1
|
Wang Y, Zhai Y, Zhang M, Song C, Zhang Y, Zhang G. Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications. Cell Mol Biol Lett 2024; 29:48. [PMID: 38589794 PMCID: PMC11003099 DOI: 10.1186/s11658-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.
Collapse
Affiliation(s)
- Ying Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Yujing Zhai
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Mingzhe Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Xin Q, Liu Q, Liu Z, Shi X, Liu X, Zhang R, Hong Y, Zhao X, Shao L. Twelve exonic variants in the SLC12A1 and CLCNKB genes alter RNA splicing in a minigene assay. Front Genet 2022; 13:961384. [PMID: 36092934 PMCID: PMC9452827 DOI: 10.3389/fgene.2022.961384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Bartter syndrome (BS) is a rare renal tubular disease caused by gene variants in SLC12A1, KCNJ1, CLCNKA, CLCNKB, BSND or MAGED2 genes. There is growing evidence that many exonic mutations can affect the pre-mRNA normal splicing and induce exon skipping by altering various splicing regulatory signals. Therefore, the aim of this study was to gain new insights into the consequences of exonic mutations associated with BS on pre-mRNA splicing.Methods: We analyzed all the missense, nonsense and synonymous variants described in six pathogenic genes by bioinformatics programs and identified candidate mutations that may promote exon skipping through a minigene system.Results: Results of the study showed that 12 of 14 candidate variants distributed in SLC12A1 (c.728G>A, C.735C>G, c.904C>T, c.905G>A, c.1304C>T, c.1493C>T, c.2221A>T) and CLCNKB (c.226C>T, c.228A>C, c.229G>A, c.229G>C, c.1979C>A) were identified to induce splicing alterations. These variants may not only disrupt exonic splicing enhancers (ESEs) but also generate new exonic splicing silencers (ESSs), or disturb the classic splicing sites.Conclusion: To our knowledge, this is a comprehensive study regarding alterations in pre-mRNA of exonic variants in BS pathogenic genes. Our results reinforce the necessity of assessing the consequences of exonic variants at the mRNA level.
Collapse
Affiliation(s)
- Qing Xin
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Qihua Liu
- Department of Material Supply Management, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhiying Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xuyan Liu
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yefeng Hong
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xiangzhong Zhao, ; Leping Shao,
| | - Leping Shao
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- *Correspondence: Xiangzhong Zhao, ; Leping Shao,
| |
Collapse
|
3
|
Mechanisms and Regulation of Nonsense-Mediated mRNA Decay and Nonsense-Associated Altered Splicing in Lymphocytes. Int J Mol Sci 2020; 21:ijms21041335. [PMID: 32079193 PMCID: PMC7072976 DOI: 10.3390/ijms21041335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid the synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Thus, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphocytes.
Collapse
|
4
|
Lambert JM, Srour N, Delpy L. The Yin and Yang of RNA surveillance in B lymphocytes and antibody-secreting plasma cells. BMB Rep 2019. [PMID: 31619318 PMCID: PMC6941761 DOI: 10.5483/bmbrep.2019.52.12.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The random V(D)J recombination process ensures the diversity of the primary immunoglobulin (Ig) repertoire. In two thirds of cases, imprecise recombination between variable (V), diversity (D), and joining (J) segments induces a frameshift in the open reading frame that leads to the appearance of premature termination codons (PTCs). Thus, many B lineage cells harbour biallelic V(D)J-rearrangements of Ig heavy or light chain genes, with a productively-recombined allele encoding the functional Ig chain and a nonproductive allele potentially encoding truncated Ig polypeptides. Since the pattern of Ig gene expression is mostly biallelic, transcription initiated from nonproductive Ig alleles generates considerable amounts of primary transcripts with out-of-frame V(D)J junctions. How RNA surveillance pathways cooperate to control the noise from nonproductive Ig genes will be discussed in this review, focusing on the benefits of nonsense-mediated mRNA decay (NMD) activation during B-cell development and detrimental effects of nonsense-associated altered splicing (NAS) in terminally differentiated plasma cells.
Collapse
Affiliation(s)
- Jean-Marie Lambert
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Nivine Srour
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| | - Laurent Delpy
- UMR CNRS 7276 - INSERM 1268 - Université de Limoges, Centre de Biologie et de Recherche en Santé, 2 rue du Dr Marcland, Limoges F-87025, France
| |
Collapse
|
5
|
Rajaratnam G, Supeinthiran A, Meier R, Su KFY. CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies. iScience 2018; 10:222-233. [PMID: 30553946 PMCID: PMC6297884 DOI: 10.1016/j.isci.2018.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023] Open
Abstract
Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (“sternite brushes”) in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes. Distal-less is necessary for the development of a novel abdominal appendage CRISPR/Cas9 editing produced both losses and gains of novel abdominal appendages Gains of appendages result from mutations in exonic splicing enhancer (ESEs) sites ESE mutations likely led to exon skipping and an altered Distal-less protein
Collapse
Affiliation(s)
- Gowri Rajaratnam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Lee Kong Chian Natural History Museum, Singapore, Singapore.
| | - Kathy F Y Su
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Srour N, Chemin G, Tinguely A, Ashi MO, Oruc Z, Péron S, Sirac C, Cogné M, Delpy L. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 2015; 213:109-22. [PMID: 26666261 PMCID: PMC4710196 DOI: 10.1084/jem.20131511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
Aberrantly rearranged immunoglobulin (Ig) alleles are frequent. They are usually considered sterile and innocuous as a result of nonsense-mediated mRNA decay. However, alternative splicing can yield internally deleted proteins from such nonproductively V(D)J-rearranged loci. We show that nonsense codons from variable (V) Igκ exons promote exon-skipping and synthesis of V domain-less κ light chains (ΔV-κLCs). Unexpectedly, such ΔV-κLCs inhibit plasma cell (PC) differentiation. Accordingly, in wild-type mice, rearrangements encoding ΔV-κLCs are rare in PCs, but frequent in B cells. Likewise, enforcing expression of ΔV-κLCs impaired PC differentiation and antibody responses without disturbing germinal center reactions. In addition, PCs expressing ΔV-κLCs synthesize low levels of Ig and are mostly found among short-lived plasmablasts. ΔV-κLCs have intrinsic toxic effects in PCs unrelated to Ig assembly, but mediated by ER stress-associated apoptosis, making PCs producing ΔV-κLCs highly sensitive to proteasome inhibitors. Altogether, these findings demonstrate a quality control checkpoint blunting terminal PC differentiation by eliminating those cells expressing nonfunctionally rearranged Igκ alleles. This truncated Ig exclusion (TIE) checkpoint ablates PC clones with ΔV-κLCs production and exacerbated ER stress response. The TIE checkpoint thus mediates selection of long-lived PCs with limited ER stress supporting high Ig secretion, but with a cost in terms of antigen-independent narrowing of the repertoire.
