, Shi Y, Zhu M, Meng C, Yang S, Khan MT, Zhang YJ. Stoichioproteomics study of differentially expressed proteins and pathways in head and neck cancer. BRAZ J BIOL 2021; 83:e249424. [PMID: 34730606 DOI: 10.1590/1519-6984.249424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.
Collapse
Affiliation(s)
- Y Lan
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Liang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - X Xiao
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - Y Shi
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - M Zhu
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - C Meng
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| | - S Yang
- Ningxia University, School of Life Sciences, Xixia, Yinchuan, Ningxia, P.R. China
| | - M T Khan
- The University of Lahore-Pakistan, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - Y J Zhang
- Chongqing Normal University, College of Life Sciences, Shapingba, Chongqing, P.R. China
| |
Collapse
|
6
|
Abstract
The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase proteomic nitrogen and carbon uses under the SGC than under random genetic codes, concluding that the SGC has been selectively optimized for resource conservation. If true, this finding might offer important information on the environment in which the SGC and some of the earliest life forms evolved. However, we here show that the hypothesis of optimization of a genetic code for resource conservation is theoretically untenable. We discover that the aforementioned study estimated the expected mutational effect by inappropriately excluding mutations lowering resource consumptions and including mutations involving stop codons. After remedying these problems, we find no evidence that the SGC is optimized for nitrogen or carbon conservation.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
7
|
Sundermann EM, Lercher MJ, Heckmann D. Modeling photosynthetic resource allocation connects physiology with evolutionary environments. Sci Rep 2021; 11:15979. [PMID: 34354112 PMCID: PMC8342476 DOI: 10.1038/s41598-021-94903-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
The regulation of resource allocation in biological systems observed today is the cumulative result of natural selection in ancestral and recent environments. To what extent are observed resource allocation patterns in different photosynthetic types optimally adapted to current conditions, and to what extent do they reflect ancestral environments? Here, we explore these questions for C3, C4, and C3–C4 intermediate plants of the model genus Flaveria. We developed a detailed mathematical model of carbon fixation, which accounts for various environmental parameters and for energy and nitrogen partitioning across photosynthetic components. This allows us to assess environment-dependent plant physiology and performance as a function of resource allocation patterns. Models of C4 plants optimized for conditions experienced by evolutionary ancestors perform better than models accounting for experimental growth conditions, indicating low phenotypic plasticity. Supporting this interpretation, the model predicts that C4 species need to re-allocate more nitrogen between photosynthetic components than C3 species to adapt to new environments. We thus hypothesize that observed resource distribution patterns in C4 plants still reflect optimality in ancestral environments, allowing the quantitative inference of these environments from today’s plants. Our work allows us to quantify environmental effects on photosynthetic resource allocation and performance in the light of evolutionary history.
Collapse
Affiliation(s)
- Esther M Sundermann
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - David Heckmann
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Polz MF, Cordero OX. The genetic law of the minimum. Science 2020; 370:655-656. [PMID: 33154123 DOI: 10.1126/science.abf2588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Martin F Polz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Khan A, Wang Z, Xu K, Li L, He L, Hu H, Wang G. Validation of an Enzyme-Driven Model Explaining Photosynthetic Rate Responses to Limited Nitrogen in Crop Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:533341. [PMID: 33101324 PMCID: PMC7546270 DOI: 10.3389/fpls.2020.533341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The limited availability of nitrogen (N) is a fundamental challenge for many crop plants. We have hypothesized that the relative crop photosynthetic rate (P) is exponentially constrained by certain plant-specific enzyme activities, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G3PDH), 3-phosphoglyceric acid (PGA) kinase, and chloroplast fructose-1,6-bisphosphatase (cpFBPase), in Triticum aestivum and Oryza sativa. We conducted a literature search to compile information from previous studies on C3 and C4 crop plants, to examine the photosynthetic rate responses to limited leaf [N] levels. We found that in Zea mays, NADP-malic enzyme (NADP-ME), PEP carboxykinase (PCK), and Rubisco activities were positively correlated with P. A positive correlation was also observed between both phosphoenolpyruvate carboxylase (PEPC) and Rubisco activity with leaf [N] in Sorghum bicolor. Key enzyme activities responded differently to P in C3 and C4 plants, suggesting that other factors, such as leaf [N] and the stage of leaf growth, also limited specific enzyme activities. The relationships followed the best fitting exponential relationships between key enzymes and the P rate in both C3 and C4 plants. It was found that C4 species absorbed less leaf [N] but had higher [N] assimilation rates (A rate) and higher maximum photosynthesis rates (Pmax ), i.e., they were able to utilize and invest more [N] to sustain higher carbon gains. All C3 species studied herein had higher [N] storage (Nstore) and higher absorption of [N], when compared with the C4 species. Nstore was the main [N] source used for maintaining photosynthetic capacity and leaf expansion. Of the nine C3 species assessed, rice had the greatest Pmax , thereby absorbing more leaf [N]. Elevated CO2 (eCO2) was also found to reduce the leaf [N] and Pmax in rice but enhanced the leaf [N] and N use efficiency of photosynthesis in maize. We concluded that eCO2 affects [N] allocation, which directly or indirectly affects Pmax . These results highlight the need to further study these physiological and biochemical processes, to better predict how crops will respond to eCO2 concentrations and limited [N].
