1
|
Shabani S, Serbus LR. Pfs16: A Key Parasitophorous Vacuole Membrane Protein Crucial for Malaria Parasite Development and Transmission. Protein J 2025; 44:133-146. [PMID: 39979562 DOI: 10.1007/s10930-025-10260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Malaria remains a formidable challenge to global health, claiming the lives of nearly half a million individuals annually despite vigorous efforts to curb its spread. Among the myriad factors influencing the persistence and virulence of this disease, the role of specific proteins during the Plasmodium development cycle is critical. The protein of interest, Pfs16, is a Parasitophorous Vacuole Membrane Protein expressed from the earliest asexual stages, which encompass the development of Plasmodium falciparum in the host, to the final stage of the parasite's development in the mosquito, the sporozoite, playing a crucial role in this lifecycle. Understanding the function and mechanism of this conserved protein is pivotal for advancing our strategies to combat malaria. In this review, we examine the work on Pfs16 in both the asexual and sexual stages of parasite development, aiming to gain a better understanding of this protein as a promising candidate for drug and vaccine development.
Collapse
Affiliation(s)
- Sadeq Shabani
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA.
| | - Laura Renee Serbus
- Department of Biological Sciences, Florida International University, 11200 SW 8 St, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Dong Y, Kang S, Sandiford SL, Pike A, Simões ML, Ubalee R, Kobylinski K, Dimopoulos G. Targeting the mosquito prefoldin-chaperonin complex blocks Plasmodium transmission. Nat Microbiol 2025; 10:841-854. [PMID: 40050397 DOI: 10.1038/s41564-025-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
The Plasmodium infection cycle in mosquitoes relies on numerous host factors in the vector midgut, which can be targeted with therapeutics. The mosquito prefoldin complex is needed to fold proteins and macromolecular complexes properly. Here we show that the conserved Anopheles mosquito prefoldin (PFDN)-chaperonin system is a potent transmission-blocking target for multiple Plasmodium species. Silencing any prefoldin subunit or its CCT/TRiC partner via RNA interference reduces Plasmodium falciparum oocyst loads in the mosquito midgut, as does co-feeding mosquitoes with PFDN6-specific antibody and gametocytes. Inhibition of the PFDN-CCT/TRiC chaperonin complex results in the loss of epithelial and extracellular matrix integrity, which triggers microorganism-mediated anti-Plasmodium immune priming and compromises the parasite's laminin-based immune evasion. Mouse malaria transmission-blocking vaccine and antibody co-feeding assays support its potential as a multispecies transmission-blocking target for P. falciparum and Plasmodium vivax. Further study is needed to determine the potential of this system as a transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tang Y, Zou Q, Yu G, Liu F, Wu Y, Zhao X, Wang W, Liu X, Hu F, Wang Z. Immunotranscriptomic Profiling of Spodoptera frugiperda Challenged by Different Pathogenic Microorganisms. INSECTS 2025; 16:360. [PMID: 40332833 PMCID: PMC12028137 DOI: 10.3390/insects16040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 05/08/2025]
Abstract
Spodoptera frugiperda is a globally significant migratory agricultural pest that requires proactive monitoring. Understanding the molecular mechanisms underlying the interactions between pathogenic microorganisms and S. frugiperda is crucial for enhancing the effectiveness of microbial control agents against this pest. This study used transcriptome sequencing and molecular biology techniques on S. frugiperda larvae infected by bacteria and fungi to investigate the composition and molecular regulatory mechanisms of its immune system. A total of 598 immune-related genes were identified. Upon microbial infection, most immune-related genes showed an upregulated expression trend. Phylogenetic analysis revealed that the immune gene repertoire of S. frugiperda is relatively conserved. The expression of the genes of peptidoglycan recognition proteins in different tissues of S. frugiperda induced by microorganisms at different times was verified using qPCR, and the results confirmed that these genes were significantly upregulated under specific pathogenic infections. This study elucidates the immune transcriptome of S. frugiperda in response to various pathogenic microorganisms, providing valuable insights for improving the effectiveness of existing microbial agents and developing new, highly efficient, and specific biopesticides.
Collapse
Affiliation(s)
- Yan Tang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Qi Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Guojie Yu
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou 233100, China; (Y.T.); (G.Y.)
| | - Feng Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Yu Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xueyan Zhao
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Wensheng Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Xinchang Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
| | - Fei Hu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Zengxia Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China; (Q.Z.); (F.L.); (Y.W.); (X.Z.); (W.W.); (X.L.)
- Anhui Engineering Research Center for Smart Crop Planting and Processin Technology, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
4
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
5
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
6
|
Li ET, Ji JY, Kong WJ, Shen DX, Li C, An CJ. A C-type lectin with dual carbohydrate recognition domains functions in innate immune response in Asian corn borer, Ostrinia furnacalis. INSECT SCIENCE 2025; 32:172-192. [PMID: 38772748 DOI: 10.1111/1744-7917.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.