Collapse
Affiliation(s)
- Nivine Srour
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Guillaume Chemin
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Aurélien Tinguely
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Mohamad Omar Ashi
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Zéliha Oruc
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Sophie Péron
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Christophe Sirac
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France Institut Universitaire de France, Université de Limoges, 87000 Limoges, France
| | - Laurent Delpy
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
7
|
Bashyam MD, Chaudhary AK, Kiran M, Nagarajaram HA, Devi RR, Ranganath P, Dalal A, Bashyam L, Gupta N, Kabra M, Muranjan M, Puri RD, Verma IC, Nampoothiri S, Kadandale JS. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India. J Cell Biochem 2013; 115:566-74. [PMID: 24130151 DOI: 10.1002/jcb.24692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/10/2013] [Indexed: 01/20/2023]
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients.
Collapse
Affiliation(s)
- Murali D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In mammalian cells, aberrant transcripts harboring a premature termination codon (PTC) can be generated by abnormal or inefficient biogenesis of mRNAs or by somatic mutation. Truncated polypeptides synthesized from these aberrant transcripts could be toxic to normal cellular functions. However, mammalian cells have evolved sophisticated mechanisms for monitoring the quality of mRNAs. The faulty transcripts harboring PTC are subject to nonsense-mediated mRNA decay (NMD), nonsense-mediated translational repression (NMTR), nonsense-associated alternative splicing (NAS), or nonsense-mediated transcriptional gene silencing (NMTGS). In this review, we briefly outline the molecular characteristics of each pathway and suggest mRNA quality control mechanisms as a means to regulate normal gene expression. [BMB Reports 2013; 46(1): 9-16]
Collapse
Affiliation(s)
- Jungwook Hwang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
9
|
Puisac B, Teresa-Rodrigo ME, Arnedo M, Gil-Rodríguez MC, Pérez-Cerdá C, Ribes A, Pié A, Bueno G, Gómez-Puertas P, Pié J. Analysis of aberrant splicing and nonsense-mediated decay of the stop codon mutations c.109G>T and c.504_505delCT in 7 patients with HMG-CoA lyase deficiency. Mol Genet Metab 2013; 108:232-40. [PMID: 23465862 DOI: 10.1016/j.ymgme.2013.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells can be protected against mutations that generate stop codons by nonsense-mediated mRNA decay (NMD) and/or nonsense-associated altered splicing (NAS). However, the processes are only partially understood and do not always occur. In this work, we study these phenomena in the stop codon mutations c.109G>T (p.Glu37*) and c.504_505delCT; the second and third most frequent mutations in HMG-CoA lyase deficiency (MIM #246450). The deficiency affects the synthesis of ketone bodies and produces severe disorders during early childhood. We used a minigene approach, real-time quantitative PCR and the inhibition of NMD by puromycin treatment, to study the effect of stop codons on splicing (NAS) and NMD in seven patients. Surprisingly, none of the stop codons studied appears to be the direct cause of aberrant splicing. In the mutation c.109G>T, the splicing is due to the base change G>T at position 109, which is critical and cannot be explained by disruption of exonic splicing enhancer (ESE) elements, by the appearance of exonic splicing silencer (ESS) elements which were predicted by bioinformatic tools or by the stop codons. Moreover, the mutation c.504_505delCT produces two mRNA transcripts both with stop codons that generate simultaneous NMD phenomena. The effects of the mutations studied on splicing seemed to be similar in all the patients. Furthermore, we report a Spanish patient with 3-hydroxy-3-methylglutaric aciduria and a novel missense mutation: c.825C>G (p.Asn275Lys).
Collapse
Affiliation(s)
- Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, E-50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yenerall P, Zhou L. Identifying the mechanisms of intron gain: progress and trends. Biol Direct 2012; 7:29. [PMID: 22963364 PMCID: PMC3443670 DOI: 10.1186/1745-6150-7-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Abstract Continued improvements in Next-Generation DNA/RNA sequencing coupled with advances in gene annotation have provided researchers access to a plethora of annotated genomes. Subsequent analyses of orthologous gene structures have identified numerous intron gain and loss events that have occurred both recently and in the very distant past. This research has afforded exceptional insight into the temporal and lineage-specific rates of intron gain and loss among various species throughout evolution. Numerous studies have also attempted to identify the molecular mechanisms of intron gain and loss. However, even after considerable effort, very little is known about these processes. In particular, the mechanism(s) of intron gain have proven exceptionally enigmatic and remain topics of considerable debate. Currently, there exists no definitive consensus as to what mechanism(s) may generate introns. Because many introns are known to affect gene expression, it is necessary to understand the molecular process(es) by which introns may be gained. Here we review the seven most commonly purported mechanisms of intron gain and, when possible, summarize molecular evidence for or against the occurrence of each of these mechanisms. Furthermore, we catalogue indirect evidence that supports the occurrence of each mechanism. Finally, because these proposed mechanisms fail to explain the mechanistic origin of many recently gained introns, we also look at trends that may aid researchers in identifying other potential mechanism(s) of intron gain. Reviewers This article was reviewed by Eugene Koonin, Scott Roy (nominated by W. Ford Doolittle), and John Logsdon.
Collapse
Affiliation(s)
- Paul Yenerall
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
11
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
12
|
de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA (NEW YORK, N.Y.) 2011; 17:2094-107. [PMID: 22028363 PMCID: PMC3222123 DOI: 10.1261/rna.02918111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 05/29/2023]
Abstract
Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.