Collapse
Affiliation(s)
| | | | | | | | | | | | - Genxuan Wang
- Plant Physiology and Ecology Laboratory, Department of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Chu XY, Zhang HY. Cofactors as Molecular Fossils To Trace the Origin and Evolution of Proteins. Chembiochem 2020; 21:3161-3168. [PMID: 32515532 DOI: 10.1002/cbic.202000027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their early origin and extreme conservation, cofactors are valuable molecular fossils for tracing the origin and evolution of proteins. First, as the order of protein folds binding with cofactors roughly coincides with protein-fold chronology, cofactors are considered to have facilitated the origin of primitive proteins by selecting them from pools of random amino acid sequences. Second, in the subsequent evolution of proteins, cofactors still played an important role. More interestingly, as metallic cofactors evolved with geochemical variations, some geochemical events left imprints in the chronology of protein architecture; this provides further evidence supporting the coevolution of biochemistry and geochemistry. In this paper, we attempt to review the molecular fossils used in tracing the origin and evolution of proteins, with a special focus on cofactors.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Nunan N, Schmidt H, Raynaud X. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190249. [PMID: 32200737 PMCID: PMC7133523 DOI: 10.1098/rstb.2019.0249] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity is a fundamental property of soil that is often overlooked in microbial ecology. Although it is generally accepted that the heterogeneity of soil underpins the emergence and maintenance of microbial diversity, the profound and far-reaching consequences that heterogeneity can have on many aspects of microbial ecology and activity have yet to be fully apprehended and have not been fully integrated into our understanding of microbial functioning. In this contribution we first discuss how the heterogeneity of the soil microbial environment, and the consequent uncertainty associated with acquiring resources, may have affected how microbial metabolism, motility and interactions evolved and, ultimately, the overall microbial activity that is represented in ecosystem models, such as heterotrophic decomposition or respiration. We then present an analysis of predicted metabolic pathways for soil bacteria, obtained from the MetaCyc pathway/genome database collection (https://metacyc.org/). The analysis suggests that while there is a relationship between phylogenic affiliation and the catabolic range of soil bacterial taxa, there does not appear to be a trade-off between the 16S rRNA gene copy number, taken as a proxy of potential growth rate, of bacterial strains and the range of substrates that can be used. Finally, we present a simple, spatially explicit model that can be used to understand how the interactions between decomposers and environmental heterogeneity affect the bacterial decomposition of organic matter, suggesting that environmental heterogeneity might have important consequences on the variability of this process. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Naoise Nunan
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| | - Hannes Schmidt
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna 1090, Austria
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, P7, UPEC, Institute of Ecology and Environmental Sciences—Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
The evolutionary scaling of cellular traits imposed by the drift barrier. Proc Natl Acad Sci U S A 2020; 117:10435-10444. [PMID: 32345718 DOI: 10.1073/pnas.2000446117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Owing to internal homeostatic mechanisms, cellular traits may experience long periods of stable selective pressures, during which the stochastic forces of drift and mutation conspire to generate variation. However, even in the face of invariant selection, the drift barrier defined by the genetic effective population size, which is negatively associated with organism size, can have a substantial influence on the location and dispersion of the long-term steady-state distribution of mean phenotypes. In addition, for multilocus traits, the multiplicity of alternative, functionally equivalent states can draw mean phenotypes away from selective optima, even in the absence of mutation bias. Using a framework for traits with an additive genetic basis, it is shown that 1) optimal phenotypic states may be only rarely achieved; 2) gradients of mean phenotypes with respect to organism size (i.e., allometric relationships) are likely to be molded by differences in the power of random genetic drift across the tree of life; and 3) for any particular set of population-genetic conditions, significant variation in mean phenotypes may exist among lineages exposed to identical selection pressures. These results provide a potentially useful framework for understanding numerous aspects of cellular diversification and illustrate the risks of interpreting such variation in a purely adaptive framework.
Collapse
|
13
|
Demongeot J, Seligmann H. Why Is AUG the Start Codon?: Theoretical Minimal RNA Rings: Maximizing Coded Information Biases 1st Codon for the Universal Initiation Codon AUG. Bioessays 2020; 42:e1900201. [PMID: 32227358 DOI: 10.1002/bies.201900201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/09/2020] [Indexed: 01/04/2023]
Abstract
The rational design of theoretical minimal RNA rings predetermines AUG as the universal start codon. This design maximizes coded amino acid diversity over minimal sequence length, defining in silico theoretical minimal RNA rings, candidate ancestral genes. RNA rings code for 21 amino acids and a stop codon after three consecutive translation rounds, and form a degradation-delaying stem-loop hairpin. Twenty-five RNA rings match these constraints, ten start with the universal initiation codon AUG. No first codon bias exists among remaining RNA rings. RNA ring design predetermines AUG as initiation codon. This is the only explanation yet for AUG as start codon. RNA ring design determines additional RNA ring gene- and tRNA-like properties described previously, because it presumably mimics constraints on life's primordial RNAs.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 91404, Israel
| |
Collapse
|
14
|
A Theoretical Framework for Evolutionary Cell Biology. J Mol Biol 2020; 432:1861-1879. [PMID: 32087200 DOI: 10.1016/j.jmb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
One of the last uncharted territories in evolutionary biology concerns the link with cell biology. Because all phenotypes ultimately derive from events at the cellular level, this connection is essential to building a mechanism-based theory of evolution. Given the impressive developments in cell biological methodologies at the structural and functional levels, the potential for rapid progress is great. The primary challenge for theory development is the establishment of a quantitative framework that transcends species boundaries. Two approaches to the problem are presented here: establishing the long-term steady-state distribution of mean phenotypes under specific regimes of mutation, selection, and drift and evaluating the energetic costs of cellular structures and functions. Although not meant to be the final word, these theoretical platforms harbor potential for generating insight into a diversity of unsolved problems, ranging from genome structure to cellular architecture to aspects of motility in organisms across the Tree of Life.
