1
|
Kincade JN, Engle TE, Henao-Tamayo M, Eder JM, McDonald EM, Deines DM, Wright BM, Murtazina D, Bishop JV, Hansen TR, Van Campen H. Postnatal epigenetic differences in calves following transient fetal infection with bovine viral diarrhea virus. BMC Genomics 2025; 26:441. [PMID: 40316897 PMCID: PMC12049026 DOI: 10.1186/s12864-025-11562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Bovine viral diarrhea virus (BVDV) is the most detrimental pestivirus within the cattle industry. Infection with vertically transmissible BVDV prior to 125 days of gestation results in the generation of a persistently infected (PI) calf. These PI calves are unable to clear the virus in utero, due to an incomplete immune response. However, when infection with BVDV occurs after 150 days of gestation, the fetus clears the transient infection (TI) in utero and is born with antibodies specific to the infecting strain of BVDV. Variations in DNA methylation have been identified in white blood cells (WBC) from TI heifers at birth. It was hypothesized that epigenomic alterations persist into the postnatal period and contribute to previously undocumented pathologies. To study these possible effects, DNA was isolated from the WBCs of 5 TI heifers and 5 control heifers at 4 months of age and subjected to reduced representation bisulfite sequencing (RRBS). RESULTS Differential analysis of the methylome revealed a total of 3,047 differentially methylated CpG sites (DMSs), 1,349 of which were hypermethylated and the other 1,698 were hypomethylated. Genes containing differential methylation were associated with inflammation, reactive oxygen species (ROS) production, and metabolism. Complete blood count (CBC) data identified a higher lymphocyte percentage in TI heifers. When compared in the context of the CD45+ parent population, spectral flow cytometry revealed increased intermediate monocytes, B cells, and CD25+/CD127- T cells, and decreased CD4+/CD8b+ T cells. Comparative analysis revealed differential methylation of CpG sites contained in 205 genes, 5 promoters, and 10 CpG islands at birth that were also present at 4 months of age. Comparison of differential methylation in TI heifers and PI heifers at 4 months of age showed 465 genes, 18 promoters, and 34 CpG islands in common. CONCLUSION Differential methylation of WBC DNA persists to 4 months of age in TI heifers and is associated with dysregulation of inflammation, metabolism, and growth. Analysis of differential methylation in TI heifers contributes to the understanding of how fetal infection with BVDV induces postnatal detriments related to profit loss.
Collapse
Affiliation(s)
- Jessica N Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Terry E Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | - Dilyara Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F, Tong MH. SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res 2025; 35:345-361. [PMID: 40033033 PMCID: PMC12012180 DOI: 10.1038/s41422-025-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Gao
- Department of Organ Transplantation, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Guo Y, Li J, Liu X, Ding H, Zhang W. Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC. Front Pharmacol 2025; 16:1571276. [PMID: 40356977 PMCID: PMC12066669 DOI: 10.3389/fphar.2025.1571276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and disability worldwide, driven by genetic predispositions and environmental interactions, with epigenetics playing a pivotal role in mediating these processes. Specific modifying enzymes that regulate epigenetic changes have emerged as promising targets for IS treatment. DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, histone acetyltransferases (HATs), and histone deacetylases (HDACs) are central to epigenetic regulation. These enzymes maintain a dynamic balance between DNA methylation/demethylation and histone acetylation/deacetylation, which critically influences gene expression and neuronal survival in IS. This review is based on both in vivo and in vitro experimental studies, exploring the roles of DNMT/TET and HAT/HDAC in IS, evaluating their potential as therapeutic targets, and discussing the use of natural compounds as modulators of these enzymes to develop novel treatment strategies.
Collapse
Affiliation(s)
- Yurou Guo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaodan Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Huang Ding
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
4
|
Zhang Z, Wu T, Sang Q, Wang L. Human oocyte quality and reproductive health. Sci Bull (Beijing) 2025:S2095-9273(25)00403-7. [PMID: 40335394 DOI: 10.1016/j.scib.2025.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Declining female fertility is a health issue that has received broad global attention. Oocyte quality is the key limiting factor of female fertility, and key processes affecting oocyte quality involve the secretion of and response to hormones, ovarian function, oogenesis, oocyte maturation, and meiosis. However, compared with other species, the research and understanding of human oocyte quality and human reproductive health is limited. This review highlights our current understanding of the physiological factors and pathological factors related to human oocyte quality and discusses potential treatments. In terms of physiology, we discuss the regulation of the hypothalamic-pituitary-gonadal axis, granulosa cells, key subcellular structures, maternal mRNA homeostasis, the extracellular matrix, the maternal microenvironment, and multi-omics resources related to human oocyte quality. In terms of pathology, we review hypothalamic-pituitary-gonadal defects, ovarian dysfunction (including premature ovarian insufficiency and polycystic ovary syndrome), human oocyte development defects, and aging. In terms of the pathological aspects of human oocyte development and quality defects, nearly half of the reported pathogenic genes are involved in meiosis, while the remainder are involved in maternal mRNA regulation, the subcortical maternal complex, zona pellucida formation, ion channels, protein transport, and mitochondrial function. Furthermore, we outline the emerging scientific prospects and challenges for future explorations of the biological mechanisms behind infertility and the development of clinical treatments. This review seeks to deepen our understanding of the mechanisms regulating human oocyte quality and to provide novel insights into clinical female infertility characterized by defects in oocyte quality and oocyte development.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Shanghai Academy of Natural Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Edwards-Lee CA, Jarred EG, Western PS. Coordinated regulation of chromatin modifiers reflects organised epigenetic programming in mouse oocytes. Epigenetics Chromatin 2025; 18:19. [PMID: 40186324 PMCID: PMC11971813 DOI: 10.1186/s13072-025-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Epigenetic modifications provide mechanisms for influencing gene expression, regulating cell differentiation and maintaining long-term memory of cellular identity and function. As oocytes transmit epigenetic information to offspring, correct establishment of the oocyte epigenome is important for normal offspring development. Oocyte epigenetic programming is highly complex, involving a range of epigenetic modifiers which interact to establish a specific distribution of DNA methylation and histone modifications. Disruptions to oocyte epigenetic programming can alter epigenetic memory and prevent normal developmental outcomes in the next generation. Therefore, it is critical that we further our understanding of the interdependent relationships between various epigenetic modifiers and modifications during oogenesis. RESULTS In this study we investigated the spatial and temporal distribution of a range of epigenetic modifiers and modifications in growing oocytes of primordial to antral follicles. We provide comprehensive immunofluorescent profiles of SETD2, H3K36me3, KDM6A, RBBP7, H3K27me3, DNMT3A and DNMT3L and compare these profiles to our previously published profiles of the Polycomb Repressive Complex 2 components EED, EZH2 and SUZ12 in growing oocytes of wildtype mice. In addition, we examined the nuclear levels and spatial distribution of these epigenetic modifiers and modifications in oocytes that lacked the essential Polycomb Repressive Complex 2 subunit, EED. Notably, histone remodelling in primary-secondary follicle oocytes preceded upregulation of DNMT3A and DNMT3L in secondary-antral follicle oocytes. Moreover, loss of EED and H3K27me3 led to significantly increased levels of the H3K36me3 methyltransferase SETD2 during early-mid oocyte growth, although the average levels of H3K36me3 were unchanged. CONCLUSIONS Overall, these data demonstrate that oocyte epigenetic programming is a highly ordered process, with histone remodelling in early growing oocytes preceding de novo DNA methylation in secondary-antral follicle oocytes. These results indicate that tight temporal and spatial regulation of histone modifiers and modifications is essential to ensure correct establishment of the unique epigenome present in fully grown oocytes. Further understanding of the temporal and spatial relationships between different epigenetic modifications and how they interact is essential for understanding how germline epigenetic programming affects inheritance and offspring development in mammals, including humans.