Collapse
Affiliation(s)
| | - Pamela Nicholson
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
13
|
Chemin G, Tinguely A, Sirac C, Lechouane F, Duchez S, Cogné M, Delpy L. Multiple RNA Surveillance Mechanisms Cooperate to Reduce the Amount of Nonfunctional Igκ Transcripts. THE JOURNAL OF IMMUNOLOGY 2010; 184:5009-17. [DOI: 10.4049/jimmunol.0902949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Imam JS, Gudikote JP, Chan WK, Wilkinson MF. Frame-disrupting mutations elicit pre-mRNA accumulation independently of frame disruption. Nucleic Acids Res 2009; 38:1559-74. [PMID: 20007599 PMCID: PMC2836556 DOI: 10.1093/nar/gkp1115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The T-cell receptor (TCR) and immunoglobulin (Ig) genes are unique among vertebrate genes in that they undergo programmed rearrangement, a process that allows them to generate an enormous array of receptors with different antigen specificities. While crucial for immune function, this rearrangement mechanism is highly error prone, often generating frameshift or nonsense mutations that render the rearranged TCR and Ig genes defective. Such frame-disrupting mutations have been reported to increase the level of TCRbeta and Igmicro pre-mRNA, suggesting the hypothesis that RNA processing is blocked when frame disruption is sensed. Using a chimeric gene that contains TCRbeta sequences conferring this upregulatory response, we provide evidence that pre-mRNA upregulation is neither frame- nor translation-dependent; instead, several lines of evidence suggested that it is the result of disrupted cis elements necessary for efficient RNA splicing. In particular, we identify the rearranging VDJ(beta) exon as being uniquely densely packed with exonic-splicing enhancers (ESEs), rendering this exon hypersensitive to mutational disruption. As the chimeric gene that we developed for these studies generates unusually stable nuclear pre-mRNAs that accumulate when challenged with ESE mutations, we suggest it can be used as a sensitive in vivo system to identify and characterize ESEs.
Collapse
Affiliation(s)
- J Saadi Imam
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|
15
|
Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR, Wilkinson MF. Nonsense codons trigger an RNA partitioning shift. J Biol Chem 2009; 284:4062-72. [PMID: 19091751 PMCID: PMC2640978 DOI: 10.1074/jbc.m805193200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/24/2008] [Indexed: 11/06/2022] Open
Abstract
T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm.
Collapse
MESH Headings
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Down-Regulation/physiology
- Eukaryotic Initiation Factor-4A
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/physiology
- HeLa Cells
- Humans
- Kinetics
- Pol1 Transcription Initiation Complex Proteins/genetics
- Pol1 Transcription Initiation Complex Proteins/metabolism
- RNA Interference
- RNA Stability/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The systems for mRNA surveillance, capping, and cleavage/polyadenylation are proposed to play pivotal roles in the physical establishment and distribution of spliceosomal introns along a transcript.
Collapse
|
17
|
Nishiyama A, Takeshima Y, Zhang Z, Habara Y, Tran THT, Yagi M, Matsuo M. Dystrophin nonsense mutations can generate alternative rescue transcripts in lymphocytes. Ann Hum Genet 2008; 72:717-24. [PMID: 18652600 DOI: 10.1111/j.1469-1809.2008.00468.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Secondary alterations in splicing have been reported to produce semi-functional mRNA from several nonsense mutations in the dystrophin gene. Disruptions of exonic splicing enhancers by single nucleotide changes are thought to underlie such alterations. The precise frequencies of such nonsense mutation-dependent splicing alterations, however, remain unknown. Here we analyzed the splicing patterns of dystrophin mRNA in lymphocytes from 38 patients with dystrophinopathies due to nonsense mutations in the dystrophin gene. In seven of the cases (18%), we observed partial skipping of the nonsense-encoding exon. Two of the seven cases, however, exhibited complex activation of a nonsense mutation-created splice site, which resulted in the generation of novel transcripts. Examination of cis-regulatory splicing elements through calculation of splicing probability scores and identification of potential splicing enhancer or silencer sequences failed to disclose a single cause for exon skipping. Remarkably, individual differences in splicing patterns were observed for cells from patients with identical nonsense mutations (C.5899C>T). Although five cases produced semi-functional dystrophin mRNAs, only one of these exhibited a mild clinical course. These results provide important insights about targets for exon skipping induced by candidate antisense oligonucleotides and for ribosomal read-through of nonsense mutations.
Collapse
Affiliation(s)
- A Nishiyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Shariat N, Holladay CD, Cleary RK, Phillips JA, Patton JG. Isolated growth hormone deficiency type II caused by a point mutation that alters both splice site strength and splicing enhancer function. Clin Genet 2008; 74:539-45. [PMID: 18554279 DOI: 10.1111/j.1399-0004.2008.01042.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A heterozygous single base mutation in the human growth hormone (GH) gene (GH-1) was identified in a family presenting with isolated GH deficiency type II (IGHD II). Affected individuals have a guanine to adenine transition at the first nucleotide of exon 3 (E3+1 G-->A) that results in exon skipping and production of a dominant-negative 17.5-kDa isoform. We show that the mechanistic basis for exon skipping is due to the unique position of this mutation because it weakens the 3' splice site and simultaneously disrupts a splicing enhancer located within the first seven bases of exon 3. A G-->T mutation at this same position not only affects splicing but also results in a premature stop codon for those transcripts that include exon 3. Thus, mutations that alter the first nucleotide of exon 3 illustrate the various mechanisms by which changes in sequence can cause disease: splice site selection, splicing enhancer function, messenger RNA decay, missense mutations, and nonsense mutations. For IGHD II, only exon skipping leads to production of the dominant-negative isoform, with increasing skipping correlating with increasing disease severity.
Collapse
Affiliation(s)
- N Shariat
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
19
|
Ajamian L, Abrahamyan L, Milev M, Ivanov PV, Kulozik AE, Gehring NH, Mouland AJ. Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. RNA (NEW YORK, N.Y.) 2008; 14:914-27. [PMID: 18369187 PMCID: PMC2327365 DOI: 10.1261/rna.829208] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The HIV-1 ribonucleoprotein (RNP) contains the major structural protein, pr55(Gag), viral genomic RNA, as well as the host protein, Staufen1. In this report, we show that the nonsense-mediated decay (NMD) factor UPF1 is also a component of the HIV-1 RNP. We investigated the role of UPF1 in HIV-1-expressing cells. Depletion of UPF1 by siRNA resulted in a dramatic reduction in steady-state HIV-1 RNA and pr55(Gag). Pr55(Gag) synthesis, but not the cognate genomic RNA, was efficiently rescued by expression of an siRNA-insensitive UPF1, demonstrating that UPF1 positively influences HIV-1 RNA translatability. Conversely, overexpression of UPF1 led to a dramatic up-regulation of HIV-1 expression at the RNA and protein synthesis levels. The effects of UPF1 on HIV-1 RNA stability were observed in the nucleus and cytoplasm and required ongoing translation. We also demonstrate that the effects exerted by UPF1 on HIV-1 expression were dependent on its ATPase activity, but were separable from its role in NMD and did not require interaction with UPF2.
