1
|
Ostalé CM, Azpiazu N, Peropadre A, Martín M, Ruiz-Losada M, López-Varea A, Viales RR, Girardot C, Furlong EEM, de Celis JF. A function of Spalt proteins in heterochromatin organization and maintenance of genomic DNA integrity. Development 2025; 152:dev204258. [PMID: 40326666 PMCID: PMC12091872 DOI: 10.1242/dev.204258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The conserved Spalt proteins regulate gene expression and cell fate choices during multicellular development, generally acting as transcriptional repressors in different gene regulatory networks. In addition to their roles as DNA sequence-specific transcription factors, Spalt proteins show a consistent localization to heterochromatic regions. Vertebrate Spalt-like proteins can act through the nucleosome remodeling and deacetylase complex to promote closing of open chromatin domains, but their activities also rely on interactions with DNA methyltransferases or with the lysine-specific histone demethylase LSD1, suggesting that they participate in multiple regulatory mechanisms. Here, we describe several consequences of loss of Spalt function in Drosophila cells, including changes in chromatin accessibility, generation of DNA damage, alterations in the localization of chromosomes within the nucleus in the salivary glands and misexpression of transposable elements. We suggest that these effects are related to roles of Spalt proteins in the regulation of heterochromatin formation and chromatin organization. We propose that Drosophila Spalt proteins have two complementary functions, acting as sequence-specific transcriptional repressors on specific target genes and regulating more global gene silencing through the generation or maintenance of heterochromatic domains.
Collapse
Affiliation(s)
- Cristina M. Ostalé
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Natalia Azpiazu
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Peropadre
- Department of Biology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mireya Ruiz-Losada
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Rebecca R. Viales
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory, Genome Biology Department, Heidelberg 69117, Germany
| | - Jose F. de Celis
- Centro de Biología Molecular ‘Severo Ochoa’, Department of Tissue and Organ Homeostasis, CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Ahmad JN, Modrak M, Fajfrova M, Sotoca BMB, Benada O, Sebo P. Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages. mBio 2025; 16:e0013825. [PMID: 40105369 PMCID: PMC11980580 DOI: 10.1128/mbio.00138-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Martin Modrak
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Marketa Fajfrova
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | | | - Oldrich Benada
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Jiménez-Martín A, Pineda-Santaella A, Martín-García R, Esteban-Villafañe R, Matarrese A, Pinto-Cruz J, Camacho-Cabañas S, León-Periñán D, Terrizzano A, Daga RR, Braun S, Fernández-Álvarez A. Centromere positioning orchestrates telomere bouquet formation and the initiation of meiotic differentiation. Nat Commun 2025; 16:837. [PMID: 39833200 PMCID: PMC11747273 DOI: 10.1038/s41467-025-56049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet. Here, using Schizosaccharomyces pombe as a model system to elucidate telomere bouquet function, we reveal that centromeres, traditionally perceived as playing a passive role in the chromosomal reorganization necessary for bouquet assembly, play a key role in the initiation of telomere bouquet formation. We demonstrate that centromeres are capable to induce telomere mobilization, which is sufficient to trigger the first stages of bouquet assembly and the meiotic transcription program in mitotic cells. This discovery highlights the finely tuned control exerted over long-distance heterochromatic regions and underscores a pivotal step in the mechanism of eukaryotic telomere bouquet formation and meiotic transcriptional rewiring.
Collapse
Affiliation(s)
- Alberto Jiménez-Martín
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Alix Matarrese
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Jesús Pinto-Cruz
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Sergio Camacho-Cabañas
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Daniel León-Periñán
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Antonia Terrizzano
- Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, France
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Departamento de Biología Molecular e Ingeniería Bioquímica, Ctra. de Utrera km. 1, Seville, 41013, Spain
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
4
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
5
|
Sahu RK, Dhakshnamoorthy J, Jain S, Folco HD, Wheeler D, Grewal SIS. Nucleosome remodeler exclusion by histone deacetylation enforces heterochromatic silencing and epigenetic inheritance. Mol Cell 2024; 84:3175-3191.e8. [PMID: 39096900 PMCID: PMC11649001 DOI: 10.1016/j.molcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shweta Jain
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Aguirre S, Pappa S, Serna-Pujol N, Padilla N, Iacobucci S, Nacht AS, Vicent GP, Jordan A, de la Cruz X, Martínez-Balbás MA. PHF2-mediated H3K9me balance orchestrates heterochromatin stability and neural progenitor proliferation. EMBO Rep 2024; 25:3486-3505. [PMID: 38890452 PMCID: PMC11315909 DOI: 10.1038/s44319-024-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited. To address this question, we used neural stem cells to analyze the function of the H3K9me2 demethylase PHF2, which is crucial for progenitor proliferation. Through mass-spectroscopy and genome-wide assays, we show that PHF2 interacts with heterochromatin components and is enriched at pericentromeric heterochromatin (PcH) boundaries where it maintains transcriptional activity. This binding is essential for silencing the satellite repeats, preventing DNA damage and genome instability. PHF2's depletion increases the transcription of heterochromatic repeats, accompanied by a decrease in H3K9me3 levels and alterations in PcH organization. We further show that PHF2's PHD and catalytic domains are crucial for maintaining PcH stability, thereby safeguarding genome integrity. These results highlight the multifaceted nature of PHF2's functions in maintaining heterochromatin stability and regulating gene expression during neural development. Our study unravels the intricate relationship between heterochromatin stability and progenitor proliferation during mammalian neurogenesis.
