1
|
Liu H, Jian Y, Zeng C, Zhao Y. RNA-protein interaction prediction using network-guided deep learning. Commun Biol 2025; 8:247. [PMID: 39956833 PMCID: PMC11830795 DOI: 10.1038/s42003-025-07694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models for RNA-protein interaction prediction. Here, we introduce ZHMolGraph, which integrates graph neural network and unsupervised large language models to predict RNA-protein interaction. We validate ZHMolGraph predictions on two benchmark datasets and outperform the current best methods. For the dataset of entirely unknown RNAs and proteins, ZHMolGraph shows an improvement in achieving high AUROC of 79.8% and AUPRC of 82.0%. This represents a substantial improvement of 7.1%-28.7% in AUROC and 4.6%-30.0% in AUPRC over other methods. We utilize ZHMolGraph to enhance the challenging SARS-CoV-2 RPI and unbound RNA-protein complex predictions. Such enhancements make ZHMolGraph a reliable option for genome-wide RNA-protein prediction. ZHMolGraph holds broad potential for modeling and designing RNA-protein complexes.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Jangra R, Trant J, Sharma P. Water-mediated ribonucleotide-amino acid pairs and higher-order structures at the RNA-protein interface: analysis of the crystal structure database and a topological classification. NAR Genom Bioinform 2024; 6:lqae161. [PMID: 39664815 PMCID: PMC11632616 DOI: 10.1093/nargab/lqae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Water is essential for the formation, stability and function of RNA-protein complexes. To delineate the structural role of water molecules in shaping the interactions between RNA and proteins, we comprehensively analyzed a dataset of 329 crystal structures of these complexes to identify water-mediated hydrogen-bonded contacts at RNA-protein interface. Our survey identified a total of 4963 water bridges. We then employed a graph theory-based approach to present a robust classification scheme, encompassing triplets, quartets and quintet bridging topologies, each further delineated into sub-topologies. The frequency of water bridges within each topology decreases with the increasing degree of water node, with simple triplet water bridges outnumbering the higher-order topologies. Overall, this analysis demonstrates the variety of water-mediated interactions and highlights the importance of water as not only the medium but also the organizing principle underlying biomolecular interactions. Further, our study emphasizes the functional significance of water-mediated interactions in RNA-protein complexes, and paving the way for exploring how these interactions operate in complex biological environments. Altogether, this understanding not only enhances insights into biomolecular dynamics but also informs the rational design of RNA-protein complexes, providing a framework for potential applications in biotechnology and therapeutics. All the scripts, and data are available at https://github.com/PSCPU/waterbridges.
Collapse
Affiliation(s)
- Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
- We-Spark Health Institute, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
- Binary Star Research Services, University of Windsor, LaSalle, ON, N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
3
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Abstract
Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of β-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain β-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
5
|
Zhao R, Fang X, Mai Z, Chen X, Mo J, Lin Y, Xiao R, Bao X, Weng X, Zhou X. Transcriptome-wide identification of single-stranded RNA binding proteins. Chem Sci 2023; 14:4038-4047. [PMID: 37063799 PMCID: PMC10094363 DOI: 10.1039/d3sc00957b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
RNA-protein interactions are precisely regulated by RNA secondary structures in various biological processes. Large-scale identification of proteins that interact with particular RNA structure is important to the RBPome. Herein, a kethoxal assisted single-stranded RNA interactome capture (KASRIC) strategy was developed to globally identify single-stranded RNA binding proteins (ssRBPs). This approach combines RNA secondary structure probing technology with the conventional method of RNA-binding proteins profiling, realizing the transcriptome-wide identification of ssRBPs. Applying KASRIC, we identified 3180 candidate RBPs and 244 candidate ssRBPs in HeLa cells. Importantly, the 244 candidate ssRBPs contained 55 previously reported ssRBPs and 189 novel ssRBPs. Function analysis of the candidate ssRBPs exhibited enrichment in cellular processes related to RNA splicing and RNA degradation. The KASRIC strategy will facilitate the investigation of RNA-protein interactions.
Collapse
Affiliation(s)
- Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zhibiao Mai
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yingying Lin
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University Wuhan Hubei 430071 China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Xichen Bao
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| |
Collapse
|
6
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020; 21:E7362. [PMID: 33028045 PMCID: PMC7582630 DOI: 10.3390/ijms21197362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas technologies have advanced dramatically in recent years. Many different systems with new properties have been characterized and a plethora of hybrid CRISPR/Cas systems able to modify the epigenome, regulate transcription, and correct mutations in DNA and RNA have been devised. However, practical application of CRISPR/Cas systems is severely limited by the lack of effective delivery tools. In this review, recent advances in developing vehicles for the delivery of CRISPR/Cas in the form of ribonucleoprotein complexes are outlined. Most importantly, we emphasize the use of extracellular vesicles (EVs) for CRISPR/Cas delivery and describe their unique properties: biocompatibility, safety, capacity for rational design, and ability to cross biological barriers. Available molecular tools that enable loading of desired protein and/or RNA cargo into the vesicles in a controllable manner and shape the surface of EVs for targeted delivery into specific tissues (e.g., using targeting ligands, peptides, or nanobodies) are discussed. Opportunities for both endogenous (intracellular production of CRISPR/Cas) and exogenous (post-production) loading of EVs are presented.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
| | - Valery Smirnov
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia;
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Elena Volchkova
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Alexander Lukashev
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (A.K.); (S.B.); (V.C.)