Collapse
Affiliation(s)
- Er-Tao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Yue Ji
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Pomology Institute, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Wei-Jie Kong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dong-Xu Shen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Cai Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chun-Ju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Xia J, Peng R, Fei S, Awais MM, Lai W, Huang Y, Wu H, Yu Y, Liang L, Swevers L, Sun J, Feng M. Systematic analysis of innate immune-related genes in the silkworm: Application to antiviral research. INSECT SCIENCE 2025; 32:151-171. [PMID: 38571329 DOI: 10.1111/1744-7917.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The silkworm, a crucial model organism of the Lepidoptera, offers an excellent platform for investigating the molecular mechanisms underlying the innate immune response of insects toward pathogens. Over the years, researchers worldwide have identified numerous immune-related genes in silkworms. However, these identified silkworm immune genes are not well classified and not well known to the scientific community. With the availability of the latest genome data of silkworms and the extensive research on silkworm immunity, it has become imperative to systematically categorize the immune genes of silkworms with different database IDs. In this study, we present a meticulous organization of prevalent immune-related genes in the domestic silkworm, using the SilkDB 3.0 database as a reliable source for updated gene information. Furthermore, utilizing the available data, we classify the collected immune genes into distinct categories: pattern recognition receptors, classical immune pathways, effector genes and others. In-depth data analysis has enabled us to predict some potential antiviral genes. Subsequently, we performed antiviral experiments on selected genes, exploring their impact on Bombyx mori nucleopolyhedrovirus replication. The outcomes of this research furnish novel insights into the immune genes of the silkworm, consequently fostering advancements in the field of silkworm immunity research by establishing a comprehensive classification and functional understanding of immune-related genes in the silkworm. This study contributes to the broader understanding of insect immune responses and opens up new avenues for future investigations in the domain of host-pathogen interactions.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruoxuan Peng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hailin Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingying Liang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Wang Y, Jin Q, Kanost MR, Jiang H. CLIPA protein pairs function as cofactors for prophenoloxidase activation in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104254. [PMID: 39799989 PMCID: PMC11807748 DOI: 10.1016/j.ibmb.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Insect prophenoloxidases (proPO) are activated during immune responses by a proPO activating protease (PAP) in the presence of a high molecular weight cofactor assembled from serine protease homologs (SPH) that lack proteolytic activity. PAPs and the SPHs have a similar architecture, with an amino-terminal clip domain and a carboxyl-terminal protease domain. The SPHs belong to CLIPA subfamily of SP-related proteins. In Manduca sexta, a well characterized biochemical model system for insect immunity, the functional SPH cofactor contains one molecule each from two SPH subfamilies, SPH-I and SPH-II. In Anopheles gambiae, three SPHI-SPHII pairs (CLIPs A4-A6, A4-A7Δ, and A4-A12) were previously reported as cofactors for CLIPB9-mediated activation of proPO2 and proPO7. In this study, we produced recombinant proteins for two splicing variants of CLIPA7, proCLIPA7s (s for short), proCLIPA7f (f for full-length) and proCLIPA14. We cleaved each along with proCLIPA4 using M. sexta PAP3 and found that the CLIPA pairs A4-A7s and A4-A14 are better than A4-A7f in generating highly active PO2 or PO7. CLIPA7f and CLIPA7s, products of alternative splicing, have different strengths as cofactors in combination with CLIPA4. Because mRNA for CLIPA7f is expressed at a significantly higher level than CLIPA7s, cofactors with the weaker combination A4-A7f may predominate in hemolymph, resulting in a potential dampening effect on proPO activation as a regulatory mechanism for altering the strength of the melanization response. A. gambiae CLIPB10xa is involved in proPO activation but its role as a PAP was not established using mosquito proPOs. Here we showed that factor Xa-treated proCLIPB10Xa activated proCLIPs A7s, A7f, A14, A4 (poorly), and proPO2. At higher concentrations, CLIPB10xa efficiently activated proPO2 in the absence of a cofactor, but at low concentrations it required a CLIPA cofactor, suggesting that highly active PO2 can be generated at low concentration of CLIPB10 in cooperation with an SPH cofactor in vivo. Using cofactors generated by PAP3, we demonstrated the order of efficacy for proPO2 activation by B10Xa is A4-A6 > A4-A14 or A4-A7s > A4-A7f > A4-A12. This agrees with their relative strengths as cofactors for proPO2 and proPO7 activation by M. sexta PAP3. In summary, we further developed an in vitro assay system to elucidate biochemical details of the complex process of proPO activation in A. gambiae.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
Zhu X, Zhang L, Jiang L, Chen H, Tang Y, Yang X, Bao P, Liao C, Li J, Vavricka CJ, Ren D, Chen Z, Guo Y, Han Q. The Aedes aegypti mosquito evolves two types of prophenoloxidases with diversified functions. Proc Natl Acad Sci U S A 2025; 122:e2413131122. [PMID: 39808654 PMCID: PMC11761970 DOI: 10.1073/pnas.2413131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear. Phylogenetic analysis confirmed that Aedes aegypti PPO6 (Aea-PPO6) is an ortholog to PPOs in other insect species, classified as the classical insect type, while other Aea-PPOs are unique to Diptera, herein referred to as the dipteran type here. We characterized two Aea-PPO members, Aea-PPO6, the classical insect type, and Aea-PPO10, a dipteran type, which exhibit distinct substrate specificities. By resolving Aea-PPO6's crystal structure and creating a chimera protein (Aea-PPO6-cm) with Motif 1 (217GDGPDSVVR225) from Aea-PPO10, we identified the motif that determines PPO substrate specificity. In vivo, loss of Aea-PPO6 led to larval lethality, while Aea-PPO10 was involved in development, pigmentation, and immunity. Our results enhance the understanding of the functional diversification of mosquito PPOs.