Collapse
Affiliation(s)
- Chloe A Edwards-Lee
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Ellen G Jarred
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Daskeviciute D, Chappell-Maor L, Sainty B, Arnaud P, Iglesias-Platas I, Simon C, Okae H, Arima T, Vassena R, Lartey J, Monk D. Non-canonical imprinting, manifesting as post-fertilization placenta-specific parent-of-origin dependent methylation, is not conserved in humans. Hum Mol Genet 2025; 34:626-638. [PMID: 39825493 PMCID: PMC11924184 DOI: 10.1093/hmg/ddaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated. Non-canonical imprinting, reliant on differential allelic H3K27me3 enrichment, has been reported in mouse and rat pre-implantation embryos, often overlapping long terminal repeat (LTR)-derived promoters. These non-canonical imprints lose parental allele-specific H3K27me3 specificity, subsequently gaining DNA methylation on the same allele in extra-embryonic tissues resulting in placenta-specific, somatically acquired maternal DMRs. To determine if similar non-canonical imprinting is present in the human placenta, we interrogated allelic DNA methylation for a selected number of loci, including (i) the human orthologues of non-canonical imprinted regions in mouse and rat, (ii) promoters of human LTR-derived transcripts, and (iii) CpG islands with intermediate placenta-specific methylation that are unmethylated in gametes and pre-implantation embryos. We failed to identify any non-canonical imprints in the human placenta whole villi samples. Furthermore, the assayed genes were shown to be biallelically expressed in human pre-implantation embryos, indicating they are not imprinted at earlier time points. Together, our work reiterates the continued evolution of placenta-specific imprinting in mammals, which we suggest is linked to epigenetic differences during the maternal-to-embryo transition and species-specific integration of retrotransposable elements.
Collapse
Affiliation(s)
- Dagne Daskeviciute
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Louise Chappell-Maor
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Becky Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, 49 bd François Mitterrand, Clermont-Ferrand 63001, France
| | - Isabel Iglesias-Platas
- Institut de Recerca, Sant Joan de Déu, C. de Sta. Rosa, 39, Barcelona 08950, Spain
- Neonatal Research, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - Carlos Simon
- Carlos Simon Foundation, Rda. de Narcís Monturiol, 11, Bloque C, 46980 Paterna, Valencia, Spain
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Av. Blasco Ibáñez 15, Valencia 46012, Spain
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rita Vassena
- Fecundis, C/Baldoro i Reixac 10-12, Barcelona 08028, Spain
| | - Jon Lartey
- Department of Obstetrics and Gynaecology, Norwich and Norwich University Hospital NHS Foundation Trust, Colney Ln, Norwich NR4 7UY, United Kingdom
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom
- Bellvitge Biomedical Research Institute, Avinguda de la Granvia de l’Hospitalet 199, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| |
Collapse
|
7
|
Karunakara SH, Mehtani R, Kabekkodu SP, Kumar DP, Santhekadur PK. Genes of DLK1-DIO3 Locus and miR-379/656 Cluster is a Potential Diagnostic and Prognostic Marker in Patients With Hepatocellular Carcinoma: A Systems Biology Study. J Clin Exp Hepatol 2025; 15:102450. [PMID: 39698049 PMCID: PMC11650283 DOI: 10.1016/j.jceh.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma is the sixth most common malignancy reported globally. This highlights the need for reliable biomarkers that can be employed for diagnostic and prognostic applications. The present study aimed to classify and characterize the clinical potential of delta like non-canonical Notch ligand 1-type III iodothyronine deiodinase (DLK1-DIO3) and miR-379/656 cluster genes in hepatocellular carcinoma. METHODS We extensively studied the clinical potential of DLK1-DIO3 genes through a comprehensive systems biology approach and assessed the diagnostic and prognostic potential of the genes associated with the region. Additionally, we have predicted the gene targets of the miR-379/656 cluster associated with the locus and have identified the gene ontology, pathway, and disease associations. RESULTS We report this region as a potential biomarker for hepatocellular carcinoma. About thirty clustered miRNAs, a long-non-coding RNA, and two coding genes of the region were underexpressed in tumors. The receiver operating characteristic analysis identified 11 clustered miRNAs with diagnostic potential. Survival analyses identified maternally expressed gene 3 and the miR-379/656 cluster as prognostically significant. Further, the random forest model predicted that the miRNA cluster classifies patients according to Tumor, Node, Metastasis (TNM) staging. Furthermore, overrepresentation analysis identified several key pathways, molecular functions, and biological processes associated with the cluster gene targets. CONCLUSION Our study suggests that DLK1-DIO3 genes, miR-379/656 cluster, and its target gene network might be potential diagnostic and prognostic markers for hepatocellular carcinoma management and therapy.
Collapse
Affiliation(s)
- Shreyas H. Karunakara
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| | - Rohit Mehtani
- Department of Hepatology, Amrita Institute of Medical Sciences and Research, Faridabad, India
| | - Shama P. Kabekkodu
- Department of Cell and Molecular Biology, Manipal Academy of Higher Education, Manipal, India
| | - Divya P. Kumar
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| | - Prasanna K. Santhekadur
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| |
Collapse
|
8
|
Guerra-Resendez RS, Lydon SL, Ma AJ, Bedford GC, Reed DR, Kim S, Terán ER, Nishiguchi T, Escobar M, DiNardo AR, Hilton IB. Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells. ACS Synth Biol 2025; 14:384-397. [PMID: 39898483 PMCID: PMC11854388 DOI: 10.1021/acssynbio.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.