- Sechenov First Moscow State Medical University, 119146 Moscow, Russia; (E.V.); (A.L.)
| |
Collapse
|
9
|
Täuber H, Hüttelmaier S, Köhn M. POLIII-derived non-coding RNAs acting as scaffolds and decoys. J Mol Cell Biol 2020; 11:880-885. [PMID: 31152666 PMCID: PMC6884708 DOI: 10.1093/jmcb/mjz049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Hendrik Täuber
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany.,Julius Bernstein Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
10
|
Wild K, Juaire KD, Soni K, Shanmuganathan V, Hendricks A, Segnitz B, Beckmann R, Sinning I. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Nucleic Acids Res 2019; 47:3184-3196. [PMID: 30649417 PMCID: PMC6451106 DOI: 10.1093/nar/gky1324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαβ) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP–RNP interactions in general.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Keven D Juaire
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Vivekanandan Shanmuganathan
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Wild K, Becker MM, Kempf G, Sinning I. Structure, dynamics and interactions of large SRP variants. Biol Chem 2019; 401:63-80. [DOI: 10.1515/hsz-2019-0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Matthias M.M. Becker
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Georg Kempf
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
12
|
Gladyshev GP. Thermodynamic self-Organization as a Mechanism of Hierarchical Structure formation of Biological Matter. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967403103165495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past few years, it has proved possible to build a noncontradictory thermodynamic theory of biological evolution, the origin of life, and the aging of living beings resting on a firm foundation of classical thermodynamics. The law of temporal hierarchies makes it possible to identify quasi-closed systems in open biological systems and to use the approaches of hierarchical quasi-equilibrium thermodynamics to establish the direction of ontogenesis and the evolutionary processes. A short review of the achievements of thermodynamics of biological evolution and aging is now presented. The application of the principle of stability of matter to the structures of adjacent hierarchies constitutes additional proof that quasi-equilibrium thermodynamics can be applied to the biological systems in the real world. This theory is corroborated by known fact and experimental outcomes obtained during the study of living and synthetic systems using the methods of macrothermodynamics and macrokinetics.
Collapse
Affiliation(s)
- Georgi P. Gladyshev
- N.N. Semenov Institute of Chemical Physics, RAS, 117977 Moscow, up. Kosygina, 4, Russia
| |
Collapse
|
13
|
Gulei D, Irimie AI, Cojocneanu-Petric R, Schultze JL, Berindan-Neagoe I. Exosomes—Small Players, Big Sound. Bioconjug Chem 2018; 29:635-648. [DOI: 10.1021/acs.bioconjchem.8b00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetics, Faculty of Dentistry, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Joachim L. Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Republicii 34-36 Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Dickey TH, Pyle AM. The SMAD3 transcription factor binds complex RNA structures with high affinity. Nucleic Acids Res 2017; 45:11980-11988. [PMID: 29036649 PMCID: PMC5714123 DOI: 10.1093/nar/gkx846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
Several members of the SMAD family of transcription factors have been reported to bind RNA in addition to their canonical double-stranded DNA (dsDNA) ligand. RNA binding by SMAD has the potential to affect numerous cellular functions that involve RNA. However, the affinity and specificity of this RNA binding activity has not been well characterized, which limits the ability to validate and extrapolate functional implications of this activity. Here we perform quantitative binding experiments in vitro to determine the ligand requirements for RNA binding by SMAD3. We find that SMAD3 binds poorly to single- and double-stranded RNA, regardless of sequence. However, SMAD3 binds RNA with large internal loops or bulges with high apparent affinity. This apparent affinity matches that for its canonical dsDNA ligand, suggesting a biological role for RNA binding by SMAD3.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Grechishnikova DA, Poptsova MS. The Physical and Geometric Properties of Human Transposon Stem–Loop Structures under Natural Selection. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C, Purrello M. Asymmetric RNA Distribution among Cells and Their Secreted Exosomes: Biomedical Meaning and Considerations on Diagnostic Applications. Front Mol Biosci 2017; 4:66. [PMID: 29046875 PMCID: PMC5632685 DOI: 10.3389/fmolb.2017.00066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.
Collapse
Affiliation(s)
- Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy.,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Rosalia Battaglia
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Duilia Brex
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Angela Caponnetto
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Davide Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Uusitalo JJ, Ingólfsson HI, Marrink SJ, Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys J 2017. [PMID: 28633759 DOI: 10.1016/j.bpj.2017.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain molecular dynamics simulations are a key tool to that end. Here, we have extended the coarse-grain Martini force field to include RNA after our recent extension to DNA. In the same way DNA was modeled, the tertiary structure of RNA is constrained using an elastic network. This model, therefore, is not designed for applications involving RNA folding but rather offers a stable RNA structure for studying RNA interactions with other (bio)molecules. The RNA model is compatible with all other Martini models and opens the way to large-scale explicit-solvent molecular dynamics simulations of complex systems involving RNA.
Collapse
Affiliation(s)
- Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Gupta S, Roy M, Ghosh A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 2016; 74:284-297. [DOI: 10.1007/s00284-016-1167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
19
|
Becker MMM, Lapouge K, Segnitz B, Wild K, Sinning I. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Nucleic Acids Res 2016; 45:470-481. [PMID: 27899666 PMCID: PMC5224484 DOI: 10.1093/nar/gkw1124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022] Open
Abstract
Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway.