Collapse
Affiliation(s)
- Samuel Aguirre
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Stella Pappa
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Núria Serna-Pujol
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Natalia Padilla
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
| | - Simona Iacobucci
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Albert Jordan
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
- Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona, 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain.
| |
Collapse
|
9
|
Masumoto H, Muto H, Yano K, Kurosaki Y, Niki H. The Ty1 retrotransposon harbors a DNA region that performs dual functions as both a gene silencing and chromatin insulator. Sci Rep 2024; 14:16641. [PMID: 39025990 PMCID: PMC11258251 DOI: 10.1038/s41598-024-67242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
In various eukaryotic kingdoms, long terminal repeat (LTR) retrotransposons repress transcription by infiltrating heterochromatin generated within their elements. In contrast, the budding yeast LTR retrotransposon Ty1 does not itself undergo transcriptional repression, although it is capable of repressing the transcription of the inserted genes within it. In this study, we identified a DNA region within Ty1 that exerts its silencing effect via sequence orientation. We identified a DNA region within the Ty1 group-specific antigen (GAG) gene that causes gene silencing, termed GAG silencing (GAGsi), in which the silent chromatin in the GAGsi region is created by euchromatin-specific histone modifications. A characteristic inverted repeat (IR) sequence is present at the 5' end of this region, forming a chromatin boundary between promoter-specific chromatin upstream of the IR sequence and silent chromatin downstream of the IR sequence. In addition, Esc2 and Rad57, which are involved in DNA repair, were required for GAGsi silencing. Finally, the chromatin boundary was required for the transcription of Ty1 itself. Thus, the GAGsi sequence contributes to the creation of a chromatin environment that promotes Ty1 transcription.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| | - Hideki Muto
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Koichi Yano
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1,111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Life Science, College of Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yohei Kurosaki
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1,111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
10
|
Manivannan V, Inamdar MM, Padinhateeri R. Role of diffusion and reaction of the constituents in spreading of histone modification marks. PLoS Comput Biol 2024; 20:e1012235. [PMID: 38991050 PMCID: PMC11265668 DOI: 10.1371/journal.pcbi.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/23/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Cells switch genes ON or OFF by altering the state of chromatin via histone modifications at specific regulatory locations along the chromatin polymer. These gene regulation processes are carried out by a network of reactions in which the histone marks spread to neighboring regions with the help of enzymes. In the literature, this spreading has been studied as a purely kinetic, non-diffusive process considering the interactions between neighboring nucleosomes. In this work, we go beyond this framework and study the spreading of modifications using a reaction-diffusion (RD) model accounting for the diffusion of the constituents. We quantitatively segregate the modification profiles generated from kinetic and RD models. The diffusion and degradation of enzymes set a natural length scale for limiting the domain size of modification spreading, and the resulting enzyme limitation is inherent in our model. We also demonstrate the emergence of confined modification domains without the explicit requirement of a nucleation site. We explore polymer compaction effects on spreading and show that single-cell domains may differ from averaged profiles. We find that the modification profiles from our model are comparable with existing H3K9me3 data of S. pombe.
Collapse
Affiliation(s)
- Vinoth Manivannan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
12
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
13
|
Nathanailidou P, Dhakshnamoorthy J, Xiao H, Zofall M, Holla S, O’Neill M, Andresson T, Wheeler D, Grewal SIS. Specialized replication of heterochromatin domains ensures self-templated chromatin assembly and epigenetic inheritance. Proc Natl Acad Sci U S A 2024; 121:e2315596121. [PMID: 38285941 PMCID: PMC10861883 DOI: 10.1073/pnas.2315596121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.
Collapse
Affiliation(s)
- Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Maura O’Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
14
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
15
|
Miao Q, Wang Z, Yin Z, Liu X, Li R, Zhang KQ, Li J. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2663-2679. [PMID: 37233873 DOI: 10.1007/s11427-022-2300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.
Collapse
Affiliation(s)
- Qiao Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhengqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ran Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
16
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
18
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
19
|
Jia GS, Zhang WC, Liang Y, Liu XH, Rhind N, Pidoux A, Brysch-Herzberg M, Du LL. A high-quality reference genome for the fission yeast Schizosaccharomyces osmophilus. G3 (BETHESDA, MD.) 2023; 13:jkad028. [PMID: 36748990 PMCID: PMC10085805 DOI: 10.1093/g3journal/jkad028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.
Collapse
Affiliation(s)
- Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Han Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Pidoux
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn 74081, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
20
|
Arcangioli B, Gangloff S. The Fission Yeast Mating-Type Switching Motto: "One-for-Two" and "Two-for-One". Microbiol Mol Biol Rev 2023; 87:e0000821. [PMID: 36629411 PMCID: PMC10029342 DOI: 10.1128/mmbr.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizosaccharomyces pombe is an ascomycete fungus that divides by medial fission; it is thus commonly referred to as fission yeast, as opposed to the distantly related budding yeast Saccharomyces cerevisiae. The reproductive lifestyle of S. pombe relies on an efficient genetic sex determination system generating a 1:1 sex ratio and using alternating haploid/diploid phases in response to environmental conditions. In this review, we address how one haploid cell manages to generate two sister cells with opposite mating types, a prerequisite to conjugation and meiosis. This mating-type switching process depends on two highly efficient consecutive asymmetric cell divisions that rely on DNA replication, repair, and recombination as well as the structure and components of heterochromatin. We pay special attention to the intimate interplay between the genetic and epigenetic partners involved in this process to underscore the importance of basic research and its profound implication for a better understanding of chromatin biology.
Collapse
Affiliation(s)
- Benoît Arcangioli
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
| | - Serge Gangloff
- Genome Dynamics Unit, Genomes and Genetics Department, Pasteur Institute, Paris, France
- UMR3525, Genetics of Genomes, CNRS-Pasteur Institute, Paris, France
| |
Collapse
|
21
|
Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast. Biomolecules 2023; 13:biom13020377. [PMID: 36830746 PMCID: PMC9953268 DOI: 10.3390/biom13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.