Collapse
|
15
|
Pramanik S, Thaker M, Perumal AG, Ekambaram R, Poondla N, Schmidt M, Kim PS, Kutzner A, Heese K. Proteomic Atomics Reveals a Distinctive Uracil-5-Methyltransferase. Mol Inform 2020; 39:e1900135. [PMID: 31943843 DOI: 10.1002/minf.201900135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S) atoms intrigue as they are the foundation for amino acid (AA) composition and the folding and functions of proteins and thus define and control the survival of a cell, the smallest unit of life. Here, we calculated the proteomic atom distribution in >1500 randomly selected species across the entire current phylogenetic tree and identified uracil-5-methyltransferase (U5MTase) of the protozoan parasite Plasmodium falciparum (Pf, strain Pf3D7), with a distinct atom and AA distribution pattern. We determined its apicoplast location and in silico 3D protein structure to refocus attention exclusively on U5MTase with tremendous potential for therapeutic intervention in malaria. Around 300 million clinical cases of malaria occur each year in tropical and subtropical regions of the world, resulting in over one million deaths annually, placing malaria among the most serious infectious diseases. Genomic and proteomic research of the clades of parasites containing Pf is progressing slowly and the functions of most of the ∼5300 genes are still unknown. We applied a 'bottom-up' comparative proteomic atomics analysis across the phylogenetic tree to visualize a protein molecule on its actual basis - i. e., its atomic level. We identified a protruding Pf3D7-specific U5MTase, determined its 3D protein structure, and identified potential inhibitory drug molecules through in silico drug screening that might serve as possible remedies for the treatment of malaria. Besides, this atomic-based proteome map provides a unique approach for the identification of parasite-specific proteins that could be considered as novel therapeutic targets.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 1, 33-791, Republic of Korea.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany
| | - Manisha Thaker
- Department of Medicine, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ananda Gopu Perumal
- Technology Business Incubator, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, 613403, Tamil Nadu, India
| | - Rajasekaran Ekambaram
- Department of Chemistry, V.S.B. Engineering College, 67 Covai Road, Karudayampalayam Post, Karur, 639111, Tamil Nadu, India
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 1, 33-791, Republic of Korea
| | - Markus Schmidt
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 1, 36-702, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 1, 33-791, Republic of Korea
| |
Collapse
|
16
|
McKinlay JB, Cook GM, Hards K. Microbial energy management-A product of three broad tradeoffs. Adv Microb Physiol 2020; 77:139-185. [PMID: 34756210 DOI: 10.1016/bs.ampbs.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN, United States.
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Yin Y, Li B, Mou K, Khan MT, Kaushik AC, Wei D, Zhang YJ. Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma. BMC Med Genomics 2019; 12:125. [PMID: 31464612 PMCID: PMC6716898 DOI: 10.1186/s12920-019-0571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of glioma. In addition, Glioma involves hypoxia-specific microenvironment, whether hypoxia restriction influences the stoichioproteomic characteristics of expressed proteins is unknown. METHODS In this study, we analyzed the most comprehensive immunohistochemical data from 12 human glioma samples and 4 normal cell types of cerebral cortex, identified differentially expressed proteins (DEPs), and researched the oxygen contents of DEPs, highly and lowly expressed proteins. Further we located key genes on human genome to determine their locations and enriched them for key functional pathways. RESULTS Our results showed that although no difference was detected on whole proteome, the average oxygen content of highly expressed proteins is 6.65% higher than that of lowly expressed proteins in glioma. A total of 1480 differentially expressed proteins were identified in glioma, including 226 up regulated proteins and 1254 down regulated proteins. The average oxygen content of up regulated proteins is 2.56% higher than that of down regulated proteins in glioma. The localization of differentially expressed genes on human genome showed that most genes were on chromosome 1 and least on Y. The up regulated proteins were significantly enriched in pathways including cell cycle, pathways in cancer, oocyte meiosis, DNA replication etc. Functional dissection of the up regulated proteins with high oxygen contents showed that 51.28% of the proteins were involved in cell cycle and cyclins. CONCLUSIONS Element signature of oxygen limitation could not be detected in glioma, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins and DEPs were adapted to the fast division of glioma cells. This study can help to reveal the molecular mechanism of glioma, and provide a new approach for studies of cancer-related biomacromolecules. In addition, this study lays a foundation for application of stoichioproteomics in precision medicine.
Collapse
Affiliation(s)
- Yongqin Yin
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| | - Bo Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital, Bishan, Chongqing, 402760 China
| | - Muhammad T. Khan
- Shanghai Jiao Tong University, Shanghai, China
- Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Dongqing Wei
- Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055 China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| |
Collapse
|
18
|
Zuo X, Li B, Zhu C, Yan ZW, Li M, Wang X, Zhang YJ. Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep 2019; 9:11344. [PMID: 31383879 PMCID: PMC6683168 DOI: 10.1038/s41598-019-47533-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Stomach cancer involves hypoxia-specific microenvironments. Stoichiogenomics explores environmental resource limitation on biological macromolecules in terms of element usages. However, the patterns of oxygen usage by proteins and the ways that proteins adapt to a cancer hypoxia microenvironment are still unknown. Here we compared the oxygen and carbon contents ([C]) between proteomes of stomach cancer (hypoxia) and two stomach glandular cells (normal). Key proteins, genome locations, pathways, and functional dissection associated with stomach cancer were also studied. An association of oxygen content ([O]) and protein expression level was revealed in stomach cancer and stomach glandular cells. For differentially expressed proteins (DEPs), oxygen contents in the up regulated proteins were3.2%higherthan that in the down regulated proteins in stomach cancer. A total of 1,062 DEPs were identified; interestingly none of these proteins were coded on Y chromosome. The up regulated proteins were significantly enriched in pathways including regulation of actin cytoskeleton, cardiac muscle contraction, pathway of progesterone-mediated oocyte maturation, etc. Functional dissection of the up regulated proteins with high oxygen contents showed that most of them were cytoskeleton, cytoskeleton associated proteins, cyclins and signaling proteins in cell cycle progression. Element signature of resource limitation could not be detected in stomach cancer for oxygen, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins was adapted to the rapid growth and fast division of the stomach cancer cells. In addition, oxygen usage bias, key proteins and pathways identified in this paper laid a foundation for application of stoichiogenomics in precision medicine.
Collapse
Affiliation(s)
- Xiaoyan Zuo
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Chengxu Zhu
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Zheng-Wen Yan
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Miao Li
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Xinyi Wang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, P.R. China.