Collapse
Affiliation(s)
- Lara Ajamian
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus. Proc Natl Acad Sci U S A 2008; 105:5028-33. [PMID: 18362360 DOI: 10.1073/pnas.0710576105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional regulation is an important step in the regulation of gene expression. In this article, we show an unexpected connection between two proteins that participate in different processes of posttranscriptional regulation that ensures the production of functional mRNA molecules. Specifically, we show that the A-to-I RNA editing protein adenosine deaminase that acts on RNA 1 (ADAR1) and the human Upf1 (hUpf1) protein involved in RNA surveillance are found associated within nuclear RNA-splicing complexes. A potential functional role for this association was revealed by RNAi-mediated down-regulation of ADAR1, which was accompanied by up-regulation of a number of genes previously shown to undergo A-to-I editing in Alu repeats and to be down-regulated by hUpf1. This study suggests a regulatory pathway by a combination of ADAR1 A-to-I editing enzyme and RNA degradation presumably with the aid of hUpf1.
Collapse
|
21
|
Abstract
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.
Collapse
|
22
|
Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 2007; 27:780-92. [PMID: 17803942 DOI: 10.1016/j.molcel.2007.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/16/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rids eukaryotic cells of mRNAs with premature termination codons. There is contradictory evidence as to whether mammalian NMD is a nuclear or a cytoplasmic process. Here, we show evidence that NMD in human cells occurs primarily, if not entirely, in the cytoplasm. Polypeptides designed to inhibit interactions between NMD factors specifically impede NMD when exogenously expressed in the cytoplasm. However, restricting the polypeptides to the nucleus strongly impairs their NMD-inhibitory function, even for those intended to inhibit interactions between the exon-junction complex (EJC) and hUpf3 proteins, which localize primarily in the nucleus. NMD substrates classified based on cell fractionation assays as "nucleus associated" or "cytoplasmic" are all inhibited in the same manner. Furthermore, retention of the NMD factor hUpf1 in the nucleus strongly impairs NMD. These observations suggest that the hUpf complex communicates with the EJC and triggers NMD in the cytoplasm.
Collapse
Affiliation(s)
- Guramrit Singh
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
23
|
Chang YF, Chan WK, Imam JS, Wilkinson MF. Alternatively Spliced T-cell Receptor Transcripts Are Up-regulated in Response to Disruption of Either Splicing Elements or Reading Frame. J Biol Chem 2007; 282:29738-47. [PMID: 17693403 DOI: 10.1074/jbc.m704372200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonsense mutations create premature termination codons (PTCs), leading to the generation of truncated proteins, some of which have deleterious gain-of-function or dominant-negative activity. Protecting cells from such aberrant proteins is non-sense-mediated decay (NMD), an RNA surveillance pathway that degrades transcripts harboring PTCs. A second response to nonsense mutations is the up-regulation of alternatively spliced transcripts that skip the PTC. This nonsense-associated altered splicing (NAS) response has the potential to rescue protein function, but the mechanism by which it is triggered has been controversial. Some studies suggest that, like NMD, NAS is triggered as a result of nonsense mutations disrupting reading frame, whereas other studies suggest that NAS is triggered when nonsense mutations disrupt exonic splicing enhancers (ESEs). Using T-cell receptor-beta (TCRbeta), which naturally acquires PTCs at high frequency, we provide evidence that both mechanisms act on a single type of mRNA. Mutations that disrupt consensus ESE sites up-regulated an alternatively spliced TCRbeta transcript that skipped the mutations independently of reading frame disruption and the NMD factor UPF1. In contrast, reading frame-disrupting mutations that did not disrupt consensus ESE sites elicited UPF1-dependent up-regulation of the alternatively spliced TCRbeta transcript. Restoration of reading frame prevented this up-regulation. Our results suggest that the response of an mRNA to a nonsense mutation depends on its context.
Collapse
Affiliation(s)
- Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
25
|
Aznarez I, Zielenski J, Rommens JM, Blencowe BJ, Tsui LC. Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X. J Med Genet 2007; 44:341-6. [PMID: 17475917 PMCID: PMC2597982 DOI: 10.1136/jmg.2006.045880] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense-mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense-associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5' splice site. These findings argue against the possibility that R553X-associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations.
Collapse
|
26
|
Buvoli M, Buvoli A, Leinwand LA. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. PLoS One 2007; 2:e427. [PMID: 17487273 PMCID: PMC1855434 DOI: 10.1371/journal.pone.0000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023] Open
Abstract
Background Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. Methodology/Principal Finding Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. Conclusions/Significance Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF. An alternative branch of the nonsense-mediated decay pathway. EMBO J 2007; 26:1820-30. [PMID: 17363904 PMCID: PMC1847659 DOI: 10.1038/sj.emboj.7601628] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
The T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRbeta NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRbeta NMD. Mapping experiments revealed the identity of TCRbeta sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRbeta, as we identified many wild-type genes, including one essential for NMD, that transcribe NMD-targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD.
Collapse
MESH Headings
- Animals
- Clone Cells
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- Gene Expression Regulation
- HeLa Cells
- Humans
- Introns/genetics
- Mice
- RNA Helicases
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Deletion
- Trans-Activators/metabolism
- VDJ Exons/genetics
Collapse
Affiliation(s)
- Wai-Kin Chan
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lulu Huang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayanthi P Gudikote
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Saadi Imam
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James A MacLean
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles F Wilkinson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Unit 1000, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel.: +1 713 563 3215; Fax: +1 713 563 3375; E-mail:
| |
Collapse
|
28
|
Kamhi E, Yahalom G, Kass G, Hacham Y, Sperling R, Sperling J. AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing. Nucleic Acids Res 2006; 34:3421-33. [PMID: 16855285 PMCID: PMC1524910 DOI: 10.1093/nar/gkl390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/05/2006] [Accepted: 05/08/2006] [Indexed: 12/03/2022] Open
Abstract
More than 90% of human genes are rich in intronic latent 5' splice sites whose utilization in pre-mRNA splicing would introduce in-frame stop codons into the resultant mRNAs. We have therefore hypothesized that suppression of splicing (SOS) at latent 5' splice sites regulates alternative 5' splice site selection in a way that prevents the production of toxic nonsense mRNAs and verified this idea by showing that the removal of such in-frame stop codons is sufficient to activate latent splicing. Splicing control by SOS requires recognition of the mRNA reading frame, presumably recognizing the start codon sequence. Here we show that AUG sequences are indeed essential for SOS. Although protein translation does not seem to be required for SOS, the first AUG is shown here to be necessary but not sufficient. We further show that latent splicing can be elicited upon treatment with pactamycin-a drug known to block translation by its ability to recognize an RNA fold-but not by treatment with other drugs that inhibit translation through other mechanisms. The effect of pactamycin on SOS is dependent neither on steady-state translation nor on the pioneer round of translation. This effect is found for both transfected and endogenous genes, indicating that SOS is a natural mechanism.