Collapse
|
22
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Esquivel-Chávez A, Maki T, Tsubouchi H, Handa T, Kimura H, Haber JE, Thon G, Iwasaki H. Euchromatin factors HULC and Set1C affect heterochromatin organization and mating-type switching in fission yeast Schizosaccharomyces pombe. Genes Genet Syst 2022; 97:123-138. [PMID: 35908934 DOI: 10.1266/ggs.22-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mating-type (P or M) of fission yeast Schizosaccharomyces pombe is determined by the transcriptionally active mat1 cassette and is switched by gene conversion using a donor, either mat2 or mat3, located in an adjacent heterochromatin region (mating-type switching; MTS). In the switching process, heterochromatic donors of genetic information are selected based on the P or M cell type and on the action of two recombination enhancers, SRE2 promoting the use of mat2-P and SRE3 promoting the use of mat3-M, leading to replacement of the content of the expressed mat1 cassette. Recently, we found that the histone H3K4 methyltransferase complex Set1C participates in donor selection, raising the question of how a complex best known for its effects in euchromatin controls recombination in heterochromatin. Here, we report that the histone H2BK119 ubiquitin ligase complex HULC functions with Set1C in MTS, as mutants in the shf1, brl1, brl2 and rad6 genes showed defects similar to Set1C mutants and belonged to the same epistasis group as set1Δ. Moreover, using H3K4R and H2BK119R histone mutants and a Set1-Y897A catalytic mutant, we found that ubiquitylation of histone H2BK119 by HULC and methylation of histone H3K4 by Set1C are functionally coupled in MTS. Cell-type biases in MTS in these mutants suggested that HULC and Set1C inhibit the use of the SRE3 recombination enhancer in M cells, thus favoring SRE2 and mat2-P. Consistent with this, imbalanced switching in the mutants was traced to compromised association of the directionality factor Swi6 with the recombination enhancers in M cells. Based on their known effects at other chromosomal locations, we speculate that HULC and Set1C control nucleosome mobility and strand invasion near the SRE elements. In addition, we uncovered distinct effects of HULC and Set1C on histone H3K9 methylation and gene silencing, consistent with additional functions in the heterochromatic domain.
Collapse
Affiliation(s)
- Alfredo Esquivel-Chávez
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hideo Tsubouchi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Testuya Handa
- Institute of Innovative Research, Tokyo Institute of Technology
| | - Hiroshi Kimura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University
| | | | - Hiroshi Iwasaki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
24
|
A stress-blinded Atf1 can fully assemble heterochromatin in a RNAi-independent minimal mat locus but impairs directionality of mat2/3 switching. iScience 2022; 25:104820. [PMID: 35992058 PMCID: PMC9389250 DOI: 10.1016/j.isci.2022.104820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
The MAP kinase Sty1 phosphorylates and activates the transcription factor Atf1 in response to several stress conditions, which then shifts from a transcriptional repressor to an activator. Atf1 also participates in heterochromatin assembly at the mat locus, in combination with the RNA interference (RNAi) machinery. Here, we study the role of signal-dependent phosphorylation of Atf1 in heterochromatin establishment at mat, using different Atf1 phospho mutants. Although a hypo-phosphorylation Atf1 mutant, Atf1.10M, mediates heterochromatin assembly, the phosphomimic Atf1.10D is unable to maintain silencing. In a minimal mat locus, lacking the RNAi-recruiting cis elements and displaying intermediate silencing, Atf1.10M restores full heterochromatin and silencing. However, evolution experiments with this stress-blinded Atf1.10M show that it is unable to facilitate switching between the donor site mat3 and mat1. We propose that the unphosphorylated, inactive Atf1 contributes to proper heterochromatin assembly by recruiting repressive complexes, but its stress-dependent phosphorylation is required for recombination/switching to occur. The phosphorylation domain of Atf1 TF is required for heterochromatin assembly at mat Hypo-phosphorylated Atf1.10M mediates silencing by recruiting repressive complexes Stress-dependent phosphorylation of Atf1 is required for recombination and switching Atf1.10M is a heterochromatin assembly factor but impairs mat2/3 switching
Collapse
|
25
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
26
|
Xue MQ, Wang YL, Wang JC, Wang XD, Wang XJ, Zhang YQ. Comprehensive analysis of the PD-L1 and immune infiltrates of N6-methyladenosine related long non-coding RNAs in bladder cancer. Sci Rep 2022; 12:10082. [PMID: 35710698 PMCID: PMC9203575 DOI: 10.1038/s41598-022-14097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Bladder cancer (BLCA) is one of the most frequent genitourinary cancers, with a high rate of morbidity and mortality. The connection of m6A-related lncRNAs with PD-L1 and tumor immune microenvironment (TIME) in BLCA prognosis was extensively investigated in this study, which could suggest novel therapeutic targets for further investigation. 30 m6A-associated lncRNAs with predictive values from the TCGA data set were identified with co-expression analysis. Cluster2 was correlated with a poor prognosis, upregulated PD-L1 expression, and higher immune ratings. Cluster2 had larger amounts of resting CD4 memory-activated T cells, M2 macrophages, neutrophils, and NK cells infiltration. "CHEMOKINE SIGNALING PATHWAY" was the most significantly enriched signaling pathway according to GSEA, which may play an important role in the different immune cell infiltrates between cluster1/2. The risk model for m6A-related lncRNAs could be employed in a prognostic model to predict BLCA prognosis, regardless of other clinical features. Collectively, m6A-related lncRNAs were linked to PD-L1 and TIME, which would dynamically affect the number of tumor-infiltrating immune cells. m6A-related lncRNAs may be key mediators of PD-L1 expression and immune cells infiltration and may strongly affect the TIME of BLCA.