Collapse
Affiliation(s)
| | | | - Alex J. Ma
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Guy C. Bedford
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Daniel R. Reed
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Sunghwan Kim
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Erik R. Terán
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Tomoki Nishiguchi
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mario Escobar
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Andrew R. DiNardo
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Isaac B. Hilton
- Systems,
Synthetic, and Physical Biology Program, Rice University, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Machado-Paula LA, Romanowska J, Lie RT, Hovey L, Doolittle B, Awotoye W, Dunlay L, Xie XJ, Zeng E, Butali A, Marazita ML, Murray JC, Moreno-Uribe LM, Petrin AL. Genetic-epigenetic interactions (meQTLs) in orofacial clefts etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.09.25321494. [PMID: 39990564 PMCID: PMC11844571 DOI: 10.1101/2025.02.09.25321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Objectives Nonsyndromic orofacial clefts (OFCs) etiology involves multiple genetic and environmental factors with over 60 identified risk loci; however, they account for only a minority of the estimated risk. Epigenetic factors such as differential DNA methylation (DNAm) are also associated with OFCs risk and can alter risk for different cleft types and modify OFCs penetrance. DNAm is a covalent addition of a methyl (CH3) group to the nucleotide cytosine that can lead to changes in expression of the targeted gene. DNAm can be affected by environmental influences and genetic variation via methylation quantitative loci (meQTLs). We hypothesize that aberrant DNAm and the resulting alterations in gene expression play a key role in the etiology of OFCs, and that certain common genetic variants that affect OFCs risk do so by influencing DNAm. Methods We used genotype from 10 cleft-associated SNPs and genome-wide DNA methylation data (Illumina 450K array) for 409 cases with OFCs and 456 controls and identified 23 cleft-associated meQTLs. We then used an independent cohort of 362 cleft-discordant sib pairs for replication. We used methylation-specific qPCR to measure methylation levels of each CpG site and combined genotypic and methylation data for an interaction analysis of each SNP-CpG pair using the R package MatrixeQTL in a linear model. We also performed a Paired T-test to analyze differences in DNA methylation between each member of the sibling pairs. Results We replicated 9 meQTLs, showing interactions between rs13041247 (MAFB) - cg18347630 (PLCG1) (P=0.04); rs227731 (NOG) - cg08592707 (PPM1E) (P=0.01); rs227731 (NOG) - cg10303698 (CUEDC1) (P=0.001); rs3758249 (FOXE1) - cg20308679 (FRZB) (P=0.04); rs8001641 (SPRY2) - cg19191560 (LGR4) (P=0.04); rs987525(8q24) - cg16561172(MYC) (P=0.00000963); rs7590268(THADA) - cg06873343 (TTYH3) (P=0.04); rs7078160 (VAX1) - cg09487139 (P=0.05); rs560426 (ABCA4/ARHGAP29) - cg25196715 (ABCA4/ARHGAP29) (P=0,03). Paired T-test showed significant differences for cg06873343 (TTYH3) (P=0.04); cg17103269 (LPIN3) (P=0.002), and cg19191560 (LGR4) (P=0.05). Conclusions Our results confirm previous evidence that some of the common non-coding variants detected through GWAS studies can influence the risk of OFCs via epigenetic mechanisms, such as DNAm, which can ultimately affect and regulate gene expression. Given the large prevalence of non-coding SNPs in most OFCs genome wide association studies, our findings can potentially address major knowledge gaps, like missing heritability, reduced penetrance, and variable expressivity associated with OFCs phenotypes.
Collapse
Affiliation(s)
- L A Machado-Paula
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | | | - R T Lie
- University of Bergen, Bergen, Norway
| | - L Hovey
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - B Doolittle
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - W Awotoye
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - L Dunlay
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - X J Xie
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - E Zeng
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - A Butali
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - J C Murray
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - L M Moreno-Uribe
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - A L Petrin
- University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
10
|
Lea G, Doria-Borrell P, Ferrero-Micó A, Varma A, Simon C, Anderson H, Biggins L, De Clercq K, Andrews S, Niakan KK, Gahurova L, McGovern N, Pérez-García V, Hanna CW. Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome. Cell Stem Cell 2025; 32:276-292.e9. [PMID: 39788122 DOI: 10.1016/j.stem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
Collapse
Affiliation(s)
- Georgia Lea
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Anakha Varma
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire Simon
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Holly Anderson
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura Biggins
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | - Kathy K Niakan
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lenka Gahurova
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Naomi McGovern
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | - Courtney W Hanna
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Sindik N, Pereza N, Dević Pavlić S. Epigenetics of oogenesis. Arch Gynecol Obstet 2025; 311:183-190. [PMID: 39694903 DOI: 10.1007/s00404-024-07882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Epigenetic changes include all modifications affecting the expression of genes without changing the nucleotide sequence of the genome. Most studied epigenetic changes include DNA methylation, histone alterations and non-coding RNAs. DNA methylation is an important epigenetic mark, protecting the genome during gametogenesis and early embryo development. Demethylation process is a genome-wide event, taking place in two distinct waves during gametogenesis. The first event helps restore naïve pluripotency of the zygote, while the second event aids in the loss of parental epigenetic memory and facilitates specification of gametes. Histone modifications were recognized in murine and human primordial germ cells where their subsets condense chromatin, protecting it from dynamic changes taking place during gamete maturation. Deacetylation of histones was recognized as an important prerequisite of chromosomal segregation during metaphase II. Germline-specific ncRNAs and piRNAs are important in inhibiting transposon activity during gametogenesis, protecting overall genome stability. All epigenetic changes are prone to disruption, especially by exogenous factors. In recent years, with the increase in infertility, the association between assisted reproductive technology (ART) and its effects on epigenome remodeling of gametes have gained importance. The aim of this review is to summarize the epigenetic modifications crucial for oocyte development, while highlighting their role in reproductive disorders and ART.
Collapse
Affiliation(s)
- Neda Sindik
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Nina Pereza
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanja Dević Pavlić
- Faculty of Medicine, Department of Medical Biology and Genetics, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia.
| |
Collapse
|
12
|
Tóth DM, Szeri F, Ashaber M, Muazu M, Székvölgyi L, Arányi T. Tissue-specific roles of de novo DNA methyltransferases. Epigenetics Chromatin 2025; 18:5. [PMID: 39819598 PMCID: PMC11740433 DOI: 10.1186/s13072-024-00566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMT), plays pivotal role in regulating embryonic development, gene expression, adaption to environmental stress, and maintaining genome integrity. DNMT family consists of DNMT1, DNMT3A, DNMT3B, and the enzymatically inactive DNMT3L. DNMT3A and DNMT3B establish novel methylation patterns maintained by DNMT1 during replication. Genetic variants of DNMT3A and DNMT3B cause rare diseases such as Tatton-Brown-Rahman and ICF syndromes. Additionally, somatic mutations cause common conditions such as osteoarthritis, osteoporosis, clonal hematopoiesis of indeterminate potential (CHIP), hematologic malignancies, and cancer. While DNMTs have been extensively studied in vitro, in early development and in disease, their detailed physiologic roles remain less understood as in vivo investigations are hindered by the embryonic or perinatal lethality of the knockout mice. To circumvent this problem, tissue-specific Dnmt3a and Dnmt3b knockouts were engineered. This review explores their diverse molecular roles across various organs and cell types and characterizes the phenotype of the knockout mice. We provide a comprehensive collection of over forty tissue-specific knockout models generated by cre recombinase. We highlight the distinct functions of DNMT3A and DNMT3B in germ cells, early development, uterus, hematopoietic differentiation, musculoskeletal development, visceral organs, and nervous system. Our findings indicate that DNMT3A primarily regulates hematopoietic differentiation, while DNMT3B is crucial for cartilage homeostasis and ossification. We emphasize the context-dependent roles of DNMT3A and DNMT3B and demonstrate that they also complement DNMT1 maintenance methyltransferase activity. Overall, the expression patterns of DNMTs across tissues provide insights into potential therapeutic applications for treating neurologic diseases, cancer, and osteoporosis.