| |
Collapse
|
19
|
Manzella M, Geiss R, Hall EK. Evaluating the stoichiometric trait distributions of cultured bacterial populations and uncultured microbial communities. Environ Microbiol 2019; 21:3613-3626. [PMID: 31090973 DOI: 10.1111/1462-2920.14684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
We measured the stoichiometric trait distribution of cultured freshwater bacterial populations under different resource conditions and compared them to natural microbial communities sampled from three lakes. Trait distributions showed population differences among growth phases and community differences among lakes that would have been masked by only reporting the mean biomass value. The stoichiometric trait distribution of the environmental isolates changed with P availability, growth phase and genotype, with P availability having the strongest effect. The distribution of biomass ratios within each isolate growth experiment were the most constrained during the stages of rapid growth and commonly had unimodal distributions. In contrast to the population distributions, the distribution of N:P and C:P for a similar number of cells from each of the lake communities had narrower stoichiometric distributions and more commonly exhibited multiple modes. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Michael Manzella
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roy Geiss
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ed K Hall
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA.,Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
Lee MD, Ahlgren NA, Kling JD, Walworth NG, Rocap G, Saito MA, Hutchins DA, Webb EA. Marine
Synechococcus
isolates representing globally abundant genomic lineages demonstrate a unique evolutionary path of genome reduction without a decrease in GC content. Environ Microbiol 2019; 21:1677-1686. [DOI: 10.1111/1462-2920.14552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Michael D. Lee
- Department of Biological Sciences University of Southern California Los Angeles CA USA
- Exobiology, Ames Research Center Moffett Field CA USA
| | | | - Joshua D. Kling
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Nathan G. Walworth
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Gabrielle Rocap
- School of Oceanography University of Washington Seattle WA USA
| | - Mak A. Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institute Woods Hole MA USA
| | - David A. Hutchins
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| | - Eric A. Webb
- Department of Biological Sciences University of Southern California Los Angeles CA USA
| |
Collapse
|
21
|
Thiriet-Rupert S, Carrier G, Trottier C, Eveillard D, Schoefs B, Bougaran G, Cadoret JP, Chénais B, Saint-Jean B. Identification of transcription factors involved in the phenotype of a domesticated oleaginous microalgae strain of Tisochrysis lutea. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia. Biochem Soc Trans 2018; 46:269-284. [PMID: 29472366 DOI: 10.1042/bst20170242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/24/2023]
Abstract
Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.
Collapse
|
23
|
Environmental drivers of a microbial genomic transition zone in the ocean's interior. Nat Microbiol 2017; 2:1367-1373. [PMID: 28808230 DOI: 10.1038/s41564-017-0008-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/04/2017] [Indexed: 01/01/2023]
Abstract
The core properties of microbial genomes, including GC content and genome size, are known to vary widely among different bacteria and archaea 1,2 . Several hypotheses have been proposed to explain this genomic variability, but the fundamental drivers that shape bacterial and archaeal genomic properties remain uncertain 3-7 . Here, we report the existence of a sharp genomic transition zone below the photic zone, where bacterial and archaeal genomes and proteomes undergo a community-wide punctuated shift. Across a narrow range of increasing depth of just tens of metres, diverse microbial clades trend towards larger genome size, higher genomic GC content, and proteins with higher nitrogen but lower carbon content. These community-wide changes in genome features appear to be driven by gradients in the surrounding environmental energy and nutrient fields. Collectively, our data support hypotheses invoking nutrient limitation as a central driver in the evolution of core bacterial and archaeal genomic and proteomic properties.
Collapse
|
24
|
Vecchio-Pagan B, Bewick S, Mainali K, Karig DK, Fagan WF. A Stoichioproteomic Analysis of Samples from the Human Microbiome Project. Front Microbiol 2017; 8:1119. [PMID: 28769875 PMCID: PMC5513900 DOI: 10.3389/fmicb.2017.01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/01/2017] [Indexed: 01/21/2023] Open
Abstract
Ecological stoichiometry (ES) uses organism-specific elemental content to explain differences in species life histories, species interactions, community organization, environmental constraints and even ecosystem function. Although ES has been successfully applied to a range of different organisms, most emphasis on microbial ecological stoichiometry focuses on lake, ocean, and soil communities. With the recent advances in human microbiome research, however, large amounts of data are being generated that describe differences in community composition across body sites and individuals. We suggest that ES may provide a framework for beginning to understand the structure, organization, and function of human microbial communities, including why certain organisms exist at certain locations, and how they interact with both the other microbes in their environment and their human host. As a first step, we undertake a stoichioproteomic analysis of microbial communities from different body sites. Specifically, we compare and contrast the elemental composition of microbial protein samples using annotated sequencing data from 690 gut, vaginal, oral, nares, and skin samples currently available through the Human Microbiome Project. Our results suggest significant differences in both the median and variance of the carbon, oxygen, nitrogen, and sulfur contents of microbial protein samples from different locations. For example, whereas proteins from vaginal sites are high in carbon, proteins from skin and nasal sites are high in nitrogen and oxygen. Meanwhile, proteins from stool (the gut) are particularly high in sulfur content. We interpret these differences in terms of the local environments at different human body sites, including atmospheric exposure and food intake rates.
Collapse
Affiliation(s)
- Briana Vecchio-Pagan
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, LaurelMD, United States
| | - Sharon Bewick
- Department of Biology, University of Maryland, College ParkMD, United States
| | - Kumar Mainali
- Department of Biology, University of Maryland, College ParkMD, United States
| | - David K. Karig
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, LaurelMD, United States
| | - William F. Fagan
- Department of Biology, University of Maryland, College ParkMD, United States
| |
Collapse
|
25
|
Turner CB, Wade BD, Meyer JR, Sommerfeld BA, Lenski RE. Evolution of organismal stoichiometry in a long-term experiment with Escherichia coli. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170497. [PMID: 28791173 PMCID: PMC5541568 DOI: 10.1098/rsos.170497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/21/2017] [Indexed: 05/25/2023]
Abstract
Organismal stoichiometry refers to the relative proportion of chemical elements in the biomass of organisms, and it can have important effects on ecological interactions from population to ecosystem scales. Although stoichiometry has been studied extensively from an ecological perspective, much less is known about the rates and directions of evolutionary changes in elemental composition. We measured carbon, nitrogen and phosphorus content of 12 Escherichia coli populations that evolved under controlled carbon-limited, serial-transfer conditions for 50 000 generations. The bacteria evolved higher relative nitrogen and phosphorus content, consistent with selection for increased use of the more abundant elements. Total carbon assimilated also increased, indicating more efficient use of the limiting element. We also measured stoichiometry in one population repeatedly through time. Stoichiometry changed more rapidly in early generations than later on, similar to the trajectory seen for competitive fitness. Altogether, our study shows that stoichiometry evolved over long time periods, and that it did so in a predictable direction, given the carbon-limited environment.