Collapse
Affiliation(s)
- Matthias M M Becker
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu Rev Nutr 2016; 36:301-36. [PMID: 27215587 PMCID: PMC5479634 DOI: 10.1146/annurev-nutr-071715-050711] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.
Collapse
MESH Headings
- Animals
- Biological Transport
- Biomarkers/blood
- Cell Communication
- Diet
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- MicroRNAs/blood
- MicroRNAs/metabolism
- Models, Biological
- RNA, Bacterial/blood
- RNA, Bacterial/metabolism
- RNA, Plant/blood
- RNA, Plant/metabolism
- RNA, Ribosomal/blood
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/blood
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/blood
- RNA, Small Untranslated/metabolism
- RNA, Transfer/blood
- RNA, Transfer/metabolism
- RNA, Viral/blood
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Anubrata Ghosal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - David Galas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, L-4367 Belvaux, Luxembourg; ,
| |
Collapse
|
21
|
Abstract
More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted to the translocation channel. Mammalian SRP is a ribonucleoprotein complex consisting of an SRP RNA of 300 nucleotides and 6 proteins bound to it. Assembly occurs in a hierarchical manner mainly in the nucleolus and only SRP54, which recognizes the signal sequence and regulates the targeting process, is added as the last component in the cytosol. Here we present an update on recent insights in the structure, function and dynamics of SRP RNA in SRP assembly with focus on the S domain, and present SRP as an example for the complex biogenesis of a rather small ribonucleoprotein particle.
Collapse
Affiliation(s)
- Klemens Wild
- a Heidelberg University Biochemistry Center (BZH) ; Heidelberg , Germany
| | | |
Collapse
|
22
|
Kondo Y, Oubridge C, van Roon AMM, Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. eLife 2015; 4. [PMID: 25555158 PMCID: PMC4383343 DOI: 10.7554/elife.04986] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022] Open
Abstract
U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a
crucial role at an early stage of pre-mRNA splicing. We present two crystal
structures of engineered U1 sub-structures, which together reveal at atomic
resolution an almost complete network of protein–protein and RNA-protein
interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is
recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between
pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is
stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA
backbone around the splice junction but U1-C makes no base-specific contacts with
pre-mRNA. The structure, together with RNA binding assays, shows that the selection
of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through
basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched
5′-splice sites. DOI:http://dx.doi.org/10.7554/eLife.04986.001 Genes are made up of long stretches of DNA. The regions of a gene that code for
proteins (known as exons) are interrupted by stretches of non-coding DNA called
introns. To produce proteins from a gene, the DNA is ‘transcribed’ to
form pre-mRNA molecules, from which the introns must be removed in a process called
splicing. The remaining exons are then joined together to form a mature mRNA molecule
that contains the instructions to build a protein. Errors in the splicing process can
lead to numerous diseases, such as cancer. A molecular machine known as a spliceosome is responsible for splicing the pre-mRNA
molecules. This consists of five different complexes called small nuclear
ribonucleoprotein particles (snRNPs), which are in turn made up from numerous
proteins and RNA molecules. The spliceosome assembles anew every time it splices, and
an early step in this assembly process involves the interaction of an snRNP called U1
with the start of an intron in the pre-mRNA. This interaction then stimulates the
assembly of the rest of the spliceosome. In 2009, researchers reported the structure
of the U1 snRNP, but the structure did not contain enough detail to reveal how the
snRNP recognizes the start of an intron. Kondo, Oubridge et al., including some of the researchers involved in the 2009 work,
now present the crystal structure of the human version of the U1 snRNP in more
detail. High-quality crystal structures of the complete U1 snRNP molecule could not
be obtained because the arrangement of the RNA molecules in the snRNP prevented a
regular crystal from forming. Kondo, Oubridge et al. instead engineered two
subcomponents of U1 snRNP that each crystallized well, and determined their
structures. This revealed that the interactions between the various parts of the U1
snRNP form a complex network. A protein present in the U1 snRNP, known as U1-C, had previously been reported to be
able to recognize introns on its own—without requiring the complete U1 snRNP.