Collapse
Affiliation(s)
- Dániel Márton Tóth
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| | - Flóra Szeri
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Mária Ashaber
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Muhyiddeen Muazu
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Lóránt Székvölgyi
- Department of Molecular and Nanopharmaceutics, Genome Architecture and Recombination Research Group, Faculty of Pharmacy, MTA-DE Momentum, University of Debrecen, Debrecen, Hungary.
| | - Tamás Arányi
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
13
|
King SE, Schatz NA, Babenko O, Ilnytskyy Y, Kovalchuk I, Metz GAS. Prenatal maternal stress in rats alters the epigenetic and transcriptomic landscape of the maternal-fetal interface across four generations. Commun Biol 2025; 8:38. [PMID: 39794497 PMCID: PMC11723964 DOI: 10.1038/s42003-024-07444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation. Both maternal and placental miRNA gene targets included de novo DNA methyltransferases, indicating robust PNMS-induced disruption in the complex epigenetic regulatory network between miRNAs and DNAm. Transgenerational programming mainly involved genes and biological pathways associated with neurological and psychiatric diseases which were linked to maternal-fetal crosstalk facilitated by the placenta. The highly correlated placenta-brain profiles support the use of placenta as a noninvasive biomarker resource to predict pathological changes in the neonatal brain. The transgenerational persistence of critical DNAm, miRNA and mRNA signatures may explain familial non-genetic disease risks.
Collapse
Affiliation(s)
- Stephanie E King
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Nicola A Schatz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Olena Babenko
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
14
|
Lee SM, Smela MP, Surani MA. The role of KLF4 in human primordial germ cell development. Open Biol 2025; 15:240214. [PMID: 39837498 PMCID: PMC11750398 DOI: 10.1098/rsob.240214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Primordial germ cells (PGCs) are the founder cells that develop into mature gametes. PGCs emerge during weeks 2-3 of human embryo development. Pluripotency genes are reactivated during PGC specification, including Krüppel-like factor KLF4, but its precise role in PGC development is unclear. Here, we investigated the role of KLF4 in PGC development using our in vitro model for human PGC-like cells (hPGCLCs). We demonstrate that the depletion of KLF4 reduces the efficiency of hPGCLC specification, resulting in hPGCLCs with an aberrant transcriptome. Cut-and-run and transcriptomic analyses reveal that KLF4 represses somatic markers involved in neuronal and endodermal differentiation while promoting the expression of genes associated with PGC specification, such as PAX5, and epigenetic regulators, including DNMT3L and REST. KLF4 targets in hPGCLCs showed significant co-enrichment of motifs for SP and STAT factors, which are known to regulate cell cycle and migration genes. KLF4 contributes to human PGC development by activating genes involved in PGC specification and cell cycle regulation, while repressing somatic genes to maintain PGC identity.
Collapse
Affiliation(s)
- Sun-Min Lee
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Department of Physics, Konkuk University, Seoul05029, Republic of Korea
| | - Merrick Pierson Smela
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Wyss Institute, Harvard University, Boston, MA02215, USA
| | - M. Azim Surani
- Gurdon Institute, Tennis Court Road, University of Cambridge, CambridgeCB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, CambridgeCB2 3EL, UK
| |
Collapse
|
15
|
Roidor C, Chebli K, Borensztein M. [Epigenetic reprogramming, germline and genomic imprinting]. Med Sci (Paris) 2024; 40:892-903. [PMID: 39705560 DOI: 10.1051/medsci/2024177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
The memory of cellular identity is crucial for the correct development of an individual and is maintained throughout life by the epigenome. Chromatin marks, such as DNA methylation and histone modifications, ensure the stability of gene expression programmes over time and through cell division. Loss of these marks can lead to severe pathologies, including cancer and developmental syndromes. However, reprogramming of cellular identity is also a natural phenomenon that occurs early in mammalian development, particularly in the germ line, which enables the production of mature and functional gametes. The germ line transmits genetic and epigenetic information to the next generation, contributing to the survival of the species. Primordial germ cells (PGCs) undergo extensive chromatin remodelling, including global DNA demethylation and erasure of the parental imprints. This review introduces the concept of epigenetic reprogramming, its discovery and key steps, as well as the transcriptional and chromatin changes that accompany germ cell formation in mice. Finally, we discuss the epigenetic mechanisms of genomic imprinting, its discovery, regulation and relevance to human disease.
Collapse
Affiliation(s)
- Clara Roidor
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Karim Chebli
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
16
|
Hao Y, Han K, Wang T, Yu J, Ding H, Dao F. Exploring the potential of epigenetic clocks in aging research. Methods 2024; 231:37-44. [PMID: 39251102 DOI: 10.1016/j.ymeth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.
Collapse
Affiliation(s)
- Yuduo Hao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaiyuan Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ting Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junwen Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
17
|
Rolls W, Wilson MD, Sproul D. Using human disease mutations to understand de novo DNA methyltransferase function. Biochem Soc Trans 2024; 52:2059-2075. [PMID: 39446312 PMCID: PMC11555716 DOI: 10.1042/bst20231017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
DNA methylation is a repressive epigenetic mark that is pervasive in mammalian genomes. It is deposited by DNA methyltransferase enzymes (DNMTs) that are canonically classified as having de novo (DNMT3A and DNMT3B) or maintenance (DNMT1) function. Mutations in DNMT3A and DNMT3B cause rare Mendelian diseases in humans and are cancer drivers. Mammalian DNMT3 methyltransferase activity is regulated by the non-catalytic region of the proteins which contain multiple chromatin reading domains responsible for DNMT3A and DNMT3B recruitment to the genome. Characterising disease-causing missense mutations has been central in dissecting the function and regulation of DNMT3A and DNMT3B. These observations have also motivated biochemical studies that provide the molecular details as to how human DNMT3A and DNMT3B mutations drive disorders. Here, we review progress in this area highlighting recent work that has begun dissecting the function of the disordered N-terminal regions of DNMT3A and DNMT3B. These studies have elucidated that the N-terminal regions of both proteins mediate novel chromatin recruitment pathways that are central in our understanding of human disease mechanisms. We also discuss how disease mutations affect DNMT3A and DNMT3B oligomerisation, a process that is poorly understood in the context of whole proteins in cells. This dissection of de novo DNMT function using disease-causing mutations provides a paradigm of how genetics and biochemistry can synergise to drive our understanding of the mechanisms through which chromatin misregulation causes human disease.