Collapse
Affiliation(s)
- M Q Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Y L Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China. .,Henan Bioengineering Technology Reseach Center, Zhengzhou, 450010, People's Republic of China.
| | - J C Wang
- Henan Bioengineering Technology Reseach Center, Zhengzhou, 450010, People's Republic of China
| | - X D Wang
- Henan General Hospital, Zhengzhou, 450002, People's Republic of China
| | - X J Wang
- Henan General Hospital, Zhengzhou, 450002, People's Republic of China
| | - Y Q Zhang
- Zhengzhou Technical College, Zhengzhou, 450010, People's Republic of China
| |
Collapse
|
27
|
Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y, Lu G. METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia 2022; 54:1581-1591. [PMID: 35413135 DOI: 10.1111/and.14422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
METTL3 was known to run through the whole cycle of RNA. It relied on m6A modification in the mRNAs of cancer-related genes to regulate tumour progression. The development of prostate cancer cells could be promoted by METTL3 via hedgehog pathway. Recent studies had shown that the effect of METTL3 on non-coding RNA was mainly dependent on the modification of m6A. However, it is still unknown whether METTL3 promotes tumour development through this mechanism in prostate cancer. The expression of METTL3 in prostate cancer tissues and cells was analysed by qRT-PCR and Western blot assays. CCK-8 assay, colony formation assay, wound-healing assay and transwell assays were conducted to detect the impact of METTL3 on cell proliferation, migration and invasion. Nude mice tumour models were built to evaluate the role of METTL3 in tumorigenesis. N6-methyladenosine (m6A) RNA immunoprecipitation assay (MeRIP) and co-immunoprecipitations assays were performed to verified that METTL3 upregulated the m6A level, interacted with microprocessor protein DGCR8, recognized the m6A modification of pre-miR-182 to regulate its maturation.METTL3 was highly expressed in prostate cancer, and knockdown of METTL3 significantly inhibited cell proliferation, migration, invasion and tumorigenesis, while overexpression of METTL3 promoted cell proliferation, migration, invasion and tumorigenesis in PCa. In addition, we found that METTL3 upregulating the level of m6A, and interacted with DGCR8 to recognize the m6A modification of pre-miR-182 to regulate its splicing and maturation and promote the high expression of miRNA. Our study suggests that METTL3 could be used in targeted therapies for PCa.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weichao Tu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingwei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoliang Lu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Daks A, Vasileva E, Fedorova O, Shuvalov O, Barlev NA. The Role of Lysine Methyltransferase SET7/9 in Proliferation and Cell Stress Response. Life (Basel) 2022; 12:life12030362. [PMID: 35330113 PMCID: PMC8949485 DOI: 10.3390/life12030362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific methyltransferase 7 (KMT7) SET7/9, aka Set7, Set9, or SetD7, or KMT5 was discovered 20 years ago, yet its biological role remains rather enigmatic. In this review, we analyze the particularities of SET7/9 enzymatic activity and substrate specificity with respect to its biological importance, mostly focusing on its two well-characterized biological functions: cellular proliferation and stress response.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Elena Vasileva
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Olga Fedorova
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Oleg Shuvalov
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
| | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (A.D.); (E.V.); (O.F.); (O.S.)
- Correspondence:
| |
Collapse
|
29
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
30
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
31
|
Ramakrishnan N, Pillai SRB, Padinhateeri R. High fidelity epigenetic inheritance: Information theoretic model predicts threshold filling of histone modifications post replication. PLoS Comput Biol 2022; 18:e1009861. [PMID: 35176029 PMCID: PMC8903295 DOI: 10.1371/journal.pcbi.1009861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/08/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
During cell devision, maintaining the epigenetic information encoded in histone modification patterns is crucial for survival and identity of cells. The faithful inheritance of the histone marks from the parental to the daughter strands is a puzzle, given that each strand gets only half of the parental nucleosomes. Mapping DNA replication and reconstruction of modifications to equivalent problems in communication of information, we ask how well enzymes can recover the parental modifications, if they were ideal computing machines. Studying a parameter regime where realistic enzymes can function, our analysis predicts that enzymes may implement a critical threshold filling algorithm which fills unmodified regions of length at most k. This algorithm, motivated from communication theory, is derived from the maximum à posteriori probability (MAP) decoding which identifies the most probable modification sequence based on available observations. Simulations using our method produce modification patterns similar to what has been observed in recent experiments. We also show that our results can be naturally extended to explain inheritance of spatially distinct antagonistic modifications.
Collapse
Affiliation(s)
- Nithya Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sibi Raj B. Pillai
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
32
|
Oh J, Yeom S, Park J, Lee JS. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenetics Chromatin 2022; 15:5. [PMID: 35101096 PMCID: PMC8805269 DOI: 10.1186/s13072-022-00435-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are good models for heterochromatin study. In S. pombe, H3K9 methylation and Swi6, an ortholog of mammalian HP1, lead to heterochromatin formation. However, S. cerevisiae does not have known epigenetic silencing markers and instead has Sir proteins to regulate silent chromatin formation. Although S. cerevisiae and S. pombe form and maintain heterochromatin via mechanisms that appear to be fundamentally different, they share important common features in the heterochromatin structural proteins. Heterochromatin loci are localized at the nuclear periphery by binding to perinuclear membrane proteins, thereby producing distinct heterochromatin foci, which sequester heterochromatin structural proteins. In this review, we discuss the nuclear peripheral anchoring of heterochromatin foci and its functional relevance to heterochromatin formation and maintenance.
