1
|
Ke X, Wu Q, Cai S, Wang C, Lu T, Sun Z, Tian X, Wu X, Wang B, Sun B. Dl-3-n-Butylphthalide enhances the survival of rat bone marrow stem cells via a reactive oxygen species mediated Erk1/2 signaling pathway. Brain Res 2025; 1855:149551. [PMID: 40086743 DOI: 10.1016/j.brainres.2025.149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Survival of bone marrow stem cells (BMSCs) is crucial for successful bone marrow transplantation. However, the underlying molecular mechanisms remain inadequately understood. Our previous research has demonstrated that dl-3-n-butylphthalide (NBP) can protect rat BMSCs (rBMSCs) from cell death via its antioxidative properties and by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. The findings suggest that the PI3K/Akt pathway may be one of the primary targets through which NBP exert its protective effects. In this study, we explored an additional signaling pathway to further elucidate the molecular mechanisms involved in NBP-mediated protection against oxidative stress injury in rBMSCs. Oxidative stress was induced in rBMSCs using hydrogen peroxide (H2O2), imitating the cerebral ischemia microenvironment surrounding transplanted cells in vitro. The protective effects of NBP on rBMSCs against apoptosis were observed, achieving by decreasing the level of reduce reactive oxygen species (ROS) and malondialdehyde (MDA) while simultaneously increasing the concentration of superoxide dismutase (SOD). Notably, these protective effects were partially inhibited by U0126, an extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor, which enhanced the suppression of NBP's antiapoptotic effects. Our results indicated that NBP could protect rBMSCs from apoptosis through modulation of ROS/Erk pathways. Further investigations are warranted to clarify the unknown mechanisms.
Collapse
Affiliation(s)
- Xianjin Ke
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Qianqian Wu
- Department of Electrophysiology Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Shikun Cai
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Chengyun Wang
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Ting Lu
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Zhenjie Sun
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Xiangyang Tian
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China
| | - Xian Wu
- Department of Stomatology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Bingjian Wang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China.
| | - Bo Sun
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, PR China; Department of Neurology, The Huaian Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|
2
|
Hayward L, Baud MGJ. Cysteine sulfinic acid and sulfinylated peptides. RSC Chem Biol 2025:d5cb00040h. [PMID: 40406162 PMCID: PMC12093155 DOI: 10.1039/d5cb00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025] Open
Abstract
Cysteine sulfinic acid (CSA) is a stable post translational modification in nature. While long considered to be an irreversible by-product of accidental overoxidation of the cysteine sulfur, evidence in the last two decades has accumulated for its role in numerous and tightly regulated mechanisms. Proteomics studies in the last two decades have identified CSA in hundreds of cellular proteins, highlighting its omnipresence at the core of the cysteine redoxome. Elsewhere, structural studies have shed initial light on the molecular mechanisms underlying CSA reduction in vivo by the sulfiredoxin (Srx) enzyme. While peroxiredoxins have for a long time been the only known substrates to be turned over by Srx, recent studies have uncovered a plethora of potential new substrates of Srx, opening new avenues of investigation in fundamental biology, but also possibly opening new opportunities for developing novel medicines targeting the redoxome, especially in cancer and neurodegeneration. This review first summarises important knowledge surrounding the stereo-electronics and biochemical properties of CSA, including how it is reduced by Srx. In a second part, it highlights the chemical methods recently developed for CSA characterisation, with important examples of electrophilic probes for CSA covalent adduct formation. Crucially, in vitro biochemical studies of CSA and its peptides have historically proven difficult, in great part due to the limitations associated with the few existing synthetic methods available. Here, we also provide a summary of synthetic methods currently available for CSA incorporation into peptides, and their current limitations.