Collapse
Affiliation(s)
- Willow Rolls
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, U.K
| | - Marcus D. Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, U.K
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
18
|
Zhang X, Blumenthal R, Cheng X. DNA-binding proteins from MBD through ZF to BEN: recognition of cytosine methylation status by one arginine with two conformations. Nucleic Acids Res 2024; 52:11442-11454. [PMID: 39329271 PMCID: PMC11514455 DOI: 10.1093/nar/gkae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Maintenance methylation, of palindromic CpG dinucleotides at DNA replication forks, is crucial for the faithful mitotic inheritance of genomic 5-methylcytosine (5mC) methylation patterns. MBD proteins use two arginine residues to recognize symmetrically-positioned methyl groups in fully-methylated 5mCpG/5mCpG and 5mCpA/TpG dinucleotides. In contrast, C2H2 zinc finger (ZF) proteins recognize CpG and CpA, whether methylated or not, within longer specific sequences in a site- and strand-specific manner. Unmethylated CpG sites, often within CpG island (CGI) promoters, need protection by protein factors to maintain their hypomethylated status. Members of the BEN domain proteins bind CGCG or CACG elements within CGIs to regulate gene expression. Despite their overall structural diversity, MBD, ZF and BEN proteins all use arginine residues to recognize guanine, adopting either a 'straight-on' or 'oblique' conformation. The straight-on conformation accommodates a methyl group in the (5mC/T)pG dinucleotide, while the oblique conformation can clash with the methyl group of 5mC, leading to preferential binding of unmethylated sequences.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
20
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
21
|
Khudaverdyan N, Lu J, Chen X, Herle G, Song J. The structure of DNA methyltransferase DNMT3C reveals an activity-tuning mechanism for DNA methylation. J Biol Chem 2024; 300:107633. [PMID: 39098534 PMCID: PMC11401227 DOI: 10.1016/j.jbc.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Xinyi Chen
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Genevieve Herle
- Biophysics Program, University of California, Riverside, California, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA; Biophysics Program, University of California, Riverside, California, USA.
| |
Collapse
|
22
|
Chen T, Mahdadi S, Vidal M, Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol Res 2024; 207:107328. [PMID: 39079576 DOI: 10.1016/j.phrs.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
DNA methylation can deactivate tumor suppressor genes thus causing cancers. Two DNA methylation inhibitors have been approved by the Food and Drug Administration (FDA) and have entered clinical use. However, these inhibitors are nucleoside analogues that can be incorporated into DNA or RNA and induce significant side effects. DNMT1 and DNMT3 are key enzymes involved in DNA methylation. In the acute myeloid leukemia model, a non-nucleoside DNMT1-specific inhibitor has shown lower toxicity and improved pharmacokinetics compared to traditional nucleoside drugs. DNMT3 is also implicated in certain specific cancers. Thus, developing non-nucleoside inhibitors for DNMT1 or DNMT3 can help in understanding their roles in carcinogenesis and provide targeted treatment options in certain cancers. Although no non-nucleoside inhibitors have yet entered clinical trials, in this review, we focus on DNMT1 or DNMT3 selective inhibitors. For DNMT1 selective inhibitors, we have compiled information on the repurposed drugs, derivative compounds and selective inhibitors identified through virtual screening. Additionally, we have outlined potential targets for DNMT1, including protein-protein complex, RNA mimics and aptamers. Compared to DNMT1, research on DNMT3-specific inhibitors has been less extensive. In this context, our exploration has identified a limited number of molecular inhibitors, and we have proposed specific long non-coding RNAs (lncRNAs) as potential contributors to the selective inhibition of DNMT3. This collective effort aims to offer valuable insights into the development of non-nucleoside inhibitors that selectively target DNMT1 or DNMT3.
Collapse
Affiliation(s)
- Ting Chen
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Syrine Mahdadi
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Michel Vidal
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France; Toxicology, Cochin Hospital, HUPC, APHP, Paris 75014, France
| | | |
Collapse
|
23
|
Gretarsson KH, Abini-Agbomson S, Gloor SL, Weinberg DN, McCuiston JL, Kumary VUS, Hickman AR, Sahu V, Lee R, Xu X, Lipieta N, Flashner S, Adeleke OA, Popova IK, Taylor HF, Noll K, Windham CL, Maryanski DN, Venters BJ, Nakagawa H, Keogh MC, Armache KJ, Lu C. Cancer-associated DNA hypermethylation of Polycomb targets requires DNMT3A dual recognition of histone H2AK119 ubiquitination and the nucleosome acidic patch. SCIENCE ADVANCES 2024; 10:eadp0975. [PMID: 39196936 PMCID: PMC11352909 DOI: 10.1126/sciadv.adp0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
During tumor development, promoter CpG islands that are normally silenced by Polycomb repressive complexes (PRCs) become DNA-hypermethylated. The molecular mechanism by which de novo DNA methyltransferase(s) [DNMT(s)] catalyze CpG methylation at PRC-regulated regions remains unclear. Here, we report a cryo-electron microscopy structure of the DNMT3A long isoform (DNMT3A1) amino-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine-119 monoubiquitination (H2AK119Ub). We identify regions within the DNMT3A1 amino terminus that bind H2AK119Ub and the nucleosome acidic patch. This bidentate interaction is required for effective DNMT3A1 engagement with H2AK119Ub-modified chromatin in cells. Further, aberrant redistribution of DNMT3A1 to Polycomb target genes recapitulates the cancer-associated DNA hypermethylation signature and inhibits their transcriptional activation during cell differentiation. This effect is rescued by disruption of the DNMT3A1-acidic patch interaction. Together, our analyses reveal a binding interface critical for mediating promoter CpG island DNA hypermethylation, a major molecular hallmark of cancer.
Collapse
Affiliation(s)
- Kristjan H. Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Daniel N. Weinberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | - Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xinjing Xu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Natalie Lipieta
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
24
|
Chen X, Guo Y, Zhao T, Lu J, Fang J, Wang Y, Wang GG, Song J. Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction. Nat Commun 2024; 15:6217. [PMID: 39043678 PMCID: PMC11266573 DOI: 10.1038/s41467-024-50526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1's ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR's interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ting Zhao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Han R, Zhu D, Sha J, Zhao B, Jin P, Meng C. Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy. Cell Biosci 2024; 14:89. [PMID: 38965641 PMCID: PMC11225420 DOI: 10.1186/s13578-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
Collapse
Affiliation(s)
- Ruiming Han
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Boning Zhao
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael ST NE, Atlanta, GA, 30322, USA.