Collapse
Affiliation(s)
- Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
33
|
Chakravarti R, Lenka SK, Gautam A, Singh R, Ravichandiran V, Roy S, Ghosh D. A Review on CRISPR-Mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23:836-853. [DOI: 10.2174/1389450123666220117105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Recent studies have shed light on the role of epigenetic marks in certain diseases like cancer, type II diabetes mellitus (T2DM), obesity, and cardiovascular dysfunction, to name a few. Epigenetic marks like DNA methylation and histone acetylation are randomly altered in the disease state. It has been seen that methylation of DNA and histones can result in down-regulation of gene expression, whereas histone acetylation, ubiquitination, and phosphorylation are linked to enhanced expression of genes. How can we precisely target such epigenetic aberrations to prevent the advent of diseases? The answer lies in the amalgamation of the efficient genome editing technique, CRISPR, with certain effector molecules that can alter the status of epigenetic marks as well as employ certain transcriptional activators or repressors. In this review, we have discussed the rationale of epigenetic editing as a therapeutic strategy and how CRISPR-Cas9 technology coupled with epigenetic effector tags can efficiently edit epigenetic targets. In the later part, we have discussed how certain epigenetic effectors are tagged with dCas9 to elicit epigenetic changes in cancer. Increased interest in exploring the epigenetic background of cancer and non-communicable diseases like type II diabetes mellitus and obesity accompanied with technological breakthroughs has made it possible to perform large-scale epigenome studies.
Collapse
Affiliation(s)
- Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swadhin Kumar Lenka
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
34
|
Gong Y, Wei C, Cheng L, Ma F, Lu S, Peng Q, Liu L, Wang Y. Tracking the Dynamic Histone Methylation of H3K27 in Live Cancer Cells. ACS Sens 2021; 6:4369-4378. [PMID: 34878766 PMCID: PMC9013700 DOI: 10.1021/acssensors.1c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histone methylations play a crucial role in chromatin remodeling and genome regulations. However, there is a lack of tools to visualize these histone modifications with high spatiotemporal resolutions in live cells. We have developed a biosensor based on fluorescence resonance energy transfer (FRET) and incorporated it into nucleosomes, capable of monitoring the trimethylation of H3K27 (H3K27me3) in live cells. We also revealed that the performance of the FRET biosensor can be significantly improved by adjusting the linkers within the biosensor. An improved biosensor enables the live-cell imaging of different histone methylation status, induced by the suppressive H3.3K27M or existing in breast cancer cells with varying genetic backgrounds. We have further applied the biosensor to reveal the dynamic coupling between H3K27me3 changes and caspase activity representing the initiation of apoptosis in cancer cells by imaging both H3K27me3 and caspase activity simultaneously in the same live cells. Thus, this new FRET biosensor can provide a powerful tool to visualize the epigenetic regulation in live cells with high spatial temporal resolutions.
Collapse
Affiliation(s)
- Ya Gong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Chujun Wei
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Leonardo Cheng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Fengyi Ma
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093-0435, United States
| |
Collapse
|
35
|
Tsukii K, Takahata S, Murakami Y. Histone variant H2A.Z plays multiple roles in the maintenance of heterochromatin integrity. Genes Cells 2021; 27:93-112. [PMID: 34910346 DOI: 10.1111/gtc.12911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
H2A.Z, an evolutionally well-conserved histone H2A variant, is involved in many biological processes. Although the function of H2A.Z in euchromatic gene regulation is well known, its function and deposition mechanism in heterochromatin are still unclear. Here, we report that H2A.Z plays multiple roles in fission yeast heterochromatin. While a small amount of H2A.Z localizes at pericentromeric heterochromatin, loss of methylation of histone H3 at Lys9 (H3K9me) induces the accumulation of H2A.Z, which is dependent on the H2A.Z loader, SWR complex. The accumulated H2A.Z suppresses heterochromatic non-coding RNA transcription. This transcriptional repression activity requires the N-terminal tail of H2A.Z, which is involved in the regulation of euchromatic gene transcription. RNAi-defective cells, in which a substantial amount of H3K9me is retained by RNAi-independent heterochromatin assembly, also accumulate H2A.Z at heterochromatin, and the additional loss of H2A.Z in these cells triggers a further decrease in H3K9me. Our results suggest that H2A.Z facilitates RNAi-independent heterochromatin assembly by antagonizing the demethylation activity of Epe1, an eraser of H3K9me. Furthermore, H2A.Z suppresses Epe1-mediated transcriptional activation, which is required for subtelomeric gene repression. Our results provide novel evidence that H2A.Z plays diverse roles in chromatin silencing.
Collapse
Affiliation(s)
- Kazuki Tsukii
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Ren K, Mou YN, Ying SH, Feng MG. Conserved and Noncanonical Activities of Two Histone H3K36 Methyltransferases Required for Insect-Pathogenic Lifestyle of Beauveria bassiana. J Fungi (Basel) 2021; 7:956. [PMID: 34829243 PMCID: PMC8623635 DOI: 10.3390/jof7110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Set2 and Ash1 are histone methyltransferases (KMTs) in the KMT3 family normally used to catalyze methylation of histone H3K36 (H3K36me) but remain unexplored in fungal insect pathogens. Here, we report broader/greater roles of Set2 and Ash1 in mono-/di-/trimethylation (me1/me2/me3) of H3K4 than of H3K36 in Beauveria bassiana and function similarly to Set1/KMT2, which has been reported to catalyze H3K4me3 as an epigenetic mark of cre1 (carbon catabolite repressor) to upregulate the classes I and II hydrophobin genes hyd1 and hyd2 required for conidial hydrophobicity and adherence to insect cuticle. H3K4me3 was more attenuated than H3K36me3 in the absence of set2 (72% versus 67%) or ash1 (92% versus 12%), leading to sharply repressed or nearly abolished expression of cre1, hyd1 and hyd2, as well as reduced hydrophobicity. Consequently, the delta-set2 and delta-ash1 mutants were differentially compromised in radial growth on various media or under different stresses, aerial conidiation under normal culture conditions, virulence, and cellular events crucial for normal cuticle infection and hemocoel colonization, accompanied by transcriptional repression of subsets of genes involved in or required for asexual development and multiple stress responses. These findings unravel novel roles of Set2 and Ash1 in the co-catalysis of usually Set1-reliant H3K4me3 required for fungal insect-pathogenic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Collegeof Life Sciences, Zhejiang University, Hangzhou 310058, China; (K.R.); (Y.-N.M.); (S.-H.Y.)