Kondo, Oubridge et al. reveal that this is not the case and that U1-C does not read
the intron RNA sequence directly. Instead, U1 snRNP is able to find the start of the
intron because the U1 RNA can stably bind to this site. The U1-C protein can however
adjust the strength of this binding to ensure that the spliceosome can operate with a
variety of intron start sequences (or signals). DOI:http://dx.doi.org/10.7554/eLife.04986.002
Collapse
Affiliation(s)
- Yasushi Kondo
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Chris Oubridge
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anne-Marie M van Roon
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Kiyoshi Nagai
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
23
|
Tateishi-Karimata H, Pramanik S, Nakano SI, Miyoshi D, Sugimoto N. Dangling ends perturb the stability of RNA duplexes responsive to surrounding conditions. ChemMedChem 2014; 9:2150-5. [PMID: 25070089 DOI: 10.1002/cmdc.201402167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 11/09/2022]
Abstract
Unpaired terminal nucleotides (dangling ends) occur in various biologically important RNA structures. We studied the thermal stability of RNA duplexes with dangling ends under conditions that mimic those in cells. Dangling ends of one or two nucleotides stabilized a duplex up to approximately 2.7 kcal mol(-1) in the absence of cosolutes. RNA duplexes with dangling purine nucleotides were more stable than those with pyrimidine nucleotides. Interestingly, in the presence of various cosolutes, RNA duplexes with purine dangling ends were significantly destabilized, although those with pyrimidine dangling ends were destabilized slightly. For example, in 30 wt % poly(ethylene glycol), stabilization resulting from adenine dangling ends was reduced by 1.4 kcal mol(-1) . Our quantitative analyses also showed that the number of water molecules bound to the dangling ends in an aqueous solution was independent of the nucleotide type but dependent on the stability of the dangling-end region. It has been considered that dangling ends stabilize helices; however, our results suggest that the stabilization is responsive to the surrounding conditions.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan) http://www.konan-fiber.jp/
| | | | | | | | | |
Collapse
|
24
|
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2014; 4:2980. [PMID: 24356509 PMCID: PMC3905700 DOI: 10.1038/ncomms3980] [Citation(s) in RCA: 1492] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022] Open
Abstract
Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown. Here we describe sequence motifs present in miRNAs that control their localization into exosomes. The protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds exosomal miRNAs through the recognition of these motifs and controls their loading into exosomes. Moreover, hnRNPA2B1 in exosomes is sumoylated, and sumoylation controls the binding of hnRNPA2B1 to miRNAs. The loading of miRNAs into exosomes can be modulated by mutagenesis of the identified motifs or changes in hnRNPA2B1 expression levels. These findings identify hnRNPA2B1 as a key player in miRNA sorting into exosomes and provide potential tools for the packaging of selected regulatory RNAs into exosomes and their use in biomedical applications. Cells secrete micro-RNAs by packaging them into exosomes; however, the mechanisms by which this packaging occurs are unclear. Here, the authors identify a sequence motif that confers exosomal targeting to micro-RNAs and identify a ribonucleoprotein complex that plays a role in this process.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2] Servicio de Inmunología, Hospital de la Princesa, Madrid 28006, Spain
| | - Cristina Gutiérrez-Vázquez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Fátima Sánchez-Cabo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Daniel Pérez-Hernández
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Jesús Vázquez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | | | | | | | - María Mittelbrunn
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2]
| | - Francisco Sánchez-Madrid
- 1] Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain [2] Servicio de Inmunología, Hospital de la Princesa, Madrid 28006, Spain [3]
| |
Collapse
|
25
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28:3-13. [PMID: 24769058 DOI: 10.1016/j.semcancer.2014.04.009] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently. Here we review the molecular mechanisms that control the sorting of molecules into exosomes, with special attention to the sorting of RNA. We also discuss how the cellular context affects the composition of exosomes, and thus the outcome of the communication between the exosome-producer and recipient cells, with particular focus on the communication between tumor cells and with cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francesc Baixauli
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Servicio de Inmunología, Hospital de la Princesa, Madrid, Spain.
| | - María Mittelbrunn
- Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
27
|
Sivasakthi V, Anbarasu A, Ramaiah S. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochem Biophys 2013; 67:853-63. [DOI: 10.1007/s12013-013-9573-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
29
|
Piazzon N, Schlotter F, Lefebvre S, Dodré M, Méreau A, Soret J, Besse A, Barkats M, Bordonné R, Branlant C, Massenet S. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2012; 41:1255-72. [PMID: 23221635 PMCID: PMC3553995 DOI: 10.1093/nar/gks1224] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy is a severe motor neuron disease caused by reduced levels of the ubiquitous Survival of MotoNeurons (SMN) protein. SMN is part of a complex that is essential for spliceosomal UsnRNP biogenesis. Signal recognition particle (SRP) is a ribonucleoprotein particle crucial for co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. SRP biogenesis is a nucleo-cytoplasmic multistep process in which the protein components, except SRP54, assemble with 7S RNA in the nucleolus. Then, SRP54 is incorporated after export of the pre-particle into the cytoplasm. The assembly factors necessary for SRP biogenesis remain to be identified. Here, we show that 7S RNA binds to purified SMN complexes in vitro and that SMN complexes associate with SRP in cellular extracts. We identified the RNA determinants required. Moreover, we report a specific reduction of 7S RNA levels in the spinal cord of SMN-deficient mice, and in a Schizosaccharomyces pombe strain carrying a temperature-degron allele of SMN. Additionally, microinjected antibodies directed against SMN or Gemin2 interfere with the association of SRP54 with 7S RNA in Xenopus laevis oocytes. Our data show that reduced levels of the SMN protein lead to defect in SRP steady-state level and describe the SMN complex as the first identified cellular factor required for SRP biogenesis.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire ARN-RNP structure-fonction-maturation, Enzymologie Moléculaire et Structurale (AREMS), Nancy Université-CNRS, UMR 7214, FR 3209, Faculté de Médecine de Nancy, BP 184, 9 avenue de la forêt de Haye, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hori N, Takada S. Coarse-Grained Structure-Based Model for RNA-Protein Complexes Developed by Fluctuation Matching. J Chem Theory Comput 2012; 8:3384-94. [DOI: 10.1021/ct300361j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoto Hori