Collapse
Affiliation(s)
- Eyal Kamhi
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Galit Yahalom
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Gideon Kass
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Yael Hacham
- Department of Organic Chemistry, The Weizmann Institute of Science RehovotIsrael
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew UniversityJerusalem, Israel
| | - Joseph Sperling
- To whom correspondence should be addressed. Tel: 972 8 934 2509; Fax: 972 8 934 4142;
| |
Collapse
|
29
|
Baralle M, Skoko N, Knezevich A, De Conti L, Motti D, Bhuvanagiri M, Baralle D, Buratti E, Baralle FE. NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett 2006; 580:4449-56. [PMID: 16870183 DOI: 10.1016/j.febslet.2006.07.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/03/2006] [Accepted: 07/05/2006] [Indexed: 11/17/2022]
Abstract
We have studied the splicing regulation of NF1 exons 36 and 37. We show that they not only require an intact exonic Splicing Enhancer (ESE) within exon 37, but also need the genomic region stretching from exons 31 to 38. Any nucleotide change in two exon 37 third codon positions disrupts the ESE. The extent of exons 36 and 37 skipping due to a mutated ESE depends on the genomic context. This is a unique example of what may be a more general phenomena involved in the tuning of pre-mRNA processing and gene expression modulation in the chromosomal setting.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Allamand V, Richard P, Lescure A, Ledeuil C, Desjardin D, Petit N, Gartioux C, Ferreiro A, Krol A, Pellegrini N, Urtizberea JA, Guicheney P. A single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy. EMBO Rep 2006; 7:450-4. [PMID: 16498447 PMCID: PMC1456920 DOI: 10.1038/sj.embor.7400648] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/20/2005] [Accepted: 01/23/2006] [Indexed: 11/08/2022] Open
Abstract
Mutations in the SEPN1 gene encoding the selenoprotein N (SelN) have been described in different congenital myopathies. Here, we report the first mutation in the selenocysteine insertion sequence (SECIS) of SelN messenger RNA, a hairpin structure located in the 3' untranslated region, in a patient presenting a classical although mild form of rigid spine muscular dystrophy. We detected a significant reduction in both mRNA and protein levels in the patient's skin fibroblasts. The SECIS element is crucial for the insertion of selenocysteine at the reprogrammed UGA codon by recruiting the SECIS-binding protein 2 (SBP2), and we demonstrated that this mutation abolishes SBP2 binding to SECIS in vitro, thereby preventing co-translational incorporation of selenocysteine and SelN synthesis. The identification of this mutation affecting a conserved base in the SECIS functional motif thereby reveals the structural basis for a novel pathological mechanism leading to SEPN1-related myopathy.
Collapse
Affiliation(s)
- Valérie Allamand
- Institut National de la Santé et de la Recherche Médicale, U582, Institut de Myologie, IFR 14, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
During the twentieth century the gene emerged as the major driving force of biology. Initially, even the nature and behavior of gene vehicles, the chromosomes, were subjected to doubts. The basic or standard gene concept, as a unit of function, mutation, and recombination, had to be revised. Half a century was required for reaching a general consensus about the chemical nature of the genetic material, DNA and RNA. The relationship between single genes and individual proteins was a great milestone at the middle of the twentieth century, but within two decades it was realized that the relationship was more complex. Understanding of genetic coding, transcription, and translation during the 1960s laid a firm foundation to the "nucleic doctrine," harking back to the dicta of Lederberg (1959) and meaning that single nucleic acid genes alone were responsible for each separate function within the cell. However, important aspects of gene expression are recognized now as a function of the genome and many genes collaborate in circuits. It has come to light that genes may be mobile, exist in plasmids and cytoplasmic organelles, and can be imported by nonsexual means from other organisms or as synthetic products. Epigenetics has reborn as a new field of developmental genetics. The unorthodox prion proteins can even simulate some gene properties. Genetics was to an extent reincarnated as of the twenty-first century by assimilating the tools of cybernetics and of many formerly distant areas of science. This overview highlights some of the historical milestones that contributed to the development of our image of the gene, extending elements of issues laid down by Rédei (2003).
Collapse
Affiliation(s)
- George P Rédei
- University of Missouri, Life Sciences Center, Columbia, Missouri 65203, USA
| | | | | |
Collapse
|
32
|
Vaccarelli G, Miccoli MC, Lanave C, Massari S, Cribiu EP, Ciccarese S. Genomic organization of the sheep TRG1@ locus and comparative analyses of Bovidae and human variable genes. Gene 2005; 357:103-14. [PMID: 16125878 DOI: 10.1016/j.gene.2005.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/23/2005] [Accepted: 05/17/2005] [Indexed: 12/01/2022]
Abstract
gammadelta T cells commonly account for 0.5%-5% of human (gammadelta low species) circulating T cells, whereas they are very common in chickens, and they may account for >70% of peripheral cells in ruminants (gammadelta high species). We have previously reported the ovine TRG2@ locus structure, the first complete physical map of any ruminant animal TCR locus. Here we determined the TRG1@ locus organization in sheep, reported all variable (V) gamma gene segments in their germline configuration and included human and cattle sequences in a three species comparison. The TRG1@ locus spans about 140 kb and consists of three clusters named TRG5, TRG3, and TRG1 according to the constant (C) genes. The predicted tertiary structure of cattle and sheep V proteins showed a remarkably high degree of conservation between the experimentally determined human Vgamma9 and the proteins belonging to TRG5 Vgamma subgroup. However systematic comparison of primary and tertiary structure highligthed that in Bovidae the overall conformation of the gammadelta TCR, is more similar to the Fab fragment of an antibody than any TCR heterodimer. Phylogenetic analysis showed that the evolution of cattle and sheep V genes is related to the rearrangement process of V segments with the relevant C, and consequentely to the appartenence of the V genes to a given cluster. The TRG cluster evolution in cattle and sheep pointed out the existence of a TRG5 ancient cluster and the occurrence of duplications of its minimal structural scheme of one V, two joining (J), and one C.