| |
Collapse
|
37
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
38
|
Xiao Z, Locasale JW. Epigenomic links from metabolism-methionine and chromatin architecture. Curr Opin Chem Biol 2021; 63:11-18. [PMID: 33667809 PMCID: PMC9889272 DOI: 10.1016/j.cbpa.2021.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/03/2023]
Abstract
Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.
Collapse
Affiliation(s)
- Zhengtao Xiao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc Natl Acad Sci U S A 2021; 118:2100699118. [PMID: 34035174 PMCID: PMC8179192 DOI: 10.1073/pnas.2100699118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, a single genome gives rise to a multitude of cell types by enforcing appropriate gene expression patterns. Epigenetic mechanisms involving modification of histones, including tri-methylation of histone H3 lysine 9 (H3K9me3), assemble and propagate repressive heterochromatin to prevent untimely gene expression. Dysregulation of epigenetic gene-silencing mechanisms is a hallmark of a variety of diseases including cancer. However, the requirements for epigenetic transmission of heterochromatin are not well understood. This study reveals the mechanism by which methylated histones provide an epigenetic template for heterochromatin propagation. We discover that a critical threshold of H3K9me3 is required for effective chromatin-association of the histone methyltransferase, which binds to and catalyzes additional H3K9me to propagate heterochromatin and enforce stable gene silencing. Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the “read” and “write” capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3G13D. Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.
Collapse
|
40
|
Ren K, Mou YN, Tong SM, Ying SH, Feng MG. DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36. Virulence 2021; 12:1306-1322. [PMID: 33955325 PMCID: PMC8115510 DOI: 10.1080/21505594.2021.1923232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mono-, di- and tri-methylation of histone H3 Lys 9, Lys 4, and Lys 36 (H3K_me1/me2/me3) required for mediation of DNA-based cellular events in eukaryotes usually rely upon the activities of histone lysine methyltransferases (KMTs) classified to the KMT1, KMT2, and KMT3 families, respectively. Here, an H3K9-specific DIM5/KMT1 orthologue, which lacks a C-terminal post-SET domain and localizes mainly in nucleus, is reported to have both conserved and noncanonical roles in methylating the H3 core lysines in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of wide-spectrum fungal insecticides. Disruption of dim5 led to abolishment of H3K9me3 and marked attenuation of H3K4me1/me2, H3K9me1/me2 and H3K36me2. Consequently, the Δdim5 mutant lost the whole insect pathogenicity through normal cuticle infection, and was compromised severely in virulence through cuticle-bypassing infection (hemocoel injection) and also in a series of cellular events critical for the fungal virulence and lifecycle in vivo and in vitro, including reduced hyphal growth, blocked conidiation, impeded proliferation in vivo, altered carbohydrate epitopes, disturbed cell cycle, reduced biosynthesis and secretion of cuticle-degrading enzymes, and increased sensitivities to various stresses. Among 1,201 dysregulated genes (up/down ratio: 712:489) associated with those phenotypic changes, 92 (up/down ratio: 59:33) encode transcription factors and proteins or enzymes involved in posttranslational modifications, implying that the DIM5-methylated H3 core lysines could act as preferential marks of those transcription-active genes crucial for global gene regulation. These findings uncover a novel scenario of DIM5 and its indispensability for insect-pathogenic lifestyle and genome stability of B. bassiana.
Collapse
Affiliation(s)
- Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Kim DY, Kim JM. Multi-omics integration strategies for animal epigenetic studies - A review. Anim Biosci 2021; 34:1271-1282. [PMID: 33902167 PMCID: PMC8255897 DOI: 10.5713/ab.21.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| |
Collapse
|
42
|
Jingjing W, Zhikai W, Xingyi Z, Peixuan L, Yiwu F, Xia W, Youpeng S, Ershun Z, Zhengtao Y. Lysine-specific demethylase 1 (LSD1) serves as an potential epigenetic determinant to regulate inflammatory responses in mastitis. Int Immunopharmacol 2021; 91:107324. [PMID: 33385711 DOI: 10.1016/j.intimp.2020.107324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
It is well-established that lysine-specific demethylase 1 (LSD1) is the first identified histone demethylase. Based on its demethylase enzymatic activity, LSD1 plays a pivotal role in vast range of cellular processes and cancers, but the understanding of its effects on inflammation is relatively limited. Using in vivo models of lipopolysaccharide (LPS)-induced inflammation and in vitro assays in mouse mammary epithelial cells, we identified the novel regulatory roles and underlying mechanisms of LSD1 on LPS-induced mastitis. Mammary gland and cells were collected for the following experiments after treatment. Histological changes were determined by H&E. Western blot analysis was used to detect the protein expression. ELISA and real-time PCR were used to evaluate protein and mRNA expression of inflammatory genes. Our results showed that LPS treatment resulted in a significant increase in LSD1 protein expression. GSK-LSD1 is a selective inhibitor of LSD1 enzyme activity. Treatment of mice with GSK-LSD1 inhibited LSD1 activity, reduced inflammatory cells recruitment to tissues and attenuated LPS-induced damage in mammary gland. Mechanistic investigations suggested that LSD1 inhibition led to the increase of histone H3K4me2 and H3K9me2. Furthermore, GSK-LSD1 inhibition of LSD1 further inhibited nuclear factor κ-B (NF-κB) signaling cascades, and subsequently inhibited the production of cytokines (TNF-α, IL-6 and IL-1β) in mammary gland. Taken together, our data reveal LSD1 as a potential regulator of inflammation and improve our understanding of epigenetic control on inflammation.