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kyoto, Japan
- Core Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Japan
| |
Collapse
|
31
|
Abstract
The signal recognition particle (SRP) is a key component of the cellular machinery that couples the ongoing synthesis of proteins to their proper localization, and has often served as a paradigm for understanding the molecular basis of protein localization within the cell. The SRP pathway exemplifies several key molecular events required for protein targeting to cellular membranes: the specific recognition of signal sequences on cargo proteins, the efficient delivery of cargo to the target membrane, the productive unloading of cargo to the translocation machinery and the precise spatial and temporal coordination of these molecular events. Here we highlight recent advances in our understanding of the molecular mechanisms underlying this pathway, and discuss new questions raised by these findings.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
32
|
Wild K, Bange G, Bozkurt G, Segnitz B, Hendricks A, Sinning I. Structural insights into the assembly of the human and archaeal signal recognition particles. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:295-303. [DOI: 10.1107/s0907444910000879] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/07/2010] [Indexed: 11/10/2022]
Abstract
The signal recognition particle (SRP) is a conserved ribonucleoprotein (RNP) complex that co-translationally targets membrane and secretory proteins to membranes. The assembly of the particle depends on the proper folding of the SRP RNA, which in mammalia and archaea involves an induced-fit mechanism within helices 6 and 8 in the S domain of SRP. The two helices are juxtaposed and clamped together upon binding of the SRP19 protein to their apices. In the current assembly paradigm, archaeal SRP19 causes the asymmetric loop of helix 8 to bulge out and expose the binding platform for the key player SRP54. Based on a heterologous archaeal SRP19–human SRP RNA structure, mammalian SRP19 was thought not to be able to induce this change, thus explaining the different requirements of SRP19 for SRP54 recruitment. In contrast, the crystal structures of a crenarchaeal and the all-human SRP19–SRP RNA binary complexes presented here show that the asymmetric loop is bulged out in both binary complexes. Differences in SRP assembly between mammalia and archaea are therefore independent of SRP19 and are based on differences in SRP RNA itself. A new SRP-assembly scheme is presented.
Collapse
|
33
|
Gagnon MG, Boutorine YI, Steinberg SV. Recurrent RNA motifs as probes for studying RNA-protein interactions in the ribosome. Nucleic Acids Res 2010; 38:3441-53. [PMID: 20139416 PMCID: PMC2879513 DOI: 10.1093/nar/gkq031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand how the nucleotide sequence of ribosomal RNA determines its tertiary structure, we developed a new approach for identification of those features of rRNA sequence that are responsible for formation of different short- and long-range interactions. The approach is based on the co-analysis of several examples of a particular recurrent RNA motif. For different cases of the motif, we design combinatorial gene libraries in which equivalent nucleotide positions are randomized. Through in vivo expression of the designed libraries we select those variants that provide for functional ribosomes. Then, analysis of the nucleotide sequences of the selected clones would allow us to determine the sequence constraints imposed on each case of the motif. The constraints shared by all cases are interpreted as providing for the integrity of the motif, while those ones specific for individual cases would enable the motif to fit into the particular structural context. Here we demonstrate the validity of this approach for three examples of the so-called along-groove packing motif found in different parts of ribosomal RNA.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Département de Biochimie, Université de Montréal, Montréal, CP 6128, Succursale Centre-Ville, QC H3C 3J7, Canada
| | | | | |
Collapse
|
34
|
Egea PF, Napetschnig J, Walter P, Stroud RM. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS One 2008; 3:e3528. [PMID: 18953414 PMCID: PMC2568955 DOI: 10.1371/journal.pone.0003528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/03/2008] [Indexed: 12/05/2022] Open
Abstract
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| | - Johanna Napetschnig
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PFE); (RMS)
| |
Collapse
|
35
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
36
|
Rouda S, Skordalakes E. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 2008; 15:1403-12. [PMID: 17997966 DOI: 10.1016/j.str.2007.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/03/2007] [Accepted: 09/06/2007] [Indexed: 12/22/2022]
Abstract
Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the "end of replication problem." TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.
Collapse
Affiliation(s)
- Susan Rouda
- Gene Expression and Regulation Program, The Wistar Institute, University of Pennsylvania, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
Han D, Hu Z. Mutations Stabilize Small Subunit Ribosomal RNA in Desiccation-Tolerant Cyanobacteria Nostoc. Curr Microbiol 2007; 54:254-9. [PMID: 17334839 DOI: 10.1007/s00284-006-0095-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/19/2006] [Indexed: 10/23/2022]
Abstract
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 16S rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress.
Collapse
Affiliation(s)
- D Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | |
Collapse
|
38
|
Okada K, Takahashi M, Sakamoto T, Kawai G, Nakamura K, Kanai A. Solution structure of a GAAG tetraloop in helix 6 of SRP RNA from Pyrococcus furiosus. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:383-95. [PMID: 16838833 DOI: 10.1080/15257770600683979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The NMR structure of a 12-mer RNA derived from the helix 6 of SRP RNA from Pyrococcus furiosus, whose loop-closing base pair is U.G, was determined, and the structural and thermodynamic properties of the RNA were compared with those of a mutant RNA with the C:G closing base pair. Although the structures of the two RNAs are similar to each other and adopt the GNRR motif the conformational stabilities are significantly different to each other It was suggested that weaker stacking interaction of the GAAG loop with the U:G closing base pair in 12-mer RNA causes the lower conformational stability.