Collapse
Affiliation(s)
- Laura Hayward
- School of Chemistry and Chemical Engineering, University of Southampton Southampton SO17 1BJ UK
| | - Matthias G J Baud
- School of Chemistry and Chemical Engineering, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
3
|
Wang N, Tan S, Liu H, Nie Y, Wang M, Liu H, Han S, Wu Z, Ma J, Sha Z. SHP-1 negatively regulates LPS-induced M1 polarization, phagocytic activity, inflammation and oxidative stress in primary macrophages of Chinese tongue sole (Cynoglossussemilaevis). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110375. [PMID: 40306377 DOI: 10.1016/j.fsi.2025.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Macrophages serve as the primary effector cells in antibacterial immunity in teleost, engaging in both innate and adaptive immune response. However, the specific role of SHP-1, a multi-functional protein tyrosine phosphatase, in teleost macrophages remains elusive. In this study, we first established a cellular immune model using lipopolysaccharide (LPS), a major pathogenic component of Gram-negative bacteria, and then we comprehensively elucidated the function of SHP-1 in primary macrophages derived from Chinese tongue sole. Our results demonstrated that overexpression of SHP-1 inhibited M1 polarization, phagocytosis, respiratory burst of primary macrophages, suppressing the generation of excessive reactive oxygen species (ROS), malondialdehyde (MDA), and proinflammatory cytokines (il-1β, il-6), but increasing the expression of superoxide dismutase (SOD) and anti-inflammatory cytokine (il-10). Whereas SHP-1 silencing (through siRNA or inhibitor) exerted completely opposite effects, further emphasizing its roles as a negative regulator. More in-depth, we revealed that SHP-1 suppressed the activation/transduction of the TLR5-MYD88-NFκB and JAK-STAT3 signal pathways, thereby mitigating the excessive immune reaction in macrophages of Chinese tongue sole. In summary, our findings systematically delineate the functions of SHP-1 and offer mechanistic insights into the management of oxidative stress/inflammation-related diseases, which will contribute to the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hui Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanzhao Nie
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Muyuan Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Paulenda T, Echalar B, Potuckova L, Vachova V, Kleverov DA, Mehringer J, Potekhina E, Jacoby A, Sen D, Nelson C, Stegeman R, Sukhov V, Kemper D, Lichti CF, Day NJ, Zhang T, Husarcikova K, Bambouskova M, Fremont DH, Qian WJ, Djuranovic S, Pavlovic-Djuranovic S, Belousov VV, Krezel AM, Artyomov MN. Itaconate modulates immune responses via inhibition of peroxiredoxin 5. Nat Metab 2025:10.1038/s42255-025-01275-0. [PMID: 40251412 DOI: 10.1038/s42255-025-01275-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
The immunoregulatory metabolite itaconate accumulates in innate immune cells upon Toll-like receptor stimulation. In response to macrophage activation by lipopolysaccharide, itaconate inhibits inflammasome activation and boosts type I interferon signalling; however, the molecular mechanism of this immunoregulation remains unclear. Here, we show that the enhancement of type I interferon secretion by itaconate depends on the inhibition of peroxiredoxin 5 and on mitochondrial reactive oxygen species. We find that itaconate non-covalently inhibits peroxiredoxin 5, leading to the modulation of mitochondrial peroxide in activating macrophages. Through genetic manipulation, we confirm that peroxiredoxin 5 modulates type I interferon secretion in macrophages. The non-electrophilic itaconate mimetic 2-methylsuccinate inhibits peroxiredoxin 5 and phenocopies immunoregulatory action of itaconate on type I interferon and inflammasome activation, providing further support for a non-covalent inhibition of peroxiredoxin 5 by itaconate. Our work provides insight into the molecular mechanism of actions and biological rationale for the predominantly immune specification of itaconate.
Collapse
Affiliation(s)
- Tomas Paulenda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucie Potuckova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Veronika Vachova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Denis A Kleverov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Johannes Mehringer
- Bruker Biosensors, Munich, Germany
- Kurt Schwabe Institute for Sensor Technologies, Waldheim, Germany
| | - Ekaterina Potekhina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Devashish Sen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rick Stegeman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir Sukhov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle Kemper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, St. Louis, MO, USA
| | - Nicholas J Day
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monika Bambouskova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Cejudo FJ. NTRC's novel role: Bridging chloroplast redox oscillations and nuclear circadian clock. MOLECULAR PLANT 2025; 18:560-562. [PMID: 40040285 DOI: 10.1016/j.molp.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
6
|
Kakchingtabam P, Shahnaj S, Kumari A, Longjam J, Wungnaopam AN, Singh KH, Siddiqui NA, Laishram RS, Fisher AB, Rahaman H. Role of aspartate 42 and histidine 79 in the aiPLA 2 activity and oligomeric status of Prdx6 at low pH. Sci Rep 2025; 15:8359. [PMID: 40069286 PMCID: PMC11897370 DOI: 10.1038/s41598-025-91218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique non-seleno peroxidase, is a bifunctional protein with GSH peroxidase at pH 7.4 and calcium independent phospholipase A2 (aiPLA2) activities at pH 4.0. Changes in pH brings about alteration in the conformational and thermodynamic stability of Prdx6. For instance, under acidic condition (pH 4.0), Prdx6 forms higher oligomers with concommittant gain in aiPLA2 activity that is resistant to thermal denaturation. However, there has been no molecular level understanding of how low pH induces formation of oligomers. In the present study, site directed mutagenesis of two conserved amino acid residues, Asp42 and His79, was used to study the molecular basis for the influence of pH on the oligomeric state of Prdx6. We observed that mutation at Asp42 and His79 residues by Ala did not result in a significant change in its peroxidase activity at neutral pH 7.4, but its aiPLA2 activity at low pH 4.0 decreased significantly. At this pH condition, both mutants exhibit highly conserved alpha-helix content but fluctuating tryptophan micro-environment with partly exposed hydrophobic patches that render the formation of oligomers. DLS measurements and analytical SEC revealed that Wt Prdx6 forms oligomers at low pH but not the mutant proteins suggesting the importance of these residues in pH sensing and oligomerization. These results suggest that Asp42 and His79 interact each other to induce conformational change of Prdx6 that triggers the oligomerization of Prdx6 at low pH.