Collapse
Affiliation(s)
- G Vaccarelli
- Dipartimento di Anatomia Patologica e di Genetica, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although it is universally accepted that protein synthesis occurs in the cytoplasm, the possibility that translation can also take place in the nucleus has been hotly debated. Reports have been published claiming to demonstrate nuclear translation, but alternative explanations for these results have not been excluded, and other experiments argue against it. Much of the appeal of nuclear translation is that functional proofreading of newly made mRNAs in the nucleus would provide an efficient way to monitor mRNAs for the presence of premature termination codons, thereby avoiding the synthesis of deleterious proteins. mRNAs that are still in the nucleus-associated fraction of cells are subject to translational proofreading resulting in nonsense-mediated mRNA decay and perhaps nonsense-associated alternate splicing. However, these mRNAs are likely to be in the perinuclear cytoplasm rather than within the nucleus. Therefore, in the absence of additional evidence, we conclude that nuclear translation is unlikely to occur.
Collapse
Affiliation(s)
- James E Dahlberg
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
34
|
Abstract
From the very beginning, mRNAs have a complex existence. They are transcribed, capped, spliced, modified at the 3'end, exported from the nucleus, translated, and eventually degraded. These many events not only affect the overall survival and properties of an mRNA, but are also carefully co-ordinated and integrated with quality control mechanisms that function to ensure that only 'proper' mRNAs are translated at the correct developmental time and place. This does not mean that all mRNAs follow a single or uniform path from synthesis to death. Instead, there are diverse means by which the activities of specific mRNAs are regulated, and these controls often depend upon multiple events in the mRNA's life. mRNAs are not found naked in the cell, instead they are part of complex RNPs (ribonucleoproteins) that consist of many factors. These RNPs are highly dynamic structures that change during the lifetime of a given RNA; linking events such as synthesis and processing to the final fate of the mRNA. Here, we will discuss what is known of the assembly of RNPs in general, with specific reference to the myriad of connections between different nuclear events and the cytoplasmic activity of an mRNA. Due to space limitations this review is not comprehensive, instead we focus on specific examples to illustrate these emerging themes in gene expression.
Collapse
Affiliation(s)
- Scott Kuersten
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
35
|
Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17:309-15. [PMID: 15901502 DOI: 10.1016/j.ceb.2005.03.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) generally involves nonsense codon recognition by translating ribosomes at a position approximately 25 nts upstream of a splicing-generated exon junction complex of proteins. As such, NMD provides a means to degrade abnormal mRNAs that encode potentially deleterious truncated proteins. Additionally, an estimated one-third of naturally occurring, alternatively spliced mRNAs is also targeted for NMD. Given the extraordinary frequency of alternative splicing together with data indicating that naturally occurring transcripts other than alternatively spliced mRNAs are likewise targeted for NMD, it is believed that mammalian cells routinely utilize NMD to achieve proper levels of gene expression.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
36
|
Gudikote JP, Imam JS, Garcia RF, Wilkinson MF. RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 2005; 12:801-9. [PMID: 16116435 DOI: 10.1038/nsmb980] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Jayanthi P Gudikote
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Although it is frequently assumed that translation does not occur in eukaryotic nuclei, recent evidence suggests that some translation can take place and that it is closely coupled to transcription. The first evidence concerns the destruction of nuclear mRNAs containing premature termination codons by nonsense-mediated decay (NMD). Only ribosomes can detect termination codons, and as some NMD occurs within the nuclear fraction, active nuclear ribosomes could perform the required detection. The second evidence is the demonstration that tagged amino acids are incorporated into nascent polypeptides in a nuclear process coupled to transcription. The third evidence is that components involved in translation, NMD and transcription colocalize, coimmunoprecipitate and co-purify. All these results are simply explained if nuclear ribosomes scan nascent transcripts for premature termination codons at the site of transcription. Alternatively, the scanning needed for NMD might take place at the nuclear membrane, and contaminating cytoplasmic ribosomes might give the appearance of some nuclear translation. We argue, however, that the balance of evidence favours bona fide nuclear translation.
Collapse
Affiliation(s)
- Francisco J Iborra
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
38
|
McVety S, Li L, Gordon PH, Chong G, Foulkes WD. Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J Med Genet 2005; 43:153-6. [PMID: 15923275 PMCID: PMC2564635 DOI: 10.1136/jmg.2005.031997] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND A 3 bp deletion located at the 5' end of exon 3 of MLH1, resulting in deletion of exon 3 from RNA, was recently identified. HYPOTHESIS That this mutation disrupts an exon splicing enhancer (ESE) because it occurs in a purine-rich sequence previously identified as an ESE in other genes, and ESEs are often found in exons with splice signals that deviate from the consensus signals, as does the 3' splice signal in exon 3 of MLH1. DESIGN The 3 bp deletion and several other mutations were created by polymerase chain reaction mutagenesis and tested using an in vitro splicing assay. Both mutant and wild type exon 3 sequences were cloned into an exon trapping vector and transiently expressed in Cos-1 cells. RESULTS Analysis of the RNA indicates that the 3 bp deletion c.213_215delAGA (gi:28559089, NM_000249.2), a silent mutation c.216T-->C, a missense mutation c.214G-->C, and a nonsense mutation c.214G-->T all cause varying degrees of exon skipping, suggesting the presence of an ESE at the 5' end of exon 3. These mutations are situated in a GAAGAT sequence 3 bp downstream from the start of exon 3. CONCLUSIONS The results of the splicing assay suggest that inclusion of exon 3 in the mRNA is ESE dependent. The exon 3 ESE is not recognised by all available motif scoring matrices, highlighting the importance of RNA analysis in the detection of ESE disrupting mutations.