Collapse
Affiliation(s)
- Caroline B. Turner
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian D. Wade
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Justin R. Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brooke A. Sommerfeld
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Richard E. Lenski
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Nitrogen cost minimization is promoted by structural changes in the transcriptome of N-deprived Prochlorococcus cells. ISME JOURNAL 2017; 11:2267-2278. [PMID: 28585937 PMCID: PMC5607370 DOI: 10.1038/ismej.2017.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 01/17/2023]
Abstract
Prochlorococcus is a globally abundant marine cyanobacterium with many adaptations that reduce cellular nutrient requirements, facilitating growth in its nutrient-poor environment. One such genomic adaptation is the preferential utilization of amino acids containing fewer N-atoms, which minimizes cellular nitrogen requirements. We predicted that transcriptional regulation might further reduce cellular N budgets during transient N limitation. To explore this, we compared transcription start sites (TSSs) in Prochlorococcus MED4 under N-deprived and N-replete conditions. Of 64 genes with primary and internal TSSs in both conditions, N-deprived cells initiated transcription downstream of primary TSSs more frequently than N-replete cells. Additionally, 117 genes with only an internal TSS demonstrated increased internal transcription under N-deprivation. These shortened transcripts encode predicted proteins with an average of 21% less N content compared to full-length transcripts. We hypothesized that low translation rates, which afford greater control over protein abundances, would be beneficial to relatively slow-growing organisms like Prochlorococcus. Consistent with this idea, we found that Prochlorococcus exhibits greater usage of glycine–glycine motifs, which causes translational pausing, when compared to faster growing microbes. Our findings indicate that structural changes occur within the Prochlorococcus MED4 transcriptome during N-deprivation, potentially altering the size and structure of proteins expressed under nutrient limitation.
Collapse
|
27
|
Seward EA, Kelly S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol 2016; 17:226. [PMID: 27842572 PMCID: PMC5109750 DOI: 10.1186/s13059-016-1087-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. RESULTS Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. CONCLUSIONS Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
28
|
Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 2016; 35:2087-2103. [PMID: 27436874 DOI: 10.15252/embj.201694699] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Florencia Del Viso
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Francois CM, Duret L, Simon L, Mermillod-Blondin F, Malard F, Konecny-Dupré L, Planel R, Penel S, Douady CJ, Lefébure T. No Evidence That Nitrogen Limitation Influences the Elemental Composition of Isopod Transcriptomes and Proteomes. Mol Biol Evol 2016; 33:2605-20. [PMID: 27401232 DOI: 10.1093/molbev/msw131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The field of stoichiogenomics aims at understanding the influence of nutrient limitations on the elemental composition of the genome, transcriptome, and proteome. The 20 amino acids and the 4 nt differ in the number of nutrients they contain, such as nitrogen (N). Thus, N limitation shall theoretically select for changes in the composition of proteins or RNAs through preferential use of N-poor amino acids or nucleotides, which will decrease the N-budget of an organism. While these N-saving mechanisms have been evidenced in microorganisms, they remain controversial in multicellular eukaryotes. In this study, we used 13 surface and subterranean isopod species pairs that face strongly contrasted N limitations, either in terms of quantity or quality. We combined in situ nutrient quantification and transcriptome sequencing to test if N limitation selected for N-savings through changes in the expression and composition of the transcriptome and proteome. No evidence of N-savings was found in the total N-budget of transcriptomes or proteomes or in the average protein N-cost. Nevertheless, subterranean species evolving in N-depleted habitats displayed lower N-usage at their third codon positions. To test if this convergent compositional change was driven by natural selection, we developed a method to detect the strand-asymmetric signature that stoichiogenomic selection should leave in the substitution pattern. No such signature was evidenced, indicating that the observed stoichiogenomic-like patterns were attributable to nonadaptive processes. The absence of stoichiogenomic signal despite strong N limitation within a powerful phylogenetic framework casts doubt on the existence of stoichiogenomic mechanisms in metazoans.
Collapse
Affiliation(s)
- Clémentine M Francois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| | - Laurent Duret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| | - Florian Malard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| | - Lara Konecny-Dupré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| | - Rémi Planel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Simon Penel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France Institut Universitaire de France, Paris, France
| | - Tristan Lefébure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR5023, Villeurbanne, France
| |
Collapse
|
30
|
Neveu M, Poret-Peterson AT, Anbar AD, Elser JJ. Ordinary stoichiometry of extraordinary microorganisms. GEOBIOLOGY 2016; 14:33-53. [PMID: 26311124 DOI: 10.1111/gbi.12153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
All life on Earth seems to be made of the same chemical elements in relatively conserved proportions (stoichiometry). Whether this stoichiometry is conserved in settings that differ radically in physicochemical conditions (extreme environments) from those commonly encountered elsewhere on the planet provides insight into possible stoichiometries for putative life beyond Earth. Here, we report measurements of elemental stoichiometry for extremophile microbes from hot springs of Yellowstone National Park (YNP). Phototrophic and chemotrophic microbes were collected in locations spanning large ranges of temperature (24 °C to boiling), pH (1.6-9.6), redox (0.1-7.2 mg L(-1) dissolved oxygen), and nutrient concentrations (0.01-0.25 mg L(-1) NO2-, 0.7-12.9 mg L(-1) NO3-, 0.01-42 mg L(-1) NH4 (+), 0.003-1.1 mg L(-1) P mostly as phosphate). Despite these extreme conditions, the microbial cells sampled had a major and trace element stoichiometry within the ranges commonly encountered for microbes living in the more moderate environments of lakes and surface oceans. The cells did have somewhat high C:P and N:P ratios that are consistent with phosphorus (P) limitation. Furthermore, chemotrophs and phototrophs had similar compositions with the exception of Mo content, which was enriched in cells derived from chemotrophic sites. Thus, despite the extraordinary physicochemical and biological diversity of YNP environments, life in these settings, in a stoichiometric sense, remains much the same as we know it elsewhere.
Collapse
Affiliation(s)
- M Neveu
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A T Poret-Peterson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | - J J Elser
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Hemme D, Veyel D, Mühlhaus T, Sommer F, Jüppner J, Unger AK, Sandmann M, Fehrle I, Schönfelder S, Steup M, Geimer S, Kopka J, Giavalisco P, Schroda M. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:4270-97. [PMID: 25415976 PMCID: PMC4277220 DOI: 10.1105/tpc.114.130997] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.