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China.
| |
Collapse
|
26
|
Siebert-Kuss LM, Dietrich V, Di Persio S, Bhaskaran J, Stehling M, Cremers JF, Sandmann S, Varghese J, Kliesch S, Schlatt S, Vaquerizas JM, Neuhaus N, Laurentino S. Genome-wide DNA methylation changes in human spermatogenesis. Am J Hum Genet 2024; 111:1125-1139. [PMID: 38759652 PMCID: PMC11179423 DOI: 10.1016/j.ajhg.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Verena Dietrich
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Jahnavi Bhaskaran
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Juan M Vaquerizas
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Tabatabaei T, Rezvany MR, Ghasemi B, Vafaei F, Zadeh MK, Zaker F, Salmaninejad A. Effect of DNMT3A R882H Hot Spot Mutations on DDX43 Promoter Methylation in Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9625043. [PMID: 38807916 PMCID: PMC11132831 DOI: 10.1155/2024/9625043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Epigenetic alterations have been observed in many hematological malignancies, including acute myeloid leukemia (AML). Many of these alterations result from mutations in DNA methyl transferase (DNMT) enzymes, disabling them to methylate target genes in a proper way. In this case-control study, we investigated the association between R882H mutation in DNMT3A gene and DDX43 gene methylation in patients with AML. 47 AML patients and 6 controls were included in this study. After DNA extraction, amplification refractory mutation system (ARMS)-PCR was used to evaluate R882H mutations in DNMT3A gene. The high-resolution melting (HRM) method was used to determine the methylation changes of the DDX43 gene promoter. R882H mutation was only found in 10.6% (5 out of 47) of AML patients. The frequency of DDX43 gene methylation was significantly higher in patients without R882H mutations compared to patients with R882H mutations (P < 0.05). The DNMT3A R882H mutation is typically present in a minority of AML patients. Nevertheless, this mutation is associated with a reduced frequency of methylation in the DDX43 promoter region.
Collapse
Affiliation(s)
- Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Vafaei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Isfahan, Iran
| | - Masoumeh Kiani Zadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Dossmann L, Emperle M, Dukatz M, de Mendoza A, Bashtrykov P, Jeltsch A. Specific DNMT3C flanking sequence preferences facilitate methylation of young murine retrotransposons. Commun Biol 2024; 7:582. [PMID: 38755427 PMCID: PMC11099192 DOI: 10.1038/s42003-024-06252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.
Collapse
Affiliation(s)
- Leonie Dossmann
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
29
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
30
|
Kubo N, Uehara R, Uemura S, Ohishi H, Shirane K, Sasaki H. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat Commun 2024; 15:3266. [PMID: 38627502 PMCID: PMC11021467 DOI: 10.1038/s41467-024-47699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.
Collapse
Affiliation(s)
- Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroaki Ohishi
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
31
|
Rengifo Rojas C, Cercy J, Perillous S, Gonthier-Guéret C, Montibus B, Maupetit-Méhouas S, Espinadel A, Dupré M, Hong CC, Hata K, Nakabayashi K, Plagge A, Bouschet T, Arnaud P, Vaillant I, Court F. Biallelic non-productive enhancer-promoter interactions precede imprinted expression of Kcnk9 during mouse neural commitment. HGG ADVANCES 2024; 5:100271. [PMID: 38297831 PMCID: PMC10869267 DOI: 10.1016/j.xhgg.2024.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.
Collapse
Affiliation(s)
- Cecilia Rengifo Rojas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jil Cercy
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sophie Perillous
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Gonthier-Guéret
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bertille Montibus
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphanie Maupetit-Méhouas
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Astrid Espinadel
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marylou Dupré
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Department of Human Molecular Genetics, Gunma University Graduate School of Medicine 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Antonius Plagge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Philippe Arnaud
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Isabelle Vaillant
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Franck Court
- Genetics, Reproduction and Development Institute (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
32
|
Lu J, Guo Y, Yin J, Chen J, Wang Y, Wang GG, Song J. Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations. Nat Commun 2024; 15:3111. [PMID: 38600075 PMCID: PMC11006857 DOI: 10.1038/s41467-024-47398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
33
|
Uneme Y, Maeda R, Nakayama G, Narita H, Takeda N, Hiramatsu R, Nishihara H, Nakato R, Kanai Y, Araki K, Siomi MC, Yamanaka S. Morc1 reestablishes H3K9me3 heterochromatin on piRNA-targeted transposons in gonocytes. Proc Natl Acad Sci U S A 2024; 121:e2317095121. [PMID: 38502704 PMCID: PMC10990106 DOI: 10.1073/pnas.2317095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 03/21/2024] Open
Abstract
To maintain fertility, male mice re-repress transposable elements (TEs) that were de-silenced in the early gonocytes before their differentiation into spermatogonia. However, the mechanism of TE silencing re-establishment remains unknown. Here, we found that the DNA-binding protein Morc1, in cooperation with the methyltransferase SetDB1, deposits the repressive histone mark H3K9me3 on a large fraction of activated TEs, leading to heterochromatin. Morc1 also triggers DNA methylation, but TEs targeted by Morc1-driven DNA methylation only slightly overlapped with those repressed by Morc1/SetDB1-dependent heterochromatin formation, suggesting that Morc1 silences TEs in two different manners. In contrast, TEs regulated by Morc1 and Miwi2, the nuclear PIWI-family protein, almost overlapped. Miwi2 binds to PIWI-interacting RNAs (piRNAs) that base-pair with TE mRNAs via sequence complementarity, while Morc1 DNA binding is not sequence specific, suggesting that Miwi2 selects its targets, and then, Morc1 acts to repress them with cofactors. A high-ordered mechanism of TE repression in gonocytes has been identified.