Collapse
Affiliation(s)
- Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Linlong Jiang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan Vocational University of Science and Technology, Haikou, Hainan571126, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
| | | | | | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Christopher J. Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo184-8588, Japan
| | | | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Yingying Guo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan570228, China
| |
Collapse
|
10
|
Wang X, Zhu L, Huo C, He D, Tian H, Fan X, Lyu Y, Li Y. Genetic characterization of immune adaptor molecule MyD88 in Culex pipiens complex (Diptera: Culicidae) mosquitoes from China. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:29-38. [PMID: 39436778 DOI: 10.1093/jme/tjae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Mosquitoes of the Culex (Cx.) pipiens complex are vectors of severe diseases including West Nile fever by West Nile virus, Japanese encephalitis by Japanese encephalitis virus, and Lymphatic filariasis by filarial nematode Wuchereria bancrofti. As a major portion of mosquito immune system, the Toll pathway implicates in response against infections of mosquito-borne pathogens and biocontrol agents. The genetic diversity of immune-related molecules is expected to be a feasible and effective introduction to expand our knowledge of the mosquito-microbe interplay. However, a comprehensive description is currently lacking regarding the genetic characteristic of the Toll pathway molecules in Cx. pipiens complex mosquitoes. In the present study, genetic changes in Cx. pipiens complex MyD88 (Myeloid differentiation primary response protein 88) were analyzed as a precedent for the Toll pathway molecules in this taxon. MyD88 is a critical adaptor of the pathway transducing signals from TIR-containing receptors to downstream death domain-containing molecules. Our results revealed that adaptive selection has influenced the genetic changes of the molecule, giving rise to acceleration of diversity at a number of amino acid sites. The adaptively selected sites lie in the death domain, intermediate domain, and C-terminal extension. The characteristics of the genetic changes shed insights into the prominent molecular-level structural basis and the involvement strategy of the adaptor in the arms race against exogenous challenges. This finding would be beneficial for further exploration and deeper understanding of the mosquitoes' vectorial capacity and facilitating the effectiveness and sustainability of the biocontrol agents.
Collapse
Affiliation(s)
- Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Dan He
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yongqing Lyu
- The First Hospital of Kunming, Kunming, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Awuoche EO, Smallenberger G, Bruzzese DL, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. PLoS Pathog 2025; 21:e1012692. [PMID: 39888974 PMCID: PMC11819587 DOI: 10.1371/journal.ppat.1012692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/12/2025] [Accepted: 01/15/2025] [Indexed: 02/02/2025] Open
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the gut tissue along with functional assays. Our findings reveal elevated oxidative stress in the gut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyn first discovered in the stable fly, Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the gut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick O. Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniel L. Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
12
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
13
|
Rhodes VL, Waterhouse RM, Michel K. The molecular toll pathway repertoire in anopheline mosquitoes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105287. [PMID: 39522894 PMCID: PMC11717629 DOI: 10.1016/j.dci.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the Anopheles gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
14
|
Zhang Q, Zhou X, Feng T, Tong H, Wang J, Dai J. The immune function of thioester-containing proteins in typical invertebrate disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104218. [PMID: 39579796 DOI: 10.1016/j.ibmb.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Disease vectors, such as arthropods, primarily rely on innate immunity to counteract pathogen invasions, typically through the recognition and binding of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As a conserved immune effector gene family from insects to mammals, the complement system may play an essential role in combating pathogenic microorganisms. In arthropods, the complement proteins are often referred to as thioester-containing proteins (TEPs) because thioester motifs are one of the essential functional domains of the first proteins characterized within the C3 and A2M family. TEPs mainly function as specialized PRRs in sensing and binding to pathogens or their components. This paper presents a comprehensive review of the common domain and functions of TEPs in major disease vectors, in particular the specific decision-making ones expressed by Arthropoda (medical arthropods) and Mollusca (Biomphalaria glabrata) after pathogen infections. The relationship between the structure and antibacterial/antiviral activities of TEPs would further our understandings on the mechanisms governing the initiation of innate immune responses in typical disease vectors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xia Zhou
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Feng
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Jiang P, Gao S, Zhao Z, Zhao L, Sun H, Zhang F, Li L, Li P, Pan Y, Yue D, Jiang J, Zhou Z. Characterization of a novel short-type peptidoglycan recognition protein from the sea cucumber Apostichopus japonicus. Int J Biol Macromol 2024; 283:137914. [PMID: 39577535 DOI: 10.1016/j.ijbiomac.2024.137914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) represent a key component of the family of pattern recognition receptors (PRRs). The functional mechanisms of PGRPs in innate immunity are poorly understood. In this study, we identified a novel short-type PGRP, AjPGRP-S2, from the sea cucumber Apostichopus japonicus. Our data showed that AjPGRP-S2 encoded an extracellular protein that possessed a signal peptide, a complete zinc (Zn2+) binding site, and a disulfide bond. A recombinant AjPGRP-S2 (rAjPGRP-S2) lacking the signal peptide was generated and demonstrated to exhibit amidase activity. Tissue expression analysis revealed that AjPGRP-S2 was highly expressed in coelomocytes and tube feet. Immune-responsive analysis indicated that AjPGRP-S2 was able to bind to various pathogen-associated molecular patterns (PAMPs) from bacteria and fungi, as well as to Gram-positive and -negative bacteria, and was majorly induced by DAP-PGN challenge. Basing on RNA-Seq and Pearson's correlation testing, RNA interference, and pull-down analysis, AjPGRP-S2 was found to be involved in transducing immune signals to the complement system and other PRRs, such as fibrinogen, by protein interactions to further recognize and kill pathogens. To respond comprehensively against pathogenic invasion, AjPGRP-S2 may also have the potential in transducing immune signals to key processes, such as cell adhesion, nerve conduction, apoptosis, and transcription by complex pathways that have yet to be elucidated. Our findings not only promote our understanding of the immune-related function and mechanisms of the PGRP family in A. japonicus, but also provide important data that will facilitate the identification of key evolutionary characteristics associated with invertebrate PGRPs.
Collapse
Affiliation(s)
- Pingzhe Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Liang Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Hongjuan Sun
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Feifei Zhang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Li Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Peipei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Dongmei Yue
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China.