Collapse
Affiliation(s)
- Dorothea Hemme
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jessica Jüppner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ann-Katrin Unger
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Michael Sandmann
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Schönfelder
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Martin Steup
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
32
|
Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol 2014; 196:2748-61. [PMID: 24837288 DOI: 10.1128/jb.01606-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Iron bioavailability is a major limiter of bacterial growth in mammalian host tissue and thus represents an important area of study. Escherichia coli K-12 metabolism was studied at four levels of iron limitation in chemostats using physiological and proteomic analyses. The data documented an E. coli acclimation gradient where progressively more severe iron scarcity resulted in a larger percentage of substrate carbon being directed into an overflow metabolism accompanied by a decrease in biomass yield on glucose. Acetate was the primary secreted organic by-product for moderate levels of iron limitation, but as stress increased, the metabolism shifted to secrete primarily lactate (∼70% of catabolized glucose carbon). Proteomic analysis reinforced the physiological data and quantified relative increases in glycolysis enzyme abundance and decreases in tricarboxylic acid (TCA) cycle enzyme abundance with increasing iron limitation stress. The combined data indicated that E. coli responds to limiting iron by investing the scarce resource in essential enzymes, at the cost of catabolic efficiency (i.e., downregulating high-ATP-yielding pathways containing enzymes with large iron requirements, like the TCA cycle). Acclimation to iron-limited growth was contrasted experimentally with acclimation to glucose-limited growth to identify both general and nutrient-specific acclimation strategies. While the iron-limited cultures maximized biomass yields on iron and increased expression of iron acquisition strategies, the glucose-limited cultures maximized biomass yields on glucose and increased expression of carbon acquisition strategies. This study quantified ecologically competitive acclimations to nutrient limitations, yielding knowledge essential for understanding medically relevant bacterial responses to host and to developing intervention strategies.
Collapse
|
33
|
Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 2014; 15:17-28. [PMID: 24662471 DOI: 10.1016/j.margen.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa.
Collapse
Affiliation(s)
- Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Evolution and Ecology Research Center, University of New South Wales, Sydney, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
34
|
Zhang YJ, Yang CL, Hao YJ, Li Y, Chen B, Wen JF. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins. Gene 2014; 534:163-8. [PMID: 24262937 DOI: 10.1016/j.gene.2013.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022]
Abstract
To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution.
Collapse
Affiliation(s)
- Yu-Juan Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, PR China; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, PR China
| | - Chun-Lin Yang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - You-Jin Hao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, PR China
| | - Ying Li
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, PR China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, PR China.
| | - Jian-Fan Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, PR China.
| |
Collapse
|
35
|
Proteomic and transcriptomic analyses of "Candidatus Pelagibacter ubique" describe the first PII-independent response to nitrogen limitation in a free-living Alphaproteobacterium. mBio 2013; 4:e00133-12. [PMID: 24281717 PMCID: PMC3870248 DOI: 10.1128/mbio.00133-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium "Candidatus Pelagibacter ubique," a cultured member of the order Pelagibacterales (SAR11), lacks the canonical GlnB, GlnD, GlnK, and NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation. A survey of 266 Alphaproteobacteria genomes found these five regulatory genes nearly universally conserved, absent only in intracellular parasites and members of the order Pelagibacterales, including "Ca. Pelagibacter ubique." Global differences in mRNA and protein expression between nitrogen-limited and nitrogen-replete cultures were measured to identify nitrogen stress responses in "Ca. Pelagibacter ubique" strain HTCC1062. Transporters for ammonium (AmtB), taurine (TauA), amino acids (YhdW), and opines (OccT) were all elevated in nitrogen-limited cells, indicating that they devote increased resources to the assimilation of nitrogenous organic compounds. Enzymes for assimilating amine into glutamine (GlnA), glutamate (GltBD), and glycine (AspC) were similarly upregulated. Differential regulation of the transcriptional regulator NtrX in the two-component signaling system NtrY/NtrX was also observed, implicating it in control of the nitrogen starvation response. Comparisons of the transcriptome and proteome supported previous observations of uncoupling between transcription and translation in nutrient-deprived "Ca. Pelagibacter ubique" cells. Overall, these data reveal a streamlined, PII-independent response to nitrogen stress in "Ca. Pelagibacter ubique," and likely other Pelagibacterales, and show that they respond to nitrogen stress by allocating more resources to the assimilation of nitrogen-rich organic compounds. IMPORTANCE Pelagibacterales are extraordinarily abundant and play a pivotal role in marine geochemical cycles, as one of the major recyclers of labile dissolved organic matter. They are also models for understanding how streamlining selection can reshape chemoheterotroph metabolism. Streamlining and its broad importance to environmental microbiology are emerging slowly from studies that reveal the complete genomes of uncultured organisms. Here, we report another remarkable example of streamlined metabolism in Pelagibacterales, this time in systems that control nitrogen assimilation. Pelagibacterales are major contributors to metatranscriptomes and metaproteomes from ocean systems, where patterns of gene expression are used to gain insight into ocean conditions and geochemical cycles. The data presented here supply background that is essential to interpreting data from field studies.
Collapse
|
36
|
Relative amino acid composition signatures of organisms and environments. PLoS One 2013; 8:e77319. [PMID: 24204807 PMCID: PMC3808408 DOI: 10.1371/journal.pone.0077319] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. METHODOLOGIES/PRINCIPAL FINDINGS To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. CONCLUSIONS Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.