Collapse
Affiliation(s)
- Kiyoshi Okada
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Iakhiaeva E, Bhuiyan SH, Yin J, Zwieb C. Protein SRP68 of human signal recognition particle: identification of the RNA and SRP72 binding domains. Protein Sci 2006; 15:1290-302. [PMID: 16672232 PMCID: PMC2242529 DOI: 10.1110/ps.051861406] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The signal recognition particle (SRP) plays an important role in the delivery of secretory proteins to cellular membranes. Mammalian SRP is composed of six polypeptides among which SRP68 and SRP72 form a heterodimer that has been notoriously difficult to investigate. Human SRP68 was purified from overexpressing Escherichia coli cells and was found to bind to recombinant SRP72 as well as in vitro-transcribed human SRP RNA. Polypeptide fragments covering essentially the entire SRP68 molecule were generated recombinantly or by proteolytic digestion. The RNA binding domain of SRP68 included residues from positions 52 to 252. Ninety-four amino acids near the C terminus of SRP68 mediated the binding to SRP72. The SRP68-SRP72 interaction remained stable at elevated salt concentrations and engaged approximately 150 amino acids from the N-terminal region of SRP72. This portion of SRP72 was located within a predicted tandem array of four tetratricopeptide (TPR)-like motifs suggested to form a superhelical structure with a groove to accommodate the C-terminal region of SRP68.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
40
|
Lustig Y, Goldshmidt H, Uliel S, Michaeli S. The Trypanosoma brucei signal recognition particle lacks the Alu-domain-binding proteins: purification and functional analysis of its binding proteins by RNAi. J Cell Sci 2006; 118:4551-62. [PMID: 16179612 DOI: 10.1242/jcs.02578] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosomes are protozoan parasites that have a major impact on human health and that of livestock. These parasites represent a very early branch in the eukaryotic lineage, and possess unique RNA processing mechanisms. The trypanosome signal recognition particle (SRP) is also unusual in being the first signal recognition particle described in nature to be comprised of two RNA molecules, the 7SL RNA and a tRNA-like molecule. In this study, we further elucidated the unique properties of this particle. The genes encoding three SRP proteins (SRP19, SRP72 and SRP68) were identified by bioinformatics analysis. Silencing of these genes by RNAi suggests that the SRP-mediated protein translocation pathway is essential for growth. The depletion of SRP72 and SRP68 induced sudden death, most probably as a result of toxicity due to the accumulation of the pre-SRP in the nucleolus. Purification of the trypanosome particle to homogeneity, by TAP-tagging, identified four SRP proteins (SRP72, SRP68, SRP54 and SRP19), but no Alu-domain-binding protein homologs. This study highlights the unique features of the trypanosome SRP complex and further supports the hypothesis that the tRNA-like molecule present in this particle may replace the function of the Alu-domain-binding proteins present in many eukaryotic SRP complexes.
Collapse
Affiliation(s)
- Yaniv Lustig
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
41
|
Bernacchi S, Ennifar E, Tóth K, Walter P, Langowski J, Dumas P. Mechanism of Hairpin-Duplex Conversion for the HIV-1 Dimerization Initiation Site. J Biol Chem 2005; 280:40112-21. [PMID: 16169845 DOI: 10.1074/jbc.m503230200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the dimerization initiation site of HIV-1 genomic RNA as a model to investigate hairpin-duplex interconversion with a combination of fluorescence, UV melting, gel electrophoresis, and x-ray crystallographic techniques. Fluorescence studies with molecular beacons and crystallization experiments with 23-nucleotide dimerization initiation site fragments showed that the ratio of hairpin to duplex formed after annealing in water essentially depends on RNA concentration and not on cooling kinetics. With natural sequences allowing to form the most stable duplex, and thus also the loop-loop complex (or "kissing complex"), concentrations as low as 3 mum in strands are necessary to obtain a majority of the hairpin form. With a mutated sequence preventing kissing complex formation, a majority of hairpins was even obtained at 80 mum in strands. However, this did not prevent an efficient conversion from hairpin to duplex in the presence of salts. Kinetic considerations are in favor of duplex formation from intermediates involving hairpins engaged in cruciform dimers rather than from free strands. The very first step of formation of such a cruciform intermediate could be trapped in a crystal structure. This mechanism might be significant for the dynamics of small RNAs beyond the strict field of HIV-1.
Collapse
Affiliation(s)
- Serena Bernacchi
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS Conventionnée à l'Université Louis Pasteur Strasbourg, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Santana-Blank LA, Rodríguez-Santana E, Santana-Rodríguez KE. Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses. Photomed Laser Surg 2005; 23:416-24. [PMID: 16144487 DOI: 10.1089/pho.2005.23.416] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The present manuscript describes the non-invasive, long-range, energy transport of a singular infrared pulsed laser device (IPLD) and the upstream components of the original action mechanism, designated photo-infrared pulsed bio-modulation (PIPBM). BACKGROUND DATA Major strides have been taken in recent years towards scientifically acceptable clinical applications of low-energy lasers. Nevertheless, challenges still abound. For instance, the range of potential target tissues for laser therapy in medicine has been, until now, limited by the optical penetration of the beam or to sites accessible by fiberoptics. In addition, much needs to be learned about the action mechanisms of pulsed lasers, which can induce unique biological effects. METHODS We present a review of the IPLD laser technology and the PIPBM mechanism. RESULTS The studies reviewed suggest that the PIPBM enhances physiologically reparative processes in a non-toxic and selective manner through the activation and modulation of chaotic dynamics in water. These, in turn, lead not only to local, but also long-distance (systemic) effects. CONCLUSIONS Though additional studies are necessary to fully explore the biological effects of the PIPBM induced by the IPLD, this mechanism may have multiple potential applications in medicine that are the subject of active current and future investigations.