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China.
| |
Collapse
|
16
|
Cui J, Yao X, Ni Z, Zhao H, Yang Y, Xu H, Lu Z, Zhu P. Identification of salivary proteins in the rice leaf folder Cnaphalocrocis medinalis by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104191. [PMID: 39393440 DOI: 10.1016/j.ibmb.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salivary proteins in the oral secretion (OS) of chewing insects play a crucial role in insect-plant interactions during feeding. The rice leaf folder Cnaphalocrocis medinalis, a notorious pest in global rice production, triggers defense responses during feeding, but little is known about its salivary proteins. In this study, we confirmed that C. medinalis releases OS during feeding. By employing transcriptomic analysis and liquid chromatography-tandem mass spectroscopy (LC-MS/MS), we examined the salivary proteins from labial salivary glands and OS from C. medinalis. A total of 14,397 genes were expressed at the RNA level and 229 salivary proteins were identified. Comparative analysis with other 25 arthropod species revealed that 43 proteins were unique to C. medinalis. Expression pattern analysis revealed that most of the selected genes were highly expressed in the gut and the larval stages (4th-5th instar). These findings provide a comprehensive resource for future functional studies of salivary proteins, offering new insights into the molecular mechanisms by which C. medinalis modulates plant defenses and potential applications in pest management.
Collapse
Affiliation(s)
- Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianjing Yao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihan Ni
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongfeng Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
17
|
Cai X, Liu J, Lin C, Cao W, Zhang L, Ding S, Yang D, Liu X. Chromosome-level genome assembly of Scathophaga stercoraria provides new insights into the evolutionary adaptations of dung flies. Int J Biol Macromol 2024; 281:136424. [PMID: 39393738 DOI: 10.1016/j.ijbiomac.2024.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The yellow dung fly Scathophaga stercoraria is a widely distributed species in high-altitude regions of the Northern Hemisphere. It plays important roles as a decomposer, predator, and pollinator in the ecosystem. As a staple model organism, S. stercoraria serves as a standard test species for assessing the toxicity of drug residues in livestock dung and has been the focus of numerous studies. The genetic mechanisms underlying the ecological adaptability of S. stercoraria remain poorly understood. To fill the gap, we first assembled a high-quality chromosome-level genome of S. stercoraria, resulting in a final assembly size of 549.64 Mb, with a contig N50 of 4.06 Mb, and 92.53 % of the sequence anchored to six chromosomes. Gene family analysis revealed an expansion of Toll (Toll1), GNBP3, Cyp303a1, Cyp4d14, Cyp6g1, OR67d, and yolk protein genes in the S. stercoraria genome. Transcriptome analysis indicated that most genes in the trypsin and carboxypeptidase gene families are predominantly expressed during the larval stage, whereas the α-Amylase gene family is mainly expressed during the adult stage. Additionally, PGRP-SC is highly expressed during the larval stage, OBPs are primarily expressed during the adult stage, and yolk protein genes exhibit female-biased expression. Our study not only provides a new resource for the dung flies genomic pool, but also identifies the expression patterns of key ecologically adaptative genes and gene families at the developmental stages, which provides new insights into the ecological adaptive evolution of dung flies.
Collapse
Affiliation(s)
- Xiaodong Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiuzhou Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chen Lin
- Institute of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
| | - Wenqiang Cao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Leyou Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuangmei Ding
- The Institute of Scientific and Technical Research on Archives, National Archives Administration of China, Beijing 100053, China
| | - Ding Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoyan Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
18
|
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620045. [PMID: 39484388 PMCID: PMC11527105 DOI: 10.1101/2024.10.24.620045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the midgut tissue along with functional assays. Our findings reveal elevated oxidative stress in the midgut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyns first discovered in the stable fly Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the midgut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.
Collapse
Affiliation(s)
- Erick Awuoche
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Gretchen Smallenberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Daniel Bruzzese
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alessandra Orfano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
19
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
20
|
Amaya Romero JE, Chenal C, Ben Chehida Y, Miles A, Clarkson CS, Pedergnana V, Wertheim B, Fontaine MC. Mitochondrial Variation in Anopheles gambiae and Anopheles coluzzii: Phylogeographic Legacy and Mitonuclear Associations With Metabolic Resistance to Pathogens and Insecticides. Genome Biol Evol 2024; 16:evae172. [PMID: 39226386 PMCID: PMC11370803 DOI: 10.1093/gbe/evae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African "far-west" exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles.
Collapse
Affiliation(s)
- Jorge E Amaya Romero
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clothilde Chenal
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Institut des Science de l’Évolution de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9747 AG, Netherlands
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
21
|
Mousavi Shafi ZS, Firouz ZM, Pirahmadi S. Gene expression analysis of Anopheles Meigen, 1818 (Diptera: Culicidae) innate immunity after Plasmodium Marchiafava & Celli, 1885 (Apicomplexa) infection: Toward developing new malaria control strategies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105650. [PMID: 39089500 DOI: 10.1016/j.meegid.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite the critical role of the Anopheles innate immune system in defending against Plasmodium infection, there is still limited information about the key immune mechanisms in Anopheles. This review assesses recent findings on the expression characteristics of immune-related genes in Anopheles following exposure to Plasmodium. A literature review, unrestricted by publication date, was conducted to evaluate immune-related gene expression in different organs of Anopheles after Plasmodium infection. Mosquito immune responses in the midgut are essential for reducing parasite populations. Additionally, innate immune responses in the salivary glands and hemocytes circulating in the hemocoel play key roles in defense against the parasite. Transcriptomic analysis of the mosquito's innate immune response to Plasmodium infection provides valuable insights into key immune mechanisms in mosquito defense. A deeper understanding of immune mechanisms in different organs of Anopheles following Plasmodium infection will aid in discovering critical targets for designing novel control strategies.