Collapse
|
37
|
Gilbert JDJ, Acquisti C, Martinson HM, Elser JJ, Kumar S, Fagan WF. GRASP [Genomic Resource Access for Stoichioproteomics]: comparative explorations of the atomic content of 12 Drosophila proteomes. BMC Genomics 2013; 14:599. [PMID: 24007337 PMCID: PMC3844568 DOI: 10.1186/1471-2164-14-599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 06/05/2013] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND "Stoichioproteomics" relates the elemental composition of proteins and proteomes to variation in the physiological and ecological environment. To help harness and explore the wealth of hypotheses made possible under this framework, we introduce GRASP (http://www.graspdb.net), a public bioinformatic knowledgebase containing information on the frequencies of 20 amino acids and atomic composition of their side chains. GRASP integrates comparative protein composition data with annotation data from multiple public databases. Currently, GRASP includes information on proteins of 12 sequenced Drosophila (fruit fly) proteomes, which will be expanded to include increasingly diverse organisms over time. In this paper we illustrate the potential of GRASP for testing stoichioproteomic hypotheses by conducting an exploratory investigation into the composition of 12 Drosophila proteomes, testing the prediction that protein atomic content is associated with species ecology and with protein expression levels. RESULTS Elements varied predictably along multivariate axes. Species were broadly similar, with the D. willistoni proteome a clear outlier. As expected, individual protein atomic content within proteomes was influenced by protein function and amino acid biochemistry. Evolution in elemental composition across the phylogeny followed less predictable patterns, but was associated with broad ecological variation in diet. Using expression data available for D. melanogaster, we found evidence consistent with selection for efficient usage of elements within the proteome: as expected, nitrogen content was reduced in highly expressed proteins in most tissues, most strongly in the gut, where nutrients are assimilated, and least strongly in the germline. CONCLUSIONS The patterns identified here using GRASP provide a foundation on which to base future research into the evolution of atomic composition in Drosophila and other taxa.
Collapse
Affiliation(s)
- James D J Gilbert
- A08 Heydon-Lawrence Bdg, University of Sydney, Sydney NSW 2006, Australia
- University of Maryland, College Park, MD 20742, USA
| | - Claudia Acquisti
- WWU Munster, Institute for Evolution and Biodiversity, Hufferstr. 1, Munster 48149, Germany
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5301, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sudhir Kumar
- Center for Evolutionary Medicine and Informatics, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5301, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | |
Collapse
|
38
|
A metabolic prototype for eliminating tryptophan from the genetic code. Sci Rep 2013; 3:1359. [PMID: 23447021 PMCID: PMC3584311 DOI: 10.1038/srep01359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/13/2013] [Indexed: 11/13/2022] Open
Abstract
We set out to reduce the chemical constitution of a living organism to 19 amino acids. A strain was constructed for reassigning the tryptophan codon UGG to histidine and eliminating tryptophan from Escherichia coli. Histidine codons in the gene for an essential enzyme were replaced with tryptophan codons and the restoration of catalytic activity by missense suppressor His-tRNA bearing a CCA anticodon was selected. We used automated cultivation to assess the stability of this genetic construct during evolution. Histidine to tryptophan mutation at codon 30 in the transketolase gene from yeast and its cognate suppressor tRNA were stably propagated in a tktAB deletant of E. coli over 2500 generations. The ratio of histidine misincorporation at tryptophan sites in the proteome increased from 0.0007 to 0.03 over 300 days of continuous culture. This result demonstrated that the genetic code can be forced to evolve by permanent metabolic selection.
Collapse
|
39
|
In silico proteome-wide amino aCid and elemental composition (PACE) analysis of expression proteomics data provides a fingerprint of dominant metabolic processes. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:219-29. [PMID: 23917074 PMCID: PMC4357790 DOI: 10.1016/j.gpb.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 02/07/2023]
Abstract
Proteome-wide Amino aCid and Elemental composition (PACE) analysis is a novel and informative way of interrogating the proteome. The PACE approach consists of in silico decomposition of proteins detected and quantified in a proteomics experiment into 20 amino acids and five elements (C, H, N, O and S), with protein abundances converted to relative abundances of amino acids and elements. The method is robust and very sensitive; it provides statistically reliable differentiation between very similar proteomes. In addition, PACE provides novel insights into proteome-wide metabolic processes, occurring, e.g., during cell starvation. For instance, both Escherichia coli and Synechocystis down-regulate sulfur-rich proteins upon sulfur deprivation, but E. coli preferentially down-regulates cysteine-rich proteins while Synechocystis mainly down-regulates methionine-rich proteins. Due to its relative simplicity, flexibility, generality and wide applicability, PACE analysis has the potential of becoming a standard analytical tool in proteomics.
Collapse
|
40
|
Allison SD. A trait-based approach for modelling microbial litter decomposition. Ecol Lett 2012; 15:1058-70. [PMID: 22642621 DOI: 10.1111/j.1461-0248.2012.01807.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/15/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Trait-based models are an emerging tool in ecology with the potential to link community dynamics, environmental responses and ecosystem processes. These models represent complex communities by defining taxa with trait combinations derived from prior distributions that may be constrained by trade-offs. Herein I develop a model that links microbial community composition with physiological and enzymatic traits to predict litter decomposition rates. This approach allows for trade-offs among traits that represent alternative microbial strategies for resource acquisition. The model predicts that optimal strategies depend on the level of enzyme production in the whole community, which determines resource availability and decomposition rates. There is also evidence for facilitation and competition among microbial taxa that co-occur on decomposing litter. These interactions vary with community investment in extracellular enzyme production and the magnitude of trade-offs affecting enzyme biochemical traits. The model accounted for 69% of the variation in decomposition rates of 15 Hawaiian litter types and up to 26% of the variation in enzyme activities. By explicitly representing diversity, trait-based models can predict ecosystem processes based on functional trait distributions in a community. The model developed herein illustrates that traits influencing microbial enzyme production are some of the key controls on litter decomposition rates.