Collapse
Affiliation(s)
- Luis A Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela.
| | | | | |
Collapse
|
43
|
Yin J, Huang Q, Pakhomova ON, Hinck AP, Zwieb C. The conserved adenosine in helix 6 of Archaeoglobus fulgidus signal recognition particle RNA initiates SRP assembly. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:269-75. [PMID: 15810437 PMCID: PMC2685576 DOI: 10.1155/2004/134861] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signal recognition particle (SRP) RNA helix 6 of archaea and eukaryotes is essential for the binding of protein SRP19 and the assembly of a functional complex. The conserved adenosine at the third position of the tetraloop of helix 6 (A149) is crucial for the binding of protein SRP19 in the mammalian SRP. Here we investigated the significance of the equivalent adenosine residue at position 159 (A159) of Archaeoglobus fulgidus SRP RNA. The A159 of A. fulgidus and A149 of human SRP RNA were changed to C, G or U, and fragments containing helix 6 or helices 6 and 8 were synthesized by run-off transcription with T7 RNA polymerase. The ability of recombinant A. fulgidus and human SRP19 to form ribonucleoprotein complexes was measured in vitro. The simultaneous presence of A149 and helix 8 is required for the high-affinity binding of SRP19 to the human SRP RNA. In contrast, A. fulgidus SRP19 binds to the SRP RNA fragments with high affinity irrespective of the nature of the nucleotide, demonstrating that A159 does not directly participate in protein binding. Instead, as indicated by the resistance of the wild-type A. fulgidus RNA towards digestion by RNase A, this residue allows the formation of a tightly folded RNA molecule. The high affinity between A.fulgidus SRP 19 and RNA molecules that contain both helices 6 and 8 suggests that A159 is likely to initiate archaeal SRP assembly by forming a conserved tertiary RNA-RNA interaction.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | - Qiaojia Huang
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Current address: Department of Laboratory Medicine, Fuzhou General Hospital, 156 North Xihuan Road, Fuzhou 350025, Fujian, P.R. China
| | - Olga N. Pakhomova
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Andrew P. Hinck
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Christian Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Corresponding author ()
| |
Collapse
|
44
|
Sommerville J, Brumwell CL, Politz JCR, Pederson T. Signal recognition particle assembly in relation to the function of amplified nucleoli ofXenopusoocytes. J Cell Sci 2005; 118:1299-307. [PMID: 15741230 DOI: 10.1242/jcs.01726] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.
Collapse
Affiliation(s)
- John Sommerville
- Division of Cell and Molecular Biology, School of Biology, University of St Andrews, KY16 9TS, UK.
| | | | | | | |
Collapse
|
45
|
Abstract
Co-translational targeting of secretory and membrane proteins to the translocation machinery is mediated by the signal recognition particle (SRP) and its membrane-bound receptor (SR) in all three domains of life. Although the overall composition of the SRP system differs, the central ribonucleoprotein core and the general mechanism of GTP-dependent targeting are highly conserved. Recently, structural studies have contributed significantly to our understanding of the molecular organization of SRP. SRP appears as a structurally flexible particle modulated and regulated by its interactions with the ribosome-nascent chain complex, the translocon and the SR. The SRP core (SRP54 with its cognate RNA binding site) plays a central role in these interactions and communicates the different binding states by long-range interdomain communication. Based on recent structures of SRP54, a model for signal peptide binding stimulating the GTP affinity during the first step of the SRP cycle is presented. The model is placed in the context of the recent structures of mammalian SRP bound to a ribosome-nascent chain complex and of a subcomplex of SRP-SR.
Collapse
Affiliation(s)
- Klemens Wild
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
46
|
Iakhiaeva E, Yin J, Zwieb C. Identification of an RNA-binding domain in human SRP72. J Mol Biol 2005; 345:659-66. [PMID: 15588816 DOI: 10.1016/j.jmb.2004.10.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex that plays a crucial role during the delivery of secretory proteins from the ribosome to the cell membrane. Among the six proteins of the eukaryotic SRP, the 72 kDa protein (SRP72) is the largest and least characterized. Polypeptides corresponding to various regions of the entire human SRP72 sequence were expressed in Escherichia coli, purified, and partially proteolyzed. Human SRP RNA bound with high affinity to a 63 amino acid residue region near the C terminus of SRP72. Mild treatment of the fragment with chymotrypsin abolished its RNA-binding activity. A conserved sequence with the consensus PDPXRWLPXXER was identified within a 56 amino acid residue RNA-binding domain. Sucrose gradient centrifugation and filter-binding analysis using mutant SRP RNAs showed that SRP72 bound to the moderately conserved portion of SRP RNA helix 5. Nine tetratricopeptide-like repeats (TPRs) poised to interact with other SRP or ribosomal proteins were predicted in the NH2-terminal region. These identifications assign two important functions to a large portion of SRP72 and demonstrate the RNA-binding capacity of the protein.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | | | |
Collapse
|
47
|
Abstract
The signal recognition particle (SRP) directs integral membrane and secretory proteins to the cellular protein translocation machinery during translation. The SRP is an evolutionarily conserved RNA-protein complex whose activities are regulated by GTP hydrolysis. Recent structural investigations of SRP functional domains and interactions provide new insights into the mechanisms of SRP activity in all cells, leading toward a comprehensive understanding of protein trafficking by this elegant pathway.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94705, USA.