Collapse
Affiliation(s)
| | - Sharifun Shahnaj
- Department of Biotechnology, Manipur University, Imphal, Manipur, 795003, India
| | - Anju Kumari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Japani Longjam
- Department of Biotechnology, Manipur University, Imphal, Manipur, 795003, India
| | - A N Wungnaopam
- Department of Biotechnology, Manipur University, Imphal, Manipur, 795003, India
| | | | - Nasir A Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-6068, USA
| | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Imphal, Manipur, 795003, India.
| |
Collapse
|
7
|
Villar SF, Ferrer-Sueta G, Denicola A. Different oligomerization dynamics of reduced and oxidized human peroxiredoxin 1 and 2. Biochem Biophys Res Commun 2025; 750:151392. [PMID: 39893890 DOI: 10.1016/j.bbrc.2025.151392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Human peroxiredoxin 1 and peroxiredoxin 2 (HsPrx1 and HsPrx2), both cytosolic antioxidant enzymes share more than 90% sequence similitude, peroxide substrate specificity, reactivity, and an oligomeric ensemble of five homodimers forming a decamer. However, it is suggested that they serve different purposes in the cell. The question, whether the decamer-dimer equilibrium is relevant to the peroxidase activity and signaling functions has a long-standing history within the field, yet assessing its significance is still a challenge. We have studied the oligomerization dynamics of HsPrx1 and HsPrx2 in their dithiol and disulfide forms to find differences that could provide an explanation for their distinct functions. In this study, we performed analytic size exclusion chromatography (SEC) and fluorescence emission lifetime phasor analysis (FELPA) at different protein concentrations and quantified the relative fraction of the decamer species. We observed that reduced HsPrx2 forms stable decamers that do not fully dissociate, while HsPrx1 exhibits a highly cooperative transition from dimers to decamers with increasing concentration. Disulfide formation at the active site has a larger disruptive effect on the oligomerization equilibrium of HsPrx2 than that of HsPrx1. By performing kinetic measurements using FELPA, we observed that HsPrx2 goes from oxidized dimers to reduced decamers almost 20 times faster than HsPrx1 upon addition of DTT. Lastly, both SEC and FELPA results revealed that the mixture of reduced HsPrx1 and HsPrx2 yields hybrid decamers, that have not been looked for in vivo yet.
Collapse
Affiliation(s)
- Sebastián F Villar
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
8
|
Kang DH, Kim J, Lee J, Kang SW. The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling. Free Radic Biol Med 2025; 229:300-311. [PMID: 39848342 DOI: 10.1016/j.freeradbiomed.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure. The ETP derivatives with small side chains are the bona fide 2-Cys peroxiredoxin (PRX) mimetics that catalyze the H2O2-reducing reaction specifically coupled to the thioredoxin/thioredoxin reductase system. In contrast, the ETP derivatives with linear chains or a heterocyclic group show H2O2-reducing activity in coupling with both thioredoxin and glutathione systems. Moreover, the ETP derivatives with bulky heterocyclic groups almost lose catalytic activity. The 2-Cys PRX mimetics regulate intracellular H2O2 levels, thereby restoring the receptor Tyr kinase signaling and cellular functions disrupted by the absence of 2-Cys PRX in vascular cells. In a rodent model, the 2-Cys PRX mimetics reverse vascular occlusion in the injured carotid arteries by inhibiting smooth muscle hyperplasia and promoting reendothelialization. Thus, this study reveals a novel chemical platform for complementing defective 2-Cys PRX enzymes in biological systems.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiran Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiyoung Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
9
|
Seisenbacher G, Nakic ZR, Borràs E, Sabidó E, Sauer U, de Nadal E, Posas F. Redox proteomics reveal a role for peroxiredoxinylation in stress protection. Cell Rep 2025; 44:115224. [PMID: 39847483 DOI: 10.1016/j.celrep.2024.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/13/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce. Using global proteomic analyses, we show here that the yeast peroxiredoxin Tsa1 interacts with many proteins of essential biological processes, including protein turnover and carbohydrate metabolism. Several of these interactions are of a covalent nature, and we show that failure of peroxiredoxinylation of Gnd1 affects its phosphogluconate dehydrogenase activity and impairs recovery upon stress. Thioredoxins directly remove TSA1-formed mixed disulfide intermediates, thus expanding the role of the thioredoxin-peroxiredoxin redox cycle pair to buffer the redox state of proteins.