Collapse
Affiliation(s)
- S D Allison
- Department of Ecology and Evolutionary Biology, Department of Earth System Science, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
41
|
An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: Antisense antitermination tRNAs UAR insert serine. J Theor Biol 2012; 298:51-76. [DOI: 10.1016/j.jtbi.2011.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
|
42
|
BRAGG JASONG, QUIGG ANTONIETTA, RAVEN JOHNA, WAGNER ANDREAS. Protein elemental sparing and codon usage bias are correlated among bacteria. Mol Ecol 2012; 21:2480-7. [DOI: 10.1111/j.1365-294x.2012.05529.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Positive and Negative Cognate Amino Acid Bias Affects Compositions of Aminoacyl-tRNA Synthetases and Reflects Functional Constraints on Protein Structure. ACTA ACUST UNITED AC 2012. [DOI: 10.5618/bio.2012.v2.n1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Carlson RP, Oshota OJ, Taffs RL. Systems analysis of microbial adaptations to simultaneous stresses. Subcell Biochem 2012; 64:139-57. [PMID: 23080249 DOI: 10.1007/978-94-007-5055-5_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbes live in multi-factorial environments and have evolved under a variety of concurrent stresses including resource scarcity. Their metabolic organization is a reflection of their evolutionary histories and, in spite of decades of research, there is still a need for improved theoretical tools to explain fundamental aspects of microbial physiology. Using ecological and economic concepts, this chapter explores a resource-ratio based theory to elucidate microbial strategies for extracting and channeling mass and energy. The theory assumes cellular fitness is maximized by allocating scarce resources in appropriate proportions to multiple stress responses. Presented case studies deconstruct metabolic networks into a complete set of minimal biochemical pathways known as elementary flux modes. An economic analysis of the elementary flux modes tabulates enzyme atomic synthesis requirements from amino acid sequences and pathway operating costs from catabolic efficiencies, permitting characterization of inherent tradeoffs between resource investment and phenotype. A set of elementary flux modes with competitive tradeoffs properties can be mathematically projected onto experimental fluxomics datasets to decompose measured phenotypes into metabolic adaptations, interpreted as cellular responses proportional to the experienced culturing stresses. The resource-ratio based method describes the experimental phenotypes with greater accuracy than other contemporary approaches and further analysis suggests the results are both statistically and biologically significant. The insight into metabolic network design principles including tradeoffs associated with concurrent stress adaptation provides a foundation for interpreting physiology as well as for rational control and engineering of medically, environmentally, and industrially relevant microbes.
Collapse
Affiliation(s)
- Ross P Carlson
- Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717-3920, USA,
| | | | | |
Collapse
|
45
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
46
|
Jankovic B, Seoighe C, Alqurashi M, Gehring C. Is there evidence of optimisation for carbon efficiency in plant proteomes? PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:831-834. [PMID: 21973021 DOI: 10.1111/j.1438-8677.2011.00494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Flowering plants, angiosperms, can be divided into two major clades, monocots and dicots, and while differences in amino acid composition in different species from the two clades have been reported, a systematic analysis of amino acid content and distribution remains outstanding. Here, we show that monocot and dicot proteins have developed distinct amino acid content. In Arabidopsis thaliana and poplar, as in the ancestral moss Physcomitrella patens, the average mass per amino acid appears to be independent of protein length, while in the monocots rice, maize and sorghum, shorter proteins tend to be made of lighter amino acids. An examination of the elemental content of these proteomes reveals that the difference between monocot and dicot proteins can be largely attributed to their different carbon signatures. In monocots, the shorter proteins, which comprise the majority of all proteins, are made of amino acids with less carbon, while the nitrogen content is unchanged in both monocots and dicots. We hypothesise that this signature could be the result of carbon use and energy optimisation in fast-growing annual Poaceae (grasses).
Collapse
Affiliation(s)
- B Jankovic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
47
|
Grzymski JJ, Dussaq AM. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME JOURNAL 2011; 6:71-80. [PMID: 21697958 PMCID: PMC3246230 DOI: 10.1038/ismej.2011.72] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Marine microorganisms thrive under low levels of nitrogen (N). N cost minimization is a major selective pressure imprinted on open-ocean microorganism genomes. Here we show that amino-acid sequences from the open ocean are reduced in N, but increased in average mass compared with coastal-ocean microorganisms. Nutrient limitation exerts significant pressure on organisms supporting the trade-off between N cost minimization and increased average mass of amino acids that is a function of increased A+T codon usage. N cost minimization, especially of highly expressed proteins, reduces the total cellular N budget by 2.7–10% this minimization in combination with reduction in genome size and cell size is an evolutionary adaptation to nutrient limitation. The biogeochemical and evolutionary precedent for these findings suggests that N limitation is a stronger selective force in the ocean than biosynthetic costs and is an important evolutionary strategy in resource-limited ecosystems.
Collapse
Affiliation(s)
- Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA.
| | | |
Collapse
|
48
|
Abstract
Organisms use proteins to perform an enormous range of functions that are essential for life. Proteins are usually composed of 20 different kinds of amino acids that each contain between one and four nitrogen atoms. In aggregate, the nitrogen atoms that are bound in proteins typically account for a substantial fraction of the nitrogen in a cell. Many organisms obtain the nitrogen that they use to make proteins from the environment, where its availability can vary greatly. These observations prompt the question: can environmental nitrogen scarcity lead to adaptive evolution in the nitrogen content of proteins? In this issue, Gilbert & Fagan (2011) address this question in the marine cyanobacteria Prochlorococcus, examining a variety of ways in which cells might be thrifty with nitrogen when making proteins. They show that different Prochlorococcus strains vary substantially in the average nitrogen content of their encoded proteins and relate this variation to nitrogen availability in different marine habitats and to genomic base composition (GC content). They also consider biases in the nitrogen content of different kinds of proteins. In most Prochlorococcus strains, a group of proteins that are commonly induced during nitrogen stress are poor in nitrogen relative to other proteins, probably reflecting selection for reduced nitrogen content. In contrast, ribosomal proteins are nitrogen rich relative to other Prochlorococcus proteins, and tend to be down-regulated during nitrogen limitation. This suggests the possibility that decaying ribosomal proteins act as a source of nitrogen-rich amino acids during periods of nitrogen stress. This work contributes to our understanding of how nutrient limitation might lead to adaptive variation in the composition of proteins and signals that marine microbes hold great promise for testing hypotheses about protein elemental costs in the future.
Collapse
Affiliation(s)
- Jason G Bragg
- Department of Biological Sciences, Macquarie University, Sydney, 2109, NSW, Australia.
| |
Collapse
|
49
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
50
|
Sulfate-driven elemental sparing is regulated at the transcriptional and posttranscriptional levels in a filamentous cyanobacterium. J Bacteriol 2011; 193:1449-60. [PMID: 21239582 DOI: 10.1128/jb.00885-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.
Collapse
|