Collapse
|
39
|
Galani K, Hurt E, Simos G. The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism. FEBS Lett 2005; 579:969-75. [PMID: 15710377 DOI: 10.1016/j.febslet.2004.11.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/20/2004] [Accepted: 12/29/2004] [Indexed: 11/23/2022]
Abstract
Arc1p, a yeast tRNA-binding protein, forms a complex with the aminoacyl-tRNA synthetases, methionyl tRNA synthetase (MetRS) and glutamyl tRNA synthetase (GluRS). Although this complex localizes normally in the cytoplasm, in the absence of Arc1p the two free synthetases are also found inside the nucleus. In this work, in order to localize free Arc1 we abolished complex assembly by deleting the appended domains from both MetRS and GluRS. Surprisingly, free Arc1p remained cytoplasmic even when fitted with a strong nuclear localization signal (NLS). However, NLS-Arc1p accumulated in the nucleus when Xpo1/Crm1, the export receptor for NES-containing cargo proteins, was mutated. Thus, the cytoplasmic location of Arc1p is maintained by Xpo1p-dependent nuclear export and Arc1p could act as an adapter in the nucleocytoplasmic trafficking of tRNA and/or the tRNA-aminoacylation machinery.
Collapse
Affiliation(s)
- Kyriaki Galani
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Moncada CA, Guerrero E, Cardenas P, Suarez CF, Patarroyo ME, Patarroyo MA. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics 2005; 57:42-52. [PMID: 15711805 DOI: 10.1007/s00251-004-0758-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/22/2004] [Indexed: 10/25/2022]
Abstract
The New World primate Aotus nancymaae (owl monkey) has been shown to be an excellent experimental model when studying malarial parasites. Characterising the T-cell receptor (TR) alphabeta repertoire by means of the different variable beta (TRBV) genes displayed contributes to a better understanding of these lymphocytes' role in the response against several malarial antigens. This study describes identifying and characterising eleven new TRBV gene sub-groups in cDNA from Aotus nancymaae's peripheral blood lymphocytes; these 11 gene sequences displayed homology to the previously reported human TRBV3, TRBV10, TRBV11, TRBV14, TRBV18, TRBV19, TRBV20, TRBV25, TRBV27, TRBV29 and TRBV30 sub-groups, resulting in 83% overall homology at the amino acid level. An additional Aotus sequence was found having similarity with the human TRBJ-2-7*01 gene. Evolutionary relationships amongst these sequences and the homologous genes from both New and Old World primates have shown that the TRBV repertoire has been maintained in the species being studied, displaying varying association patterns and substitution rates, depending on the sub-group being studied. The degree of identity observed when comparing human and Aotus genes suggests that these species might have a similar TRBV repertoire.
Collapse
Affiliation(s)
- Camilo A Moncada
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Colombia, South America
| | | | | | | | | | | |
Collapse
|
41
|
Mohn F, Bühler M, Mühlemann O. Nonsense-associated alternative splicing of T-cell receptor beta genes: no evidence for frame dependence. RNA (NEW YORK, N.Y.) 2005; 11:147-56. [PMID: 15613535 PMCID: PMC1370704 DOI: 10.1261/rna.7182905] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mutations that generate premature translation-termination codons (PTCs) often result in production of alternatively spliced mRNAs. While in many cases, the PTC-causing mutation was found to affect splicing directly by disrupting an exonic splicing enhancer, induction of alternative splicing of TCR-beta pre-mRNA has been reported to be specific for mutations that prematurely terminate the open reading frame. During testing of a cyto-nuclear feedback model that would have explained how cytoplasmic translation could influence nuclear splicing of TCR-beta transcripts, control experiments questioned the frame dependence of the nonsense-associated altered splicing (NAS) of TCR-beta pre-mRNA. A subsequent detailed analysis of alternatively spliced TCR-beta mRNA expressed from different minigene constructs with nonsense, silent, or frame-shift mutations at various positions revealed no correlation between truncation of the reading frame and production of alternatively spliced mRNA. Our study thus contradicts the previously reported PTC specificity of TCR-beta NAS and points out the need for systematically testing the PTC specificity in other cases where NAS has been observed.
Collapse
Affiliation(s)
- Fabio Mohn
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
42
|
Bühler M, Mühlemann O. Alternative splicing induced by nonsense mutations in the immunoglobulin mu VDJ exon is independent of truncation of the open reading frame. RNA (NEW YORK, N.Y.) 2005; 11:139-46. [PMID: 15613538 PMCID: PMC1370703 DOI: 10.1261/rna.7183805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/08/2004] [Indexed: 05/21/2023]
Abstract
In addition to triggering nonsense-mediated mRNA decay (NMD), premature translation-termination codons (PTCs) frequently induce alternative splicing, an observation referred to as nonsense-associated alternative splicing (NAS). In many cases, NAS is induced because the nonsense mutation alters a splicing signal, such as inactivating an exonic splicing enhancer. However, for a few genes, NAS was reported to be PTC specific, implying that a translation signal could influence splicing. Here, we investigated whether production of a previously undetected alternatively spliced transcript from immunoglobulin mu (Ig-mu) depends on premature termination of the open reading frame. We show that PTCs at different positions in the VDJ exon of an Ig-mu minigene activate usage of an alternative 3' splice site, generating an alternative transcript that lacks the initial PTC and a previously identified NMD-promoting element (NPE), but contains new PTCs because of a frame shift. Corroborating the importance of the NPE for maximal NMD response, the alternative transcript is only moderately down-regulated by NMD. We further demonstrate that NAS of Ig-mu minigene transcripts is not PTC specific. This finding, together with our results that contradict the previously reported frame dependence of TCR-beta NAS, challenges the idea that cells might possess mechanisms that would allow regulation of splice site selection in response to premature termination of the ORF.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | |
Collapse
|
43
|
Zhang Z, Krainer AR. Involvement of SR Proteins in mRNA Surveillance. Mol Cell 2004; 16:597-607. [PMID: 15546619 DOI: 10.1016/j.molcel.2004.10.031] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/09/2004] [Accepted: 10/26/2004] [Indexed: 11/18/2022]
Abstract
Nonsense mutations influence several aspects of gene expression, including mRNA stability and splicing fidelity, but the mechanism by which premature termination codons (PTCs) can apparently affect splice-site selection remains elusive. We used a model human beta-globin gene with duplicated 5' splice sites (5'ss) and found that PTCs inserted between the two 5'ss do not directly influence splicing in this system. Instead, their apparent effect on 5'ss selection in vivo is an indirect result of nonsense-mediated mRNA decay (NMD), as conditions that eliminated NMD also abrogated the effect on splicing. Remarkably, we found an unexpected function of SR proteins in targeting several mRNAs with PTCs to the NMD pathway. Overexpression of various SR proteins strongly enhanced NMD, and this effect required an RS domain. Our data argue against a universal role of PTCs in regulating pre-mRNA splicing and reveal an additional function of SR proteins in eukaryotic gene expression.