Collapse
Affiliation(s)
- Zahra Sadat Mousavi Shafi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Liu J, Chen W, Situ J, Li J, Chen J, Lai M, Huang F, Li B. BmToll9-1 Is a Positive Regulator of the Immune Response in the Silkworm Bombyx mori. INSECTS 2024; 15:643. [PMID: 39336611 PMCID: PMC11432072 DOI: 10.3390/insects15090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Toll receptors are involved in the development and innate immunity of insects. BmToll9-1 is an important immune receptor in the Toll pathway. Previous studies have focused on its role as a receptor in immune response. In this study, we aimed to investigate the role of BmToll9-1 as a regulator in the immune response. The expression profiles demonstrated that BmToll9-1 was predominantly expressed in the midgut. RNA interference (RNAi) of BmToll9-1 was found to be effective in the midgut via the injection of dsRNA, which resulted in smaller and lighter larvae and cocoons. Most signaling genes in the Toll pathway and downstream effector genes were downregulated after the RNAi of BmToll9-1. The hemolymph from BmToll9-1-silenced larvae showed decreased antibacterial activity against Escherichia coli, either in growth curve or inhibition zone experiments. The above results indicate that BmToll9-1 might be positively involved in the immune pathway of silkworm. As a positive regulator, BmToll9-1 might function mainly in the gut to maintain microbial homeostasis to regulate the growth of silkworms. Silencing of BmToll9-1 downregulates the signaling genes in the Toll pathway and antimicrobial peptide (AMP) production, resulting in decreased antibacterial activity in the hemolymph.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Weijian Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jinrong Situ
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiaxuan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiahua Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minchun Lai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fengyi Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baoqi Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Duan X, Fu T, Liu C, Wang F, Liu C, Zhao L, Yu J, Wang X, Zhang R. The role of a novel secretory peptidoglycan recognition protein with antibacterial ability from the Chinese Oak Silkworm Antheraea pernyi in humoral immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104151. [PMID: 38880307 DOI: 10.1016/j.ibmb.2024.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors that play a critical role in the immune response of invertebrates and vertebrates. Herein, the short ApPGRP-D gene was cloned from the model lepidopteran Antheraea pernyi. Quantitative PCR (qPCR) confirmed that ApPGRP-D is an immune-related protein and that the expression of ApPGRP-D can be induced by microorganisms. ApPGRP-D is a broad-spectrum pattern recognition protein that activates the prophenoloxidase cascade activation system and promotes the agglutination of microbial cells. Likely due to its amidase activity, ApPGRP-D can inhibit the growth of E. coli and S. aureus. In addition, we demonstrated for the first time that zinc ions, as important metal coenzymes, could promote multiple functions of ApPGRP-D but not its amidase activity.
Collapse
Affiliation(s)
- Xutong Duan
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Fu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuhui Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chengbao Liu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - JinZhu Yu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China.
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
24
|
Liu J, Yang W, Liao W, Huang Y, Chen W, Bu X, Huang S, Jiang W, Swevers L. Immunological function of Bombyx Toll9-2 in the silkworm (Bombyx mori) larval midgut: Activation by Escherichia coli/lipopolysaccharide and regulation of growth. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22130. [PMID: 39118437 DOI: 10.1002/arch.22130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024]
Abstract
Toll receptors are important regulators of insects' innate immune system which, upon binding of pathogen molecules, activate a conserved signal transduction cascade known as the Toll pathway. RNA interference (RNAi) is a powerful tool to study the function of genes via reverse genetics. However, due to the reported refractory of RNAi efficiency in lepidopteran insects, successful reports of silencing of Toll receptors in the silkworm Bombyx mori have not been reported yet. In this study, a Toll receptor of the silkworm Bombyx Toll9-2 (BmToll9-2) was cloned and its expression and function were analyzed. The results showed that BmToll9-2 contains an ectodomain (ECD) with a signal peptide and nine leucine-rich repeats, a transmembrane helix, and a cytoplasmic region with a Toll/interleukin-1 domain. Phylogenetic analysis indicates that BmToll9-2 clusters with other insect Toll9 receptors and mammalian Toll-like receptor 4. Oral infection of exogenous pathogens showed that the Gram-negative bacterium Escherichia coli and its main cell wall component lipopolysaccharide (LPS), as well as the Gram-positive bacterium Staphylococcus aureus and its main cell wall component peptidoglycan, significantly induce BmToll9-2 expression in vivo. LPS also induced the expression of BmToll9-2 in BmN4 cells in vitro. These observations indicate its role as a sensor in the innate immunity to exogenous pathogens and as a pathogen-associated receptor that is responsive to LPS. RNAi of BmToll9-2 was effective in the midgut and epidermis. RNAi-mediated knock-down of BmToll9-2 reduced the weight and growth of the silkworm. Bacterial challenge following RNAi upregulated the expression of BmToll9-2 and rescued the weight differences of the silkworm, which may be related to its participation in the immune response and the regulation of the microbiota in the midgut lumen of the silkworm larvae.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Weifeng Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenli Liao
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanling Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Weijian Chen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoling Bu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shiyi Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wanyi Jiang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
25
|
Chen X, Wang F, Guo H, Liu X, Wu S, Lv L, Tang T. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173126. [PMID: 38734105 DOI: 10.1016/j.scitotenv.2024.173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.
Collapse
Affiliation(s)
- Xiaozhen Chen
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haikun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
26
|
Wu F, Kong H, Xie L, Sokolova IM. Exposure to nanopollutants (nZnO) enhances the negative effects of hypoxia and delays recovery of the mussels' immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124112. [PMID: 38705446 DOI: 10.1016/j.envpol.2024.124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.
Collapse
Affiliation(s)
- Fangli Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hui Kong
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
27
|
Zhiganov NI, Vinokurov KS, Salimgareev RS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Elpidina EN. The Set of Serine Peptidases of the Tenebrio molitor Beetle: Transcriptomic Analysis on Different Developmental Stages. Int J Mol Sci 2024; 25:5743. [PMID: 38891931 PMCID: PMC11172050 DOI: 10.3390/ijms25115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.