| | | |
Collapse
|
48
|
Santana-Blank LA, Reyes H, Rodríguez-Santana E, Santana-Rodríguez KE. Microdensitometry of T2-weighted magnetic resonance (MR) images from patients with advanced neoplasias in a phase I clinical trial of an infrared pulsed laser device (IPLD). Lasers Surg Med 2004; 34:398-406. [PMID: 15216533 DOI: 10.1002/lsm.20068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether an infrared pulsed laser device (IPLD)-induced pathophysiologic changes could be identified before measurable modifications in tumor volume. STUDY DESIGN/PATIENTS AND METHODS Pre-and post-IPLD treatment magnetic resonance (MR) images of tumor heterogeneities and peritumoral tissues were digitized and a linear transformation was performed to convert images to 256 intensity levels. Data were analyzed by using the Student's t-test and the Kolmogorov-Sminov test (alpha = 0.05). RESULTS The post-treatment mean intensity values of tumor heterogeneities increased significantly (P < 0.001) for all of the seven patients (n = 7) evaluated. For peritumoral tissues, a significant increase (P < 0.001) was measured in four patients (n = 4). The Kolmogorov-Sminov test showed significant values for the tumor tissue of six (n = 6) patients. CONCLUSION This is the first study of early evidence of anti-cancer activity of a novel IPLD showing a significant increase in the water content of tumor heterogeneities before measurable changes in tumor volume.
Collapse
Affiliation(s)
- Luis A Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas Venezuela.
| | | | | | | |
Collapse
|
49
|
Yin J, Yang CH, Zwieb C. Two strategically placed base pairs in helix 8 of mammalian signal recognition particle RNA are crucial for the SPR19-dependent binding of protein SRP54. RNA (NEW YORK, N.Y.) 2004; 10:574-580. [PMID: 15037766 PMCID: PMC1370547 DOI: 10.1261/rna.5232404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 01/07/2004] [Indexed: 05/24/2023]
Abstract
Signal recognition particle (SRP) guides secretory proteins to biological membranes in all organisms. Assembly of the large domain of mammalian SRP requires binding of SRP19 prior to the binding of protein SRP54 to SRP RNA. The crystal structure of the ternary complex reveals the parallel arrangement of RNA helices 6 and 8, a bridging of the helices via a hydrogen bonded A149-A201 pair and protein SRP19, and two A minor motifs between the asymmetric loop of helix 8 (A213 and A214) and helix 6. We investigated which residues in helix 8 are responsible for the SRP19-dependent binding of SRP54 by taking advantage of the finding that binding of human SRP54 to Methanococcus jannaschii SRP RNA is independent of SRP19. Chimeric human/M. jannaschii SRP RNA molecules were synthesized containing predominantly human SRP RNA but possessing M. jannaschii SRP RNA-derived substitutions. Activities of the chimeric RNAs were measured with respect to protein SRP19 and the methionine-rich RNA-binding domain of protein SRP54 (SRP54M). Changing A213 and A214 to a uridine has no effect on the SRP19-dependent binding of SRP54M. Instead, the two base pairs C189-G210 and C190-G209, positioned between the conserved binding site of SRP54 and the asymmetric loop, are critical for conveying SRP19 dependency. Furthermore, the nucleotide composition of five base pairs surrounding the asymmetric loop affects binding of SRP54M significantly. These results demonstrate that subtle, and not easily perceived, structural differences are of crucial importance in the assembly of mammalian SRP.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | |
Collapse
|
50
|
Rozners E, Moulder J. Hydration of short DNA, RNA and 2'-OMe oligonucleotides determined by osmotic stressing. Nucleic Acids Res 2004; 32:248-54. [PMID: 14715922 PMCID: PMC373285 DOI: 10.1093/nar/gkh175] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies on hydration are important for better understanding of structure and function of nucleic acids. We compared the hydration of self-complementary DNA, RNA and 2'-O-methyl (2'-OMe) oligonucleotides GCGAAUUCGC, (UA)6 and (CG)3 using the osmotic stressing method. The number of water molecules released upon melting of oligonucleotide duplexes, Delta(n)W, was calculated from the dependence of melting temperature on water activity and the enthalpy, both measured with UV thermal melting experiments. The water activity was changed by addition of ethylene glycol, glycerol and acetamide as small organic co-solutes. The Delta(n)W was 3-4 for RNA duplexes and 2-3 for DNA and 2'-OMe duplexes. Thus, the RNA duplexes were hydrated more than the DNA and the 2'-OMe oligonucleotide duplexes by approximately one to two water molecules depending on the sequence. Consistent with previous studies, GC base pairs were hydrated more than AU pairs in RNA, whereas in DNA and 2'-OMe oligonucleotides the difference in hydration between these two base pairs was relatively small. Our data suggest that the better hydration of RNA contributes to the increased enthalpic stability of RNA duplexes compared with DNA duplexes.
Collapse
Affiliation(s)
- Eriks Rozners
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | | |
Collapse
|