Collapse
Affiliation(s)
- Zuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
44
|
Wachtel C, Li B, Sperling J, Sperling R. Stop codon-mediated suppression of splicing is a novel nuclear scanning mechanism not affected by elements of protein synthesis and NMD. RNA (NEW YORK, N.Y.) 2004; 10:1740-50. [PMID: 15388876 PMCID: PMC1370662 DOI: 10.1261/rna.7480804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/23/2004] [Indexed: 05/21/2023]
Abstract
The pre-mRNA splicing machine must frequently discriminate between normal and many potential 5'splice sites that match the consensus sequence but remain latent. Suppression of splicing (SOS) at such latent 5'splice sites is required for the maintenance of an open reading frame, and to ensure that only RNAs that encode for functional proteins will be formed. In this study we show that SOS is a novel mechanism distinct from the known RNA surveillance mechanisms. First, SOS is distinct from nonsense-mediated mRNA decay (NMD) because it is not dependent on translation and is not affected by RNAi-mediated down-regulation of hUpf1 and hUpf2--two key components of the NMD pathway. Second, SOS is distinct from nonsense-associated alternative splicing (NAS), because a mutant of hUpf1, which was shown to abrogate NAS, does not activate latent splicing. Elucidating the mechanism of SOS is pertinent to human disease in view of the large number of human genes that harbor latent splice sites.
Collapse
Affiliation(s)
- Chaim Wachtel
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
45
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
46
|
Lytle JR, Steitz JA. Premature termination codons do not affect the rate of splicing of neighboring introns. RNA (NEW YORK, N.Y.) 2004; 10:657-68. [PMID: 15037775 PMCID: PMC1370556 DOI: 10.1261/rna.5241404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 12/29/2003] [Indexed: 05/21/2023]
Abstract
Introduction of a premature termination codon (PTC) into an exon of a gene can lead to nonsense-mediated decay of the mRNA, which is best characterized as a cytoplasmic event. However, increasing evidence has suggested that PTCs may also influence the nuclear processing of an RNA transcript, leading to models of nuclear surveillance perhaps involving translating nuclear ribosomes. We used quantitative RT-PCR to measure the in vivo steady-state levels of every exon-intron junction in wild-type, PTC-containing, and missense-containing precursor mRNAs of both the nonrearranging dihydrofolate reductase (DHFR) and the somatically rearranging Ig- micro genes. We find that each exon-intron junction's abundance and, therefore, the rate of intron removal, is not significantly affected by the presence of a PTC in a neighboring exon in either the DHFR or Ig- micro pre-mRNA. Similarly, the abundance of the uncleaved Ig- micro polyadenylation sites does not differ between wild-type and PTC-containing Ig- micro pre-mRNAs. Our Ig- micro data were confirmed by RNase protection analyses, and multiple cell isolates were examined to resolve differences with previously published data on steady-state pre-mRNA levels. We conclude that the presence of a PTC affects the rate of neither splicing nor the cleavage step of 3' end formation during pre-mRNA processing in the nucleus. Our results are discussed with respect to existing evidence for nuclear surveillance mechanisms.
Collapse
Affiliation(s)
- J Robin Lytle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
47
|
Miriami E, Sperling R, Sperling J, Motro U. Regulation of splicing: the importance of being translatable. RNA (NEW YORK, N.Y.) 2004; 10:1-4. [PMID: 14681577 PMCID: PMC1370510 DOI: 10.1261/rna.5112704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA sequences that conform to the consensus sequence of 5' splice sites but are not used for splicing occur frequently in protein coding genes. Mutational analyses have shown that suppression of splicing at such latent sites may be dictated by the necessity to maintain an open reading frame in the mRNA. Here we show that stop codon frequency in introns having latent 5' splice sites is significantly greater than that of introns lacking such sites and significantly greater than the expected occurrence by chance alone. Both observations suggest the occurrence of a general mechanism that recognizes the mRNA reading frame in the context of pre-mRNA.
Collapse
Affiliation(s)
- Elana Miriami
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
48
|
Pagani F, Buratti E, Stuani C, Baralle FE. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 2003; 278:26580-8. [PMID: 12732620 DOI: 10.1074/jbc.m212813200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.
Collapse
Affiliation(s)
- Franco Pagani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste 34012, Italy
| | | | | | | |
Collapse
|
49
|
Alonso CR, Akam M. A Hox gene mutation that triggers nonsense-mediated RNA decay and affects alternative splicing during Drosophila development. Nucleic Acids Res 2003; 31:3873-80. [PMID: 12853602 PMCID: PMC167643 DOI: 10.1093/nar/gkg482] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 05/07/2003] [Indexed: 11/14/2022] Open
Abstract
Nonsense mutations are usually assumed to affect protein function by generating truncated protein products. Nonetheless, it is now clear that these mutations affect not just protein synthesis but also messenger RNA stability. The surveillance mechanism responsible for the detection and degradation of 'nonsense' RNA messages is termed nonsense-mediated RNA decay (NMD). Essential biochemical components of the NMD machinery have been defined in several species. Here we identify the Drosophila orthologue of one of these factors, Upf1, and document its expression during embryogenesis. To test whether NMD acts during Drosophila development, we make use of a mutation that introduces a stop codon into a variably spliced exon of the Hox gene Ultrabithorax (Ubx). Using real-time quantitative RT-PCR we demonstrate that Ubx transcripts containing the premature stop codon are expressed at lower levels than their wild type counterpart. Unexpectedly, we also find that the same mutation significantly increases the levels of a Ubx splicing isoform that lacks the exon containing the premature termination codon. These findings indicate that NMD is operational during Drosophila development and suggest that nonsense mutations may affect development by altering the spectrum of splicing products formed, as well as by reducing or eliminating protein synthesis.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
50
|
Zhang X, Lee J, Chasin LA. The effect of nonsense codons on splicing: a genomic analysis. RNA (NEW YORK, N.Y.) 2003; 9:637-639. [PMID: 12756320 PMCID: PMC1370429 DOI: 10.1261/rna.5060403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 02/20/2003] [Indexed: 05/24/2023]
Abstract
The phenomenon of nonsense-associated altered splicing raises the possibility that the recognition of in-frame nonsense codons is used generally for exon identification during pre-mRNA splicing. However, nonsense codon frequencies in pseudo exons and in regions flanking 5' splice sites are no greater than that expected by chance, arguing against the widespread use of this strategy as a means of rejecting potential splice sites.
Collapse
|