Collapse
Affiliation(s)
- Nikita I. Zhiganov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Konstantin S. Vinokurov
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budejovice, Czech Republic;
| | - Ruslan S. Salimgareev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| |
Collapse
|
28
|
Miao Z, Xiong C, Wang Y, Shan T, Jiang H. Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104108. [PMID: 38552808 PMCID: PMC11443596 DOI: 10.1016/j.ibmb.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
29
|
Hixson B, Huot L, Morejon B, Yang X, Nagy P, Michel K, Buchon N. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types. BMC Genomics 2024; 25:353. [PMID: 38594632 PMCID: PMC11003161 DOI: 10.1186/s12864-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.
Collapse
Affiliation(s)
- Bretta Hixson
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Louise Huot
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiaowei Yang
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Current address: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Peter Nagy
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Vandana V, Dong S, Sheth T, Sun Q, Wen H, Maldonado A, Xi Z, Dimopoulos G. Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLoS Pathog 2024; 20:e1012145. [PMID: 38598552 PMCID: PMC11034644 DOI: 10.1371/journal.ppat.1012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.
Collapse
Affiliation(s)
- Vandana Vandana
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tanaya Sheth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amanda Maldonado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
32
|
Zmarlak NM, Lavazec C, Brito-Fravallo E, Genève C, Aliprandini E, Aguirre-Botero MC, Vernick KD, Mitri C. The Anopheles leucine-rich repeat protein APL1C is a pathogen binding factor recognizing Plasmodium ookinetes and sporozoites. PLoS Pathog 2024; 20:e1012008. [PMID: 38354186 PMCID: PMC10898737 DOI: 10.1371/journal.ppat.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.
Collapse
Affiliation(s)
- Natalia Marta Zmarlak
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université de Paris, Institut Cochin, Paris, France
| | - Emma Brito-Fravallo
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Corinne Genève
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Eduardo Aliprandini
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Manuela Camille Aguirre-Botero
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Kenneth D. Vernick
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Christian Mitri
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| |
Collapse
|
33
|
Chen Y, Zhao Z, Liu J, Fan C, Zhang Z. Identification, diversity, and evolution analysis of thioester-containing protein family in Pacific oyster (Crassostrea gigas) and immune response to biotic and abiotic stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109330. [PMID: 38159874 DOI: 10.1016/j.fsi.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Thioester-containing proteins (TEPs) play a vital role in the innate immune response to biotic and abiotic stresses. In this study, the TEPs in C. gigas were identified, and their gene structure, phylogenetic relationships, collinearity relationships, expression profiles, sequence diversity, and alternative splicing were analyzed. Eight Tep genes were identified in C. gigas genome. Functional analysis and evolutionary relationships indicated a high level of homology to other mollusks TEPs. The transcriptome quantitative analysis results showed that the Tep genes in C. gigas respond to heat stress and Vibrio stress. Alternative splicing analysis revealed four Tep genes (designated A2M_1, CD109_3, CD109_5, complement C3) encode multiple alternative splice variants. Analysis of gene structure and multiple alignments revealed that seven CD109_5 variants are produced through the alternative splicing of the 19th exon, which encodes the highly variable central region. Sequence diversity analysis revealed thirteen missense variants within the 19th exon region of these seven CD109_5 alternative splice variants. Furthermore, the differential alternative splicing analysis showed significant induction of CD109_5, A2M_1 and A2M_2 variants after infection with V. parahaemolyticus. This study explores the Tep genes of C. gigas, providing insights into the molecular mechanisms underlying the involvement of C. gigas TEPs in innate immunity.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Zhao
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiang Liu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Fan
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
34
|
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLoS Pathog 2024; 20:e1011935. [PMID: 38198491 PMCID: PMC10805325 DOI: 10.1371/journal.ppat.1011935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.
Collapse
Affiliation(s)
- Lindsay E. Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
35
|
Xu C, Wu P, Gao Q, Cai C, Fan K, Zhou J, Lei L, Chen L. Molecular characterization, expression analysis and subcellular location of the members of STAT family from spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109241. [PMID: 37992914 DOI: 10.1016/j.fsi.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
36
|
Jiang J, Gao S, Zhao Z, Chen Z, Zhang F, Li L, Jiang P, Guan X, Li P, Pan Y, Zhou Z. A novel short-type peptidoglycan recognition protein with unique polysaccharide recognition specificity in sea cucumber, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109263. [PMID: 38040134 DOI: 10.1016/j.fsi.2023.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zhong Chen
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Feifei Zhang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Li Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Pingzhe Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Xiaoyan Guan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Peipei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China.
| |
Collapse
|
37
|
Jin Q, Wang Y, Hu Y, He Y, Xiong C, Jiang H. Serine protease homolog pairs CLIPA4-A6, A4-A7Δ, and A4-A12 act as cofactors for proteolytic activation of prophenoloxidase-2 and -7 in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104048. [PMID: 38056530 PMCID: PMC10872527 DOI: 10.1016/j.ibmb.2023.104048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/μg for PO2 and 1131-1630 U/μg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
38
|
Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109040. [PMID: 37648118 DOI: 10.1016/j.fsi.2023.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Galectins, a family of lectins that bind to β-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.