Collapse
Affiliation(s)
- Gerhard Seisenbacher
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Zrinka Raguz Nakic
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland; ZHAW School of Life Sciences and Facility Management, Biosystems Technology, 8820 Wädenswil, Switzerland
| | - Eva Borràs
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Centre of Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Eulalia de Nadal
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Francesc Posas
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
MacDiarmid CW, Taggart J, Wang Y, Vashisht A, Qing X, Wohlschlegel JA, Eide DJ. The interactome of the Bakers' yeast peroxiredoxin Tsa1 implicates it in the redox regulation of intermediary metabolism, glycolysis and zinc homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638137. [PMID: 40027620 PMCID: PMC11870615 DOI: 10.1101/2025.02.18.638137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast Saccharomyces cerevisiae, Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ~80 genes. A subset support zinc homeostasis by promoting zinc uptake and its distribution between compartments, while the remainder mediate an "adaptive response" to enhance fitness of zinc deficient cells. The peroxiredoxin Tsa1 is a Zap1-regulated adaptive factor essential for the growth of Zn deficient cells. Tsa1 can function as an antioxidant peroxidase, protein chaperone, or redox sensor: the latter activity oxidizes associated proteins via a redox relay mechanism. We previously reported that in Zn deficient cells, Tsa1 inhibits pyruvate kinase (Pyk1) to conserve phosphoenolpyruvate for aromatic amino acid synthesis. However, this regulation makes a relatively minor contribution to fitness in low zinc, suggesting that Tsa1 targets other pathways important to adaptation. Consistent with this model, the redox sensor function of Tsa1 was essential for growth of ZnD cells. Using an MBP-tagged version of Tsa1, we identified a redox-sensitive non-covalent interaction with Pyk1, and applied this system to identify multiple novel interacting partners. This interactome implicates Tsa1 in the regulation of critical processes including many Zn-dependent metabolic pathways. Interestingly, Zap1 was a preferred Tsa1 target, as Tsa1 strongly promoted the oxidation of Zap1 activation domain 2, and was essential for full Zap1 activity. Our findings reveal a novel posttranslational response to Zn deficiency, overlain on and interconnected with the Zap1-mediated transcriptional response.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- Department of Pediatrics, University of Wisconsin-Madison, WI 53706
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - Xin Qing
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| |
Collapse
|
11
|
Liu S, Pi J, Zhang Q. Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin. Antioxidants (Basel) 2025; 14:235. [PMID: 40002419 PMCID: PMC11852172 DOI: 10.3390/antiox14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in cell signaling in response to physiological and environmental perturbations. H2O2 can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can be reduced by thioredoxin (TRX)/TRX reductase (TR). At high levels, H2O2 can also hyperoxidize sulfenylated PRX into a sulfinic acid that can be reduced by sulfiredoxin (SRX). Therefore, PRX, TRX, TR, and SRX (abbreviated as PTRS system here) constitute the coupled sulfenylation and sulfinylation cycle (CSSC), where certain oxidized PRX and TRX forms also function as redox signaling intermediates. Earlier studies have revealed that the PTRS system is capable of rich signaling dynamics, including linearity, ultrasensitivity/switch-like response, nonmonotonicity, circadian oscillation, and possibly, bistability. However, the origins of ultrasensitivity, which is fundamentally required for redox signal amplification, have not been adequately characterized, and their roles in enabling complex nonlinear dynamics of the PTRS system remain to be determined. Through in-depth mathematical modeling analyses, here we revealed multiple sources of ultrasensitivity that are intrinsic to the CSSC, including zero-order kinetic cycles, multistep H2O2 signaling, and a mechanism arising from diminished H2O2 removal at high PRX hyperoxidation state. The CSSC, structurally a positive feedback loop, is capable of bistability under certain parameter conditions, which requires embedding multiple sources of ultrasensitivity identified. Forming a negative feedback loop with cytosolic SRX as previously observed in energetically active cells, the mitochondrial PTRS system (where PRX3 is expressed) can produce sustained circadian oscillations through supercritical Hopf bifurcations. In conclusion, our study provided novel quantitative insights into the dynamical complexity of the PTRS system and improved appreciation of intracellular redox signaling.