Collapse
Affiliation(s)
- Yuta Uneme
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Ryu Maeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Gen Nakayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Haruka Narita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto860-0811, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo113-8657, Japan
| | - Hidenori Nishihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara631-8505, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo113-8657, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto860-0811, Japan
- Faculty of Life Sciences, Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo, Kumamoto860-8556, Japan
| | - Mikiko C. Siomi
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| |
Collapse
|
34
|
Gretarsson KH, Abini-Agbomson S, Gloor SL, Weinberg DN, McCuiston JL, Kumary VUS, Hickman AR, Sahu V, Lee R, Xu X, Lipieta N, Flashner S, Adeleke OA, Popova IK, Taylor HF, Noll K, Windham CL, Maryanski DN, Venters BJ, Nakagawa H, Keogh MC, Armache KJ, Lu C. Cancer-associated DNA Hypermethylation of Polycomb Targets Requires DNMT3A Dual Recognition of Histone H2AK119 Ubiquitination and the Nucleosome Acidic Patch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585588. [PMID: 38562823 PMCID: PMC10983913 DOI: 10.1101/2024.03.18.585588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During tumor development, promoter CpG islands (CGIs) that are normally silenced by Polycomb repressive complexes (PRCs) become DNA hypermethylated. The molecular mechanism by which de novo DNA methyltransferase(s) catalyze CpG methylation at PRC-regulated regions remains unclear. Here we report a cryo-EM structure of the DNMT3A long isoform (DNMT3A1) N-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine 119 monoubiquitination (H2AK119Ub). We identify regions within the DNMT3A1 N-terminus that bind H2AK119Ub and the nucleosome acidic patch. This bidentate interaction is required for effective DNMT3A1 engagement with H2AK119Ub-modified chromatin in cells. Furthermore, aberrant redistribution of DNMT3A1 to Polycomb target genes inhibits their transcriptional activation during cell differentiation and recapitulates the cancer-associated DNA hypermethylation signature. This effect is rescued by disruption of the DNMT3A1-acidic patch interaction. Together, our analyses reveal a binding interface critical for countering promoter CGI DNA hypermethylation, a major molecular hallmark of cancer.
Collapse
|
35
|
Qin Y, Li T, An P, Ren Z, Xi J, Tang B. Important role of DNA methylation hints at significant potential in tuberculosis. Arch Microbiol 2024; 206:177. [PMID: 38494532 DOI: 10.1007/s00203-024-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.
Collapse
Affiliation(s)
- Yuexuan Qin
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Tianyue Li
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Peiyan An
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Zhi Ren
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, Anhui Province, China
| | - Jun Xi
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| | - Bikui Tang
- School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
| |
Collapse
|
36
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Fang S, Chang KW, Lefebvre L. Roles of endogenous retroviral elements in the establishment and maintenance of imprinted gene expression. Front Cell Dev Biol 2024; 12:1369751. [PMID: 38505259 PMCID: PMC10948482 DOI: 10.3389/fcell.2024.1369751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
DNA methylation (DNAme) has long been recognized as a host defense mechanism, both in the restriction modification systems of prokaryotes as well as in the transcriptional silencing of repetitive elements in mammals. When DNAme was shown to be implicated as a key epigenetic mechanism in the regulation of imprinted genes in mammals, a parallel with host defense mechanisms was drawn, suggesting perhaps a common evolutionary origin. Here we review recent work related to this hypothesis on two different aspects of the developmental imprinting cycle in mammals that has revealed unexpected roles for long terminal repeat (LTR) retroelements in imprinting, both canonical and noncanonical. These two different forms of genomic imprinting depend on different epigenetic marks inherited from the mature gametes, DNAme and histone H3 lysine 27 trimethylation (H3K27me3), respectively. DNAme establishment in the maternal germline is guided by transcription during oocyte growth. Specific families of LTRs, evading silencing mechanisms, have been implicated in this process for specific imprinted genes. In noncanonical imprinting, maternally inherited histone marks play transient roles in transcriptional silencing during preimplantation development. These marks are ultimately translated into DNAme, notably over LTR elements, for the maintenance of silencing of the maternal alleles in the extraembryonic trophoblast lineage. Therefore, LTR retroelements play important roles in both establishment and maintenance of different epigenetic pathways leading to imprinted expression during development. Because such elements are mobile and highly polymorphic among different species, they can be coopted for the evolution of new species-specific imprinted genes.
Collapse
Affiliation(s)
| | | | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Rajeev R, Mishra RK, Khosla S. DNMT3L interacts with Piwi and modulates the expression of piRNAs in transgenic Drosophila. Epigenomics 2024; 16:375-388. [PMID: 38440884 DOI: 10.2217/epi-2023-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aim: To explore the role of Piwi protein and piRNAs in DNMT3L-mediated epigenetic inheritance. Materials & methods: Transgenic Drosophila were used to examine the effect of ectopically expressed DNMT3L on the profile of piRNAs by sequencing of small RNAs. Results & conclusion: Our previous work showed accumulation and inheritance of epimutations across multiple generations in transgenic DNMT3L Drosophila. Here, we show interaction of DNMT3L with Piwi and a significant alteration in the piRNA profile across multiple generations in transgenic Drosophila. In the light of its interaction with histone H1, we propose that in addition to its role of modulating core histone modifications, DNMT3L allows for inheritance of epigenetic information through its collaboration with Piwi, piRNAs and histone H1.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500 039, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, 500 007, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500 039, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| |
Collapse
|
39
|
Liu Y, Li X, Ma X, Du Q, Wang J, Yu H. MiR-290 Family Maintains Pluripotency and Self-Renewal by Regulating MAPK Signaling Pathway in Intermediate Pluripotent Stem Cells. Int J Mol Sci 2024; 25:2681. [PMID: 38473927 DOI: 10.3390/ijms25052681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/14/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Xiaozhuang Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Qiankun Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Jiemin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
40
|
Eggermann T. Human Reproduction and Disturbed Genomic Imprinting. Genes (Basel) 2024; 15:163. [PMID: 38397153 PMCID: PMC10888310 DOI: 10.3390/genes15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic imprinting is a specific mode of gene regulation which particularly accounts for the factors involved in development. Its disturbance affects the fetus, the course of pregnancy and even the health of the mother. In children, aberrant imprinting signatures are associated with imprinting disorders (ImpDis). These alterations also affect the function of the placenta, which has consequences for the course of the pregnancy. The molecular causes of ImpDis comprise changes at the DNA level and methylation disturbances (imprinting defects/ImpDefs), and there is an increasing number of reports of both pathogenic fetal and maternal DNA variants causing ImpDefs. These ImpDefs can be inherited, but prediction of the pregnancy complications caused is difficult, as they can cause miscarriages, aneuploidies, health issues for the mother and ImpDis in the child. Due to the complexity of imprinting regulation, each pregnancy or patient with suspected altered genomic imprinting requires a specific workup to identify the precise molecular cause and also careful clinical documentation. This review will cover the current knowledge on the molecular causes of aberrant imprinting signatures and illustrate the need to identify this basis as the prerequisite for personalized genetic and reproductive counselling of families.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH University Aachen, Pauwelsstr. 3, D-52074 Aachen, Germany
| |
Collapse
|
41
|
Zhu C, Hao Z, Liu D. Reshaping the Landscape of the Genome: Toolkits for Precise DNA Methylation Manipulation and Beyond. JACS AU 2024; 4:40-57. [PMID: 38274248 PMCID: PMC10806789 DOI: 10.1021/jacsau.3c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024]
Abstract
DNA methylation plays a pivotal role in various biological processes and is highly related to multiple diseases. The exact functions of DNA methylation are still puzzling due to its uneven distribution, dynamic conversion, and complex interactions with other substances. Current methods such as chemical- and enzyme-based sequencing techniques have enabled us to pinpoint DNA methylation at single-base resolution, which necessitated the manipulation of DNA methylation at comparable resolution to precisely illustrate the correlations and causal relationships between the functions of DNA methylation and its spatiotemporal patterns. Here a perspective on the past, recent process, and future of precise DNA methylation tools is provided. Specifically, genome-wide and site-specific manipulation of DNA methylation methods is discussed, with an emphasis on their principles, limitations, applications, and future developmental directions.