Collapse
Affiliation(s)
- Wang Jingjing
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China; College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wu Zhikai
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Zhu Xingyi
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Li Peixuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Fu Yiwu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wang Xia
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Sun Youpeng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Zhou Ershun
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Yang Zhengtao
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China; College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| |
Collapse
|
43
|
Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:27493-27501. [PMID: 33077593 DOI: 10.1073/pnas.2004111117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatic domains are complex structures composed of nucleosome arrays that are bound by silencing factors. This composition raises the possibility that certain configurations of nucleosome arrays facilitate heterochromatic silencing. We tested this possibility in Saccharomyces cerevisiae by systematically altering the distance between heterochromatic nucleosome-depleted regions (NDRs), which is predicted to affect local nucleosome positioning by limiting how nucleosomes can be packed between NDRs. Consistent with this prediction, serial deletions that altered the distance between heterochromatic NDRs revealed a striking oscillatory relationship between inter-NDR distance and defects in nucleosome positioning. Furthermore, conditions that caused poor nucleosome positioning also led to defects in both heterochromatin stability and the ability of cells to generate and inherit epigenetic transcriptional states. These findings strongly suggest that nucleosome positioning can contribute to formation and maintenance of functional heterochromatin and point to previously unappreciated roles of NDR positioning within heterochromatic domains.
Collapse
|
44
|
From 1957 to Nowadays: A Brief History of Epigenetics. Int J Mol Sci 2020; 21:ijms21207571. [PMID: 33066397 PMCID: PMC7588895 DOI: 10.3390/ijms21207571] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the spectacular number of studies focusing on epigenetics in the last few decades, and particularly for the last few years, the availability of a chronology of epigenetics appears essential. Indeed, our review places epigenetic events and the identification of the main epigenetic writers, readers and erasers on a historic scale. This review helps to understand the increasing knowledge in molecular and cellular biology, the development of new biochemical techniques and advances in epigenetics and, more importantly, the roles played by epigenetics in many physiological and pathological situations.
Collapse
|
45
|
Vo TV, Dhakshnamoorthy J, Larkin M, Zofall M, Thillainadesan G, Balachandran V, Holla S, Wheeler D, Grewal SIS. CPF Recruitment to Non-canonical Transcription Termination Sites Triggers Heterochromatin Assembly and Gene Silencing. Cell Rep 2020; 28:267-281.e5. [PMID: 31269446 DOI: 10.1016/j.celrep.2019.05.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/16/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic genomes, heterochromatin is targeted by RNAi machinery and/or by pathways requiring RNA elimination and transcription termination factors. However, a direct connection between termination machinery and RNA polymerase II (RNAPII) transcriptional activity at heterochromatic loci has remained elusive. Here, we show that, in fission yeast, the conserved cleavage and polyadenylation factor (CPF) is a key component involved in RNAi-independent assembly of constitutive and facultative heterochromatin domains and that CPF is broadly required to silence genes regulated by Clr4SUV39H. Remarkably, CPF is recruited to non-canonical termination sites within the body of genes by the YTH family RNA-binding protein Mmi1 and is required for RNAPII transcription termination and facultative heterochromatin assembly. CPF loading by Mmi1 also promotes the selective termination of long non-coding RNAs that regulate gene expression in cis. These analyses delineate a mechanism in which CPF loaded onto non-canonical termination sites specifies targets of heterochromatin assembly and gene silencing.
Collapse
Affiliation(s)
- Tommy V Vo
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Madeline Larkin
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Abstract
The fission yeast silent mating-type region provides an excellent system to ask how chromatic domains with opposite effects on gene expression coexist side by side along chromosomes and to investigate roles played by DNA elements and architectural proteins in the phenomenon. By showing that the IR-L and IR-R chromatin boundaries favor heterochromatin formation in the domain that separates them, dependent on each other and on binding sites for the architectural factor TFIIIC, our work brings to light an important function of these elements and supports the notion that similar types of interactions between boundaries might in other organisms as well stimulate heterochromatin formation in intervening chromosomal loops to actively shape gene expression landscapes. In fission yeast, the inverted repeats IR-L and IR-R function as boundary elements at the edges of a 20-kb silent heterochromatic domain where nucleosomes are methylated at histone H3K9. Each repeat contains a series of B-box motifs physically associated with the architectural TFIIIC complex and with other factors including the replication regulator Sap1 and the Rix1 complex (RIXC). We demonstrate here the activity of these repeats in heterochromatin formation and maintenance. Deletion of the entire IR-R repeat or, to a lesser degree, deletion of just the B boxes impaired the de novo establishment of the heterochromatic domain. Nucleation proceeded normally at the RNA interference (RNAi)-dependent element cenH but subsequent propagation to the rest of the region occurred at reduced rates in the mutants. Once established, heterochromatin was unstable in the mutants. These defects resulted in bistable populations of cells occupying alternate “on” and “off” epigenetic states. Deleting IR-L in combination with IR-R synergistically tipped the balance toward the derepressed state, revealing a concerted action of the two boundaries at a distance. The nuclear rim protein Amo1 has been proposed to tether the mating-type region and its boundaries to the nuclear envelope, where Amo1 mutants displayed milder phenotypes than boundary mutants. Thus, the boundaries might facilitate heterochromatin propagation and maintenance in ways other than just through Amo1, perhaps by constraining a looped domain through pairing.