Collapse
Affiliation(s)
- Shengnan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
O'Flaherty C. Redox signaling regulation in human spermatozoa: a primary role of peroxiredoxins. Asian J Androl 2025:00129336-990000000-00281. [PMID: 39902615 DOI: 10.4103/aja2024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
ABSTRACT Reactive oxygen species (ROS) play a dual role in mammalian spermatozoa. At high levels, they are detrimental to sperm function since they can promote oxidative stress that produces oxidation of protein, lipids, and sperm DNA. This oxidative damage is associated with male infertility. On the other hand, when ROS are produced at low levels, they participate in the redox signaling necessary for sperm capacitation. Capacitation-associated ROS are produced by the sperm oxidase, whose identity is still elusive, located in the plasma membrane of the spermatozoon. ROS, such as superoxide anion, hydrogen peroxide, nitric oxide, and peroxynitrite, activate protein kinases and inactivate protein phosphatases with the net increase of specific phosphorylation events. Peroxiredoxins (PRDXs), antioxidant enzymes that fight against oxidative stress, regulate redox signaling during capacitation. Among them, PRDX6, which possesses peroxidase and calcium-independent phospholipase A2 (iPLA2) activities, is the primary regulator of redox signaling and the antioxidant response in human spermatozoa. The lysophosphatidic acid signaling is essential to maintain sperm viability by activating the phosphatidylinositol 3-kinase/protein kinase (PI3K/AKT) pathway, and it is regulated by PRDX6 iPLA2, protein kinase C (PKC), and receptor-type protein tyrosine kinase. The understanding of redox signaling is crucial to pave the way for novel diagnostic tools and treatments of male infertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Department of Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 1Y6, Canada
- The Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
13
|
Pace PE, Fu L, Hampton MB, Winterbourn CC. Redox proteomic analysis of H 2O 2 -treated Jurkat cells and effects of bicarbonate and knockout of peroxiredoxins 1 and 2. Free Radic Biol Med 2025; 227:221-232. [PMID: 39489196 DOI: 10.1016/j.freeradbiomed.2024.10.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oxidation of thiol proteins and redox signaling occur in cells exposed to H2O2 but mechanisms are unclear. We used redox proteomics to seek evidence of oxidation of specific proteins either by a mechanism involving reaction of H2O2 with CO2/bicarbonate to give the more reactive peroxymonocarbonate, or via a relay involving peroxiredoxins (Prdxs). Changes in oxidation state of specific Cys-SH residues on treating Jurkat T lymphoma cells with H2O2 were measured by isotopically labeling reduced thiols and analysis by mass spectrometry. The effects of bicarbonate and of knocking out either Prdx1 or Prdx2 were examined. Approximately 14,000 Cys-peptides were detected, of which ∼1 % underwent 2-10 fold loss in thiol content with H2O2. Those showing the most oxidation were not affected by the presence of bicarbonate or knockout of either Prdx. Consistent with previous evidence that bicarbonate potentiates inactivation of glyceraldehyde-3-phosphate dehydrogenase, the GAPDH active site Cys residues were significantly more sensitive to H2O2 when bicarbonate was present. Several other proteins were identified as promising candidates for further investigation. Although we identified some potential protein candidates for Prdx-dependent oxidation, most of the significant differences between KO and WT cells were seen in proteins for which H2O2 unexpectedly increased their CysSH content over untreated cells. We conclude that facilitation of protein oxidation by bicarbonate or Prdx-mediated relays is restricted to a small number of proteins and is insufficient to explain the majority of the oxidation of the cell thiols that occured in response to H2O2.
Collapse
Affiliation(s)
- Paul E Pace
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Mark B Hampton
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine C Winterbourn
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
14
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
15
|
Hilgers RH, Das KC. Redox Regulation of K + Channel: Role of Thioredoxin. Antioxid Redox Signal 2024; 41:818-844. [PMID: 39099341 PMCID: PMC11631806 DOI: 10.1089/ars.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Significance: Potassium channels regulate the influx and efflux of K+ ions in various cell types that generate and propagate action potential associated with excitation, contraction, and relaxation of various cell types. Although redox active cysteines are critically important for channel activity, the redox regulation of K+ channels by thioredoxin (Trx) has not been systematically reviewed. Recent Advances: Redox regulation of K+ channel is now increasingly recognized as drug targets in the pathological condition of several cardiovascular disease processes. The role of Trx in regulation of these channels and its implication in pathological conditions have not been adequately reviewed. This review specifically focuses on the redox-regulatory role of Trx on K+ channel structure and function in physiological and pathophysiological conditions. Critical Issues: Ion channels, including K+ channel, have been implicated in the functioning of cardiomyocyte excitation-contraction coupling, vascular hyperpolarization, cellular proliferation, and neuronal stimulation in physiological and pathophysiological conditions. Although oxidation-reduction of ion channels is critically important in their function, the role of Trx, redox regulatory protein in regulation of these channels, and its implication in pathological conditions need to be studied to gain further insight into channel function. Future Directions: Future studies need to map all redox regulatory pathways in channel structure and function using novel mouse models and redox proteomic and signal transduction studies, which modulate various currents and altered excitability of relevant cells implicated in a pathological condition. We are yet at infancy of studies related to redox control of various K+ channels and structured and focused studies with novel animal models. Antioxid. Redox Signal. 41, 818-844.