Collapse
Affiliation(s)
- Tingyi Luo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuai Guan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
39
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 Is a Central Node in the Protease Network that Regulates Humoral Immunity in Anopheles gambiae Mosquitoes. J Innate Immun 2023; 15:680-696. [PMID: 37703846 PMCID: PMC10603620 DOI: 10.1159/000533898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
40
|
Prince BC, Chan K, Rückert C. Elucidating the role of dsRNA sensing and Toll6 in antiviral responses of Culex quinquefasciatus cells. Front Cell Infect Microbiol 2023; 13:1251204. [PMID: 37712057 PMCID: PMC10499357 DOI: 10.3389/fcimb.2023.1251204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The first step of any immune response is the recognition of foreign molecular structures inside the host organism. An important molecule that is generally foreign to eukaryotic cells is long double-stranded RNA (dsRNA), which can be generated during virus replication. The mechanisms of sensing viral dsRNA are well-studied in mammalian systems but are only poorly understood in insects, including disease vectors such as Culex quinquefasciatus mosquitoes. These mosquitoes are vectors for important arboviruses, such as West Nile virus, and Culex species mosquitoes are distributed across the globe in many temperate and tropical regions. The major antiviral response triggered by dsRNA in mosquitoes is RNA interference - a sequence-specific response which targets complementary viral RNA for degradation. However, here, we aimed to identify whether sequence-independent dsRNA sensing, mimicked by poly(I:C), can elicit an antiviral response. We observed a significant reduction in replication of La Crosse virus (LACV) in Cx. quinquefasciatus mosquito cells following poly(I:C) priming. We identified a number of antimicrobial peptides and Toll receptors that were upregulated at the transcript level by poly(I:C) stimulation. Notably, Toll6 was upregulated and we determined that a knockdown of Toll6 expression resulted also in increased LACV replication. Future efforts require genetic tools to validate whether the observed Toll6 antiviral activity is indeed linked to dsRNA sensing. However, large-scale functional genomic and proteomic approaches are also required to determine which downstream responses are part of the poly(I:C) elicited antiviral response.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV, United States
| |
Collapse
|
41
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
42
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
43
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 is a central node in the protease network that regulates humoral immunity in Anopheles gambiae mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.545904. [PMID: 37461554 PMCID: PMC10350057 DOI: 10.1101/2023.07.07.545904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip domain serine proteases (cSPs) and/or their non-catalytic homologs (cSPHs), which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
44
|
Lin Z, Cheng J, Mu X, Kuang X, Li Z, Wu J. A C-type lectin in saliva of Aedes albopictus (Diptera: Culicidae) bind and agglutinate microorganisms with broad spectrum. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:1. [PMID: 37399114 DOI: 10.1093/jisesa/iead043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
Via complex salivary mixture, mosquitos can intervene immune response and be helpful to transmit several viruses causing deadly human diseases. Some C-type lectins (CTLs) of mosquito have been reported to be pattern recognition receptor to either resist or promote pathogen invading. Here, we investigated the expression profile and agglutination function of an Aedes albopictus CTL (Aalb_CTL2) carrying a single carbohydrate-recognition domain (CRD) and WND/KPD motifs. The results showed that Aalb_CTL2 was found to be specifically expressed in mosquito saliva gland and its expression was not induced by blood-feeding. The recombinant Aalb_CTL2 (rAalb_CTL2) could agglutinate mouse erythrocytes in the presence of calcium and the agglutinating activity could be inhibited by EDTA. rAalb_CTL2 also displayed the sugar binding ability to D-mannose, D-galactose, D-glucose, and maltose. Furthermore, it was demonstrated that rAalb_CTL2 could bind and agglutinate Gram positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as fungus Candida albicans in vitro in a calcium dependent manner. However, rAalb_CTL2 could not promote type 2 dengue virus (DENV-2) replication in THP-1 and BHK-21 cell lines. These findings uncover that Aalb_CTL2 might be involved in the innate immunity of mosquito to resist microorganism multiplication in sugar and blood meals to help mosquito survive in the varied natural environment.
Collapse
Affiliation(s)
- Zimin Lin
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Jinzhi Cheng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohui Mu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaoyuan Kuang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Immunology, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
45
|
Chen WW, Zeng WH, Shen DN, Feng SY, Li ZQ. Genome-wide identification of Coptotermes formosanus immune genes and their potential roles in termite control. Gene 2023; 877:147569. [PMID: 37330022 DOI: 10.1016/j.gene.2023.147569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the use of microbes to control termites has attracted increasing attention. It was found that pathogenic bacteria, nematodes, and fungi effectively control termites under laboratory conditions. However, their effects have not been replicated in the field, and one reason for this is the complex immune defense mechanisms of termites, which are mainly regulated by immune genes. Therefore, altering the expression of immune genes may have a positive influence on the biocontrol efficacy of termites. Coptotermes formosanus Shiraki is one of the most economically important termite pests worldwide. Currently, the large-scale identification of immune genes in C. formosanus is primarily based on cDNA library or transcriptome data rather than at the genomic level. In this study, we identified the immune genes of C. formosanus according to genome-wide analysis. In addition, our transcriptome analysis showed that immune genes were significantly downregulated when C. formosanus was exposed to the fungus Metarhizium anisopliae or nematodes.. Finally, we found that injecting dsRNA to inhibit three immune genes (CfPGRP-SC1, CfSCRB3, and CfHemocytin), which recognize infectious microbes, significantly increased the lethal effect of M. anisopliae on termites. These immune genes show great potential for C. formosanus management based on RNAi. These results also increase the number of known immune genes in C. formosanus which will provide a more comprehensive insight into the molecular basis of immunity in termites.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dan-Ni Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yi Feng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
46
|
Pujhari S, Hughes GL, Pakpour N, Suzuki Y, Rasgon JL. Wolbachia-induced inhibition of O'nyong nyong virus in Anopheles mosquitoes is mediated by Toll signaling and modulated by cholesterol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543096. [PMID: 37397989 PMCID: PMC10312510 DOI: 10.1101/2023.05.31.543096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enhanced host immunity and competition for metabolic resources are two main competing hypotheses for the mechanism of Wolbachia-mediated pathogen inhibition in arthropods. Using an Anopheles mosquito - somatic Wolbachia infection - O'nyong nyong virus (ONNV) model, we demonstrate that the mechanism underpinning Wolbachia-mediated virus inhibition is up-regulation of the Toll innate immune pathway. However, the viral inhibitory properties of Wolbachia were abolished by cholesterol supplementation. This result was due to Wolbachia-dependent cholesterol-mediated suppression of Toll signaling rather than competition for cholesterol between Wolbachia and virus. The inhibitory effect of cholesterol was specific to Wolbachia-infected Anopheles mosquitoes and cells. These data indicate that both Wolbachia and cholesterol influence Toll immune signaling in Anopheles mosquitoes in a complex manner and provide a functional link between the host immunity and metabolic competition hypotheses for explaining Wolbachia-mediated pathogen interference in mosquitoes. In addition, these results provide a mechanistic understanding of the mode of action of Wolbachia-induced pathogen blocking in Anophelines, which is critical to evaluate the long-term efficacy of control strategies for malaria and Anopheles-transmitted arboviruses.