Collapse
Affiliation(s)
- Chenyou Zhu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyang Hao
- School
of Pharmaceutical Sciences, Capital Medical
University, Beijing, 100069, PR China
| | - Dongsheng Liu
- Engineering
Research Center of Advanced Rare Earth Materials, Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Liao J, Szabó PE. Role of transcription in imprint establishment in the male and female germ lines. Epigenomics 2024; 16:127-136. [PMID: 38126127 PMCID: PMC10825728 DOI: 10.2217/epi-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The authors highlight an area of research that focuses on the establishment of genomic imprints: how the female and male germlines set up opposite instructions for imprinted genes in the maternally and paternally inherited chromosomes. Mouse genetics studies have solidified the role of transcription across the germline differentially methylated regions in the establishment of maternal genomic imprinting. One work now reveals that such transcription is also important in paternal imprinting establishment. This allows the authors to propose a unifying mechanism, in the form of transcription across germline differentially methylated regions, that specifies DNA methylation imprint establishment. Differences in the timing, genomic location and nature of such transcription events in the male versus female germlines in turn explain the difference between paternal and maternal imprints.
Collapse
Affiliation(s)
- Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
43
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
44
|
Lu J, Fang J, Zhu H, Liang KL, Khudaverdyan N, Song J. Structural basis for the allosteric regulation and dynamic assembly of DNMT3B. Nucleic Acids Res 2023; 51:12476-12491. [PMID: 37941146 PMCID: PMC10711551 DOI: 10.1093/nar/gkad972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
Oligomerization of DNMT3B, a mammalian de novo DNA methyltransferase, critically regulates its chromatin targeting and DNA methylation activities. However, how the N-terminal PWWP and ADD domains interplay with the C-terminal methyltransferase (MTase) domain in regulating the dynamic assembly of DNMT3B remains unclear. Here, we report the cryo-EM structure of DNMT3B under various oligomerization states. The ADD domain of DNMT3B interacts with the MTase domain to form an autoinhibitory conformation, resembling the previously observed DNMT3A autoinhibition. Our combined structural and biochemical study further identifies a role for the PWWP domain and its associated ICF mutation in the allosteric regulation of DNMT3B tetramer, and a differential functional impact on DNMT3B by potential ADD-H3K4me0 and PWWP-H3K36me3 bindings. In addition, our comparative structural analysis reveals a coupling between DNMT3B oligomerization and folding of its substrate-binding sites. Together, this study provides mechanistic insights into the allosteric regulation and dynamic assembly of DNMT3B.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| |
Collapse
|
45
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
46
|
Behluli L, Fontanilla AM, Andessner-Angleitner L, Tolar N, Molina JM, Gahurova L. Expression analysis suggests that DNMT3L is required for oocyte de novo DNA methylation only in Muridae and Cricetidae rodents. Epigenetics Chromatin 2023; 16:43. [PMID: 37924163 PMCID: PMC10625200 DOI: 10.1186/s13072-023-00518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals. RESULTS We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species. CONCLUSIONS The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.
Collapse
Affiliation(s)
- Lirik Behluli
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Alyssa M Fontanilla
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Laura Andessner-Angleitner
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Nikolas Tolar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Julia M Molina
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
- Department of Biological Sciences, Faculty of Sciences and Languages, São Paulo State University "Júlio de Mesquita Filho" - UNESP, Assis, São Paulo, Brazil
| | - Lenka Gahurova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
47
|
Shukla V, Tyagi A. Editorial: DNA & RNA methylation: impact on cancer progression. Front Genet 2023; 14:1293897. [PMID: 37829279 PMCID: PMC10565510 DOI: 10.3389/fgene.2023.1293897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Vaibhav Shukla
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ashish Tyagi
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Liao J, Song S, Gusscott S, Fu Z, VanderKolk I, Busscher BM, Lau KH, Brind’Amour J, Szabó PE. Establishment of paternal methylation imprint at the H19/Igf2 imprinting control region. SCIENCE ADVANCES 2023; 9:eadi2050. [PMID: 37672574 PMCID: PMC10482337 DOI: 10.1126/sciadv.adi2050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The insulator model explains the workings of the H19 and Igf2 imprinted domain in the soma, where insulation of the Igf2 promoter from its enhancers occurs by CTCF in the maternally inherited unmethylated chromosome but not the paternally inherited methylated allele. The molecular mechanism that targets paternal methylation imprint establishment to the imprinting control region (ICR) in the male germline is unknown. We tested the function of prospermatogonia-specific broad low-level transcription in this process using mouse genetics. Paternal imprint establishment was abnormal when transcription was stopped at the entry point to the ICR. The germline epimutation persisted into the paternal allele of the soma, resulting in reduced Igf2 in fetal organs and reduced fetal growth, consistent with the insulator model and insulin-like growth factor 2 (IGF2)'s role as fetal growth factor. These results collectively support the role of broad low-level transcription through the H19/Igf2 ICR in the establishment of its paternal methylation imprint in the male germ line, with implications for Silver-Russell syndrome.
Collapse
Affiliation(s)
- Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sangmin Song
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Samuel Gusscott
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S, Canada
| | - Zhen Fu
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ivan VanderKolk
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Julie Brind’Amour
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S, Canada
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
49
|
Zhou J, Horton JR, Kaur G, Chen Q, Li X, Mendoza F, Wu T, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural characterization of the first-discovered metazoan DNA cytosine-N4 methyltransferase from the bdelloid rotifer Adineta vaga. J Biol Chem 2023; 299:105017. [PMID: 37414145 PMCID: PMC10406627 DOI: 10.1016/j.jbc.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuwen Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fabian Mendoza
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tao Wu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
50
|
Uemura S, Maenohara S, Inoue K, Ogonuki N, Matoba S, Ogura A, Kurumizaka M, Yamagata K, Sharif J, Koseki H, Ueda K, Unoki M, Sasaki H. UHRF1 is essential for proper cytoplasmic architecture and function of mouse oocytes and derived embryos. Life Sci Alliance 2023; 6:e202301904. [PMID: 37225425 PMCID: PMC10209520 DOI: 10.26508/lsa.202301904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.
Collapse
Affiliation(s)
- Shuhei Uemura
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Ibaraki, Japan
| | - Mayuko Kurumizaka
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuo Yamagata
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Wakayama, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|