Collapse
Affiliation(s)
- Rob H.P. Hilgers
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
16
|
Wu R, Lian S, He Y, Li Z, Feng W, Zhao Y, Yan H. Thiol-containing hyperbranched polysiloxane for scavenging reactive oxygen species. J Mater Chem B 2024; 12:10584-10592. [PMID: 39318226 DOI: 10.1039/d4tb01567c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Unconventional luminescent polymers have attracted considerable attention in the biological field due to their intrinsic fluorescence properties and excellent biocompatibility. However, exploring the luminescent properties of thiol-containing polymers and the mechanism of their scavenging of ROS remains unclear. In this work, we synthesised three kinds of hyperbranched polysiloxanes (HE, HP, and HB) with terminal thiol groups containing different chain lengths by the polycondensation reaction. Surprisingly, HP exhibits longer-wavelength emission at 480 nm with a quantum yield of 12.23% compared to HE and HB. Experiments and density functional theory (DFT) calculations have revealed that the rigidity of the conformation is enhanced by substantial hydrogen bonds and through-space O⋯O interactions in the polymer structure. These interactions, combined with the rigid carbon chains, balance the flexibility of the Si-O-C chain segments, which emerges as a critical factor contributing to the superior fluorescence performance of HP. In addition, HP exhibits excellent biocompatibility and ROS scavenging ability with a scavenging capacity of up to 35.095%. This work provides a new fluorescent polymer for scavenging ROS for the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sixian Lian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zheng Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yan Zhao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
17
|
Hou Y, Qiao J, Hou S, Wang Y, Wang Q. Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206. World J Microbiol Biotechnol 2024; 40:359. [PMID: 39432194 DOI: 10.1007/s11274-024-04158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) contributes to the cellular defense against reactive oxygen species. However, it remains understudied in psychrophiles. Amino acid comparison demonstrated that AhpC from Psychrobacter sp. ANT206 (ANT206) (PsAhpC) revealed fewer numbers of Lys and more numbers of Gly, which might have favored higher flexibility at low temperature. The recombinant PsAhpC (rPsAhpC) was most active at 25 °C and retained 35% of its residual activity at 0 °C, indicating that it was a cold-adapted enzyme. Additionally, rPsAhpC demonstrated significant salt tolerance, sustaining its activity in the presence of 4.0 M NaCl. Molecular dynamics simulations indicated that PsAhpC had comparatively loose conformation, which facilitated reactions at low temperatures. Subsequently, an ahpc knockout mutant was constructed, and the growth rate of the knockout mutant significantly decreased, suggesting that ahpc might be crucial for the growth of ANT206 at low temperatures. The findings provide a robust foundation for further investigation into the structural features and catalytic characterization of cold-adapted AhpC. The structural characteristics of PsAhpC and its cold tolerance and salt tolerance may be applied to stress resistance breeding of various organisms.