Collapse
Affiliation(s)
- Sujit Pujhari
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Grant L Hughes
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Yasutsugu Suzuki
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Dong Y, Hou Q, Ye M, Li Z, Li J, You M, Yuchi Z, Lin J, You S. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104737. [PMID: 37236330 DOI: 10.1016/j.dci.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Qing Hou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Min Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Jingge Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Junhan Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China; Department of Food and Biological Engineering, Fujian Vocational College of Bioengineering, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| |
Collapse
|
48
|
Ren F, Yan J, Wang X, Xie Y, Guo N, Swevers L, Sun J. Peptidoglycan Recognition Protein S5 of Bombyx mori Facilitates the Proliferation of Bombyx mori Cypovirus 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6338-6347. [PMID: 37053003 DOI: 10.1021/acs.jafc.3c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus 1 (BmCPV1), a primary pathogen of the silkworm, is a typical dsRNA virus belonging to the Reoviridae family. In this study, a total of 2520 differentially expressed genes (DEGs) were identified by RNA-seq analysis of the silkworm midgut after BmCPV1 infection and Gene Ontology (GO) functional annotation showed that the DEGs predominantly functioned in binding (molecular function), cell (cellular component), and cellular processes (biological process). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation revealed that the DEGs were mainly distributed in global and overview metabolism maps, translation, and signal transduction. Among the identified DEGs, BmPGRP-S5 belongs to the peptidoglycan recognition protein (PGRP) family. Previous studies have revealed that PGRPs were involved in the interactions between silkworm and BmCPV1. Here, we explored the effect of BmPGRP-S5 on BmCPV1 replication and demonstrated that BmPGRP-S5 promotes the proliferation of BmCPV1 in BmN cells through overexpression or knockdown experiments. Knocking down of BmPGRP-S5 in silkworm larvae similarly promoted the proliferation of BmCPV1. Through experimental validation, we therefore determined that BmPGRP-S5 acts as a proviral host factor for BmCPV1 infection. This study clarifies the proliferation mechanism of BmCPV1 and provides new insights into the functional role of BmPGRP-S5.
Collapse
Affiliation(s)
- Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiming Yan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yukai Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
49
|
Guo H, Jia N, Chen H, Xie D, Chi D. Preliminary Analysis of Transcriptome Response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria bassiana under Short-Term Starvation. INSECTS 2023; 14:insects14050409. [PMID: 37233037 DOI: 10.3390/insects14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. A transcriptome analysis was performed on a freshly caught group, a fasting treatment control group, and a treatment group inoculated with a wild B. bassiana strain, SBM-03. Under the conditions of 72-h fasting and a low temperature of 16 ± 1 °C, (i) in the control group, 13,135 of 16,969 genes were downregulated. However, in the treatment group, 14,558 of 16,665 genes were upregulated. (ii) In the control group, the expression of most genes in the upstream and midstream of the Toll and IMD pathways was downregulated, but 13 of the 21 antimicrobial peptides were still upregulated. In the treatment group, the gene expression of almost all antimicrobial peptides was increased. Several AMPs, including cecropin, gloverin, and gallerimycin, may have a specific inhibitory effect on B. bassiana. (iii) In the treatment group, one gene in the glutathione S-transferase system and four genes in the cytochrome P450 enzyme family were upregulated, with a sharp rise in those that were upregulated significantly. In addition, most genes of the peroxidase and catalase families, but none of the superoxide dismutase family were upregulated significantly. Through innovative fasting and lower temperature control, we have a certain understanding of the specific defense mechanism by which D. sylvestrella larvae may resist B. bassiana in the pre-wintering period. This study paves the way for improving the toxicity of B. bassiana to Dioryctria spp.
Collapse
Affiliation(s)
- Hongru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Niya Jia
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huanwen Chen
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dan Xie
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
50
|
He L, Zhang C, Yang H, Ding B, Yang HZ, Zhang SW. Characterization and Functional Analysis of Toll Receptor Genes during Antibacterial Immunity in the Green Peach Aphid Myzus persicae (Sulzer). INSECTS 2023; 14:275. [PMID: 36975960 PMCID: PMC10059696 DOI: 10.3390/insects14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The insect Toll receptor is one of the key members of the Toll signaling pathway, which plays an indispensable role in insect resistance to pathogen infection. Herein, we cloned and characterized five Toll receptor genes from Myzus persicae (Sulzer), which were found to be highly expressed in the first-instar nymphs and adults (both wingless and winged) at different developmental stages. Expressions of MpToll genes were highest in the head, followed by the epidermis. High transcription levels were also found in embryos. Expressions of these genes showed different degrees of positive responses to infection by Escherichia coli and Staphylococcus aureus. The expression of MpToll6-1 and MpToll7 significantly increased after infection with E. coli, whereas the expression of MpToll, MpToll6, MpToll6-1, and MpTollo continuously increased after infection with S. aureus. RNA interference-mediated suppressed expression of these genes resulted in a significant increase in the mortality of M. persicae after infection with the two bacterial species compared with that in the control group. These results suggest that MpToll genes play vital roles in the defense response of M. persicae against bacteria.
Collapse
|