Collapse
|
47
|
Nuclear Envelope Proteins Modulating the Heterochromatin Formation and Functions in Fission Yeast. Cells 2020; 9:cells9081908. [PMID: 32824370 PMCID: PMC7464478 DOI: 10.3390/cells9081908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/16/2022] Open
Abstract
The nuclear envelope (NE) consists of the inner and outer nuclear membranes (INM and ONM), and the nuclear pore complex (NPC), which penetrates the double membrane. ONM continues with the endoplasmic reticulum (ER). INM and NPC can interact with chromatin to regulate the genetic activities of the chromosome. Studies in the fission yeast Schizosaccharomyces pombe have contributed to understanding the molecular mechanisms underlying heterochromatin formation by the RNAi-mediated and histone deacetylase machineries. Recent studies have demonstrated that NE proteins modulate heterochromatin formation and functions through interactions with heterochromatic regions, including the pericentromeric and the sub-telomeric regions. In this review, we first introduce the molecular mechanisms underlying the heterochromatin formation and functions in fission yeast, and then summarize the NE proteins that play a role in anchoring heterochromatic regions and in modulating heterochromatin formation and functions, highlighting roles for a conserved INM protein, Lem2.
Collapse
|
48
|
Yan YL, Huang ZN, Zhu Z, Cui YY, Li MQ, Huang RM, Yan J, Shen B. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol 2020; 10:667. [PMID: 32528872 PMCID: PMC7253684 DOI: 10.3389/fonc.2020.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyzes 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) to promote the demethylation process. The dysregulated TET1 protein and 5 hmC level were reported to either suppress or promote carcinogenesis in a cancer type-dependent manner. Currently, the role of TET1 in the development of urinary bladder cancer (UBC) and its underlying molecular mechanisms remain unclear. Herein, we found that TET1 expression was downregulated in UBC specimens compared with normal urothelium and was inversely related to tumor stage and grade and overall survival, suggesting its negative association with UBC progression. TET1 silencing in UBC cells increased cell proliferation and invasiveness while the ectopic expression of wild-type TET1-CD, but not its enzymatic inactive mutant, reversed these effects and suppressed tumorigenicity in vivo. In addition, as a direct regulator of TET1 activity, vitamin C treatment increased 5 hmC level and inhibited the anchorage-independent growth and tumorigenicity of UBC cells. Furthermore, we found that TET1 maintained the hypomethylation in the promoter of the AJAP1 gene, which codes for adherens junction-associated protein 1. The downregulation of AJAP1 reversed TET1-CD-induced nuclear translocation of β-catenin, thus inhibiting the expression of its downstream genes. In human UBC specimens, AJAP1 is frequently downregulated and positively associated with TET1. Notably, low expression levels of both TET1 and AJAP1 predict poor prognosis in UBC patients. In conclusion, we found that the frequently downregulated TET1 level reduces the hydroxymethylation of AJAP1 promoter and subsequently activates β-catenin signaling to promote UBC development. The downregulation of both TET1 and AJAP1 might be a promising prognostic biomarker for UBC patients.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Nan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Zhu
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yang-Yan Cui
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Mei-Qian Li
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Rui-Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Wu Y, Jin Y, Sun T, Zhu P, Li J, Zhang Q, Wang X, Jiang J, Chen G, Zhao X. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-κB activation. J Nanobiotechnology 2020; 18:77. [PMID: 32429946 PMCID: PMC7236097 DOI: 10.1186/s12951-020-00634-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most nanoparticles (NPs) reportedly block autophagic flux, thereby upregulating p62/SQSTM1 through degradation inhibition. p62 also acts as a multifunctional scaffold protein with multiple domains, and is involved in various cellular processes. However, the autophagy substrate-independent role of p62 and its regulation at the transcriptional level upon NPs exposure remain unclear. RESULTS In this work, we exposed BEAS-2b cells and mice to silica nanoparticles (SiNPs), and found that SiNPs increased p62 protein levels in vivo and vitro. Then, we further explored the role and mechanism of SiNPs-stimulated p62 in vitro, and found that p62 degradation was inhibited due to autophagic flux blockade. Mechanistically, SiNPs blocked autophagic flux through impairment of lysosomal capacity rather than defective autophagosome fusion with lysosomes. Moreover, SiNPs stimulated translocation of NF-E2-related factor 2 (Nrf2) to the nucleus from the cytoplasm, which upregulated p62 transcriptional activation through direct binding of Nrf2 to the p62 promoter. Nrf2 siRNA dramatically reduced both the mRNA and protein levels of p62. These two mechanisms led to p62 protein accumulation, thus increasing interleukin (IL)-1 and IL-6 expression. SiNPs activated nuclear factor kappa B (NF-κB), and this effect could be alleviated by p62 knockdown. CONCLUSION SiNPs caused accumulation of p62 through both pre- and post-translational mechanisms, resulting in airway inflammation. These findings improve our understanding of SiNP-induced pulmonary damage and the molecular targets available to mitigate it.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Yang Jin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Tianyu Sun
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Piaoyu Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Qinglin Zhang
- Departments of Gastroenterology, Affiliated to Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| |
Collapse
|
50
|
Lodens S, Roelants SLKW, Luyten G, Geys R, Coussement P, De Maeseneire SL, Soetaert W. Unraveling the regulation of sophorolipid biosynthesis in Starmerella bombicola. FEMS Yeast Res 2020; 20:5824630. [DOI: 10.1093/femsyr/foaa021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTStarmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.
Collapse
Affiliation(s)
- Sofie Lodens
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Goedele Luyten
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Coussement
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|