Collapse
Affiliation(s)
- Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Jiarui Qiao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Shumiao Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| | - Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
18
|
Li Y, Mu Y, Cao Y, Xu D, Liu X, Xu G. Synthesis and Evaluation of Novel 1-Methyl-1 H-pyrazol-5-amine Derivatives with Disulfide Moieties as Potential Antimicrobial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20658-20669. [PMID: 39226125 DOI: 10.1021/acs.jafc.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sulfur-containing compounds have diverse biological functions and are crucial in crop protection chemistry. In this study, a series of novel 1-methyl-1H-pyrazol-5-amine derivatives incorporating disulfide moieties were synthesized and evaluated for their antimicrobial properties. In vitro bioassays demonstrated that compound 7f displayed potent antifungal activity against Valsa mali, with an EC50 value of 0.64 mg/L, outperforming allicin (EC50 = 26.0 mg/L) but lower than tebuconazole (EC50 = 0.33 mg/L). In vivo experiments confirmed that compound 7f could effectively inhibit V. mali infection on apples at a concentration of 100 mg/L, similar to the positive control tebuconazole. Mechanistic studies revealed that compound 7f could induce hyphal shrinkage and collapse, trigger intracellular reactive oxygen species accumulation, modulate antioxidant enzyme activities, initiate lipid peroxidation, and ultimately cause irreversible oxidative damage to the cells of V. mali. Additionally, compound 7b exhibited notable antibacterial activity, particularly against Pseudomonas syringae pv. actinidiae, with a MIC90 value of 1.56 mg/L, surpassing the positive controls allicin, bismerthiazol, and streptomycin sulfate. These findings suggest that 1-methyl-1H-pyrazol-5-amine derivatives containing disulfide moieties hold promise as potent candidates for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuxin Mu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
19
|
Guo L, Ding Z, Hu J, Liu S. Efficient Encapsulation of β-Lapachone into Self-Immolative Polymer Nanoparticles for Cyclic Amplification of Intracellular Reactive Oxygen Species Stress. ACS NANO 2024. [PMID: 39263977 DOI: 10.1021/acsnano.4c09232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The selective upregulation of intracellular oxidative stress in cancer cells presents a promising approach for effective cancer treatment. In this study, we report the integration of enzyme catalytic amplification and chemical amplification reactions in β-lapachone (Lap)-loaded micellar nanoparticles (NPs), which are self-assembled from reactive oxygen species (ROS)-responsive self-immolative polymers (SIPs). This integration enables cyclic amplification of intracellular oxidative stress in cancer cells. Specifically, we have developed ROS-responsive SIPs with phenylboronic ester triggering motifs and hexafluoroisopropanol moieties in the side chains, significantly enhancing Lap loading efficiency (98%) and loading capacity (33%) through multiple noncovalent interactions. Upon ROS activation in tumor cells, the Lap-loaded micellar NPs disassemble, releasing Lap and generating additional ROS via enzyme catalytic amplification. This process elevates intracellular oxidative stress and triggers polymer depolymerization in a positive feedback loop. Furthermore, the degradation of SIPs via chemical amplification produces azaquinone methide intermediates, which consume intracellular thiol-related substrates, disrupt intracellular redox hemostasis, further intensify oxidative stress, and promote cancer cell apoptosis. This work introduces a strategy to enhance intracellular oxidative stress by combining enzymatic and chemical amplification reactions, providing a potential pathway for the development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Lingxiao Guo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zexuan Ding
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| |
Collapse
|
20
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
21
|
Hines MR, Gomez-Contreras PC, Liman S, Wilson AM, Lu KJ, O'Neill JA, Fisher JS, Fredericks DC, Wagner BA, Buettner GR, Van Remmen H, Coleman MC. A reciprocal relationship between mitochondria and lipid peroxidation determines the chondrocyte intracellular redox environment. Redox Biol 2024; 75:103306. [PMID: 39133964 PMCID: PMC11366903 DOI: 10.1016/j.redox.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Kevin J Lu
- The University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
23
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
24
|
Selleghin-Veiga G, Magpali L, Picorelli A, Silva FA, Ramos E, Nery MF. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. J Mol Evol 2024; 92:300-316. [PMID: 38735005 DOI: 10.1007/s00239-024-10170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Felipe A Silva
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Elisa Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
25
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
26
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
27
|
Castro H, Rocha MI, Duarte M, Vilurbina J, Gomes-Alves AG, Leao T, Dias F, Morgan B, Deponte M, Tomás AM. The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol 2024; 71:103122. [PMID: 38490068 PMCID: PMC10955670 DOI: 10.1016/j.redox.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are H2O2-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for H2O2 and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external H2O2in vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.
Collapse
Affiliation(s)
- Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Vilurbina
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Georgina Gomes-Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Teresa Leao
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Filipa Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruce Morgan
- Institut für Biochemie, Zentrum für Human und Molekularbiologie (ZHMB), Universität des Saarlandes, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
28
|
Cosse M, Rehders T, Eirich J, Finkemeier I, Selinski J. Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase. PHYSIOLOGIA PLANTARUM 2024; 176:e14340. [PMID: 38741259 DOI: 10.1111/ppl.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.
Collapse
Affiliation(s)
- Maike Cosse
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Tanja Rehders
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
29
|
Pillay CS, Rohwer JM. Computational models as catalysts for investigating redoxin systems. Essays Biochem 2024; 68:27-39. [PMID: 38356400 DOI: 10.1042/ebc20230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others. Consequently, redoxin activities have been quantified by enzyme kinetic parameters in vitro, and redox potentials or redox ratios within cells. By analyzing all the reactions within these systems, computational models showed that many kinetic properties attributed to redoxins were due to system-level effects. Models of cellular redoxin networks have also been used to estimate intracellular hydrogen peroxide levels, analyze redox signaling and couple omic and kinetic data to understand the regulation of these networks in disease. Computational modeling has emerged as a powerful complementary tool to traditional redoxin enzyme kinetic and cellular assays that integrates data from a number of sources into a single quantitative framework to accelerate the analysis of redoxin systems.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
30
|
Guevara-Flores A, Nava-Balderas G, de Jesús Martínez-González J, Vásquez-Lima C, Rendón JL, del Arenal Mena IP. A Physiological Approach to Explore How Thioredoxin-Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H 2O 2 in Cysticerci of Taenia. Antioxidants (Basel) 2024; 13:444. [PMID: 38671892 PMCID: PMC11047392 DOI: 10.3390/antiox13040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxins (Prxs) and glutathione peroxidases (GPxs) are the main enzymes of the thiol-dependent antioxidant systems responsible for reducing the H2O2 produced via aerobic metabolism or parasitic organisms by the host organism. These antioxidant systems maintain a proper redox state in cells. The cysticerci of Taenia crassiceps tolerate millimolar concentrations of this oxidant. To understand the role played by Prxs in this cestode, two genes for Prxs, identified in the genome of Taenia solium (TsPrx1 and TsPrx3), were cloned. The sequence of the proteins suggests that both isoforms belong to the class of typical Prxs 2-Cys. In addition, TsPrx3 harbors a mitochondrial localization signal peptide and two motifs (-GGLG- and -YP-) associated with overoxidation. Our kinetic characterization assigns them as thioredoxin peroxidases (TPxs). While TsPrx1 and TsPrx3 exhibit the same catalytic efficiency, thioredoxin-glutathione reductase from T. crassiceps (TcTGR) was five and eight times higher. Additionally, the latter demonstrated a lower affinity (>30-fold) for H2O2 in comparison with TsPrx1 and TsPrx3. The TcTGR contains a Sec residue in its C-terminal, which confers additional peroxidase activity. The aforementioned aspect implies that TsPrx1 and TsPrx3 are catalytically active at low H2O2 concentrations, and the TcTGR acts at high H2O2 concentrations. These results may explain why the T. crassiceps cysticerci can tolerate high H2O2 concentrations.
Collapse
Affiliation(s)
- Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico; (A.G.-F.); (J.d.J.M.-G.); (C.V.-L.); (J.L.R.)
| | - Gabriela Nava-Balderas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico
| | - José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico; (A.G.-F.); (J.d.J.M.-G.); (C.V.-L.); (J.L.R.)
| | - César Vásquez-Lima
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico; (A.G.-F.); (J.d.J.M.-G.); (C.V.-L.); (J.L.R.)
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico; (A.G.-F.); (J.d.J.M.-G.); (C.V.-L.); (J.L.R.)
| | - Irene Patricia del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, Mexico City 04510, Mexico; (A.G.-F.); (J.d.J.M.-G.); (C.V.-L.); (J.L.R.)
| |
Collapse
|
31
|
MacDiarmid CW, Taggart J, Kubisiak M, Eide DJ. Restricted glycolysis is a primary cause of the reduced growth rate of zinc-deficient yeast cells. J Biol Chem 2024; 300:107147. [PMID: 38460940 PMCID: PMC11001634 DOI: 10.1016/j.jbc.2024.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Kubisiak
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
33
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
34
|
Griffith M, Araújo A, Travasso R, Salvador A. The architecture of redox microdomains: Cascading gradients and peroxiredoxins' redox-oligomeric coupling integrate redox signaling and antioxidant protection. Redox Biol 2024; 69:103000. [PMID: 38150990 PMCID: PMC10829873 DOI: 10.1016/j.redox.2023.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
In the cytosol of human cells under low oxidative loads, hydrogen peroxide is confined to microdomains around its supply sites, due to its fast consumption by peroxiredoxins. So are the sulfenic and disulfide forms of the 2-Cys peroxiredoxins, according to a previous theoretical analysis [Travasso et al., Redox Biology 15 (2017) 297]. Here, an extended reaction-diffusion model that for the first time considers the differential properties of human peroxiredoxins 1 and 2 and the thioredoxin redox cycle predicts important new aspects of the dynamics of redox microdomains. The peroxiredoxin 1 sulfenates and disulfides are more localized than the corresponding peroxiredoxin 2 forms, due to the former peroxiredoxin's faster resolution step. The thioredoxin disulfides are also localized. As the H2O2 supply rate (vsup) approaches and then surpasses the maximal rate of the thioredoxin/thioredoxin reductase system (V), these concentration gradients become shallower, and then vanish. At low vsup the peroxiredoxin concentration determines the H2O2 concentrations and gradient length scale, but as vsup approaches V, the thioredoxin reductase activity gains influence. A differential mobility of peroxiredoxin disulfide dimers vs. reduced decamers enhances the redox polarity of the cytosol: as vsup approaches V, reduced decamers are preferentially retained far from H2O2 sources, attenuating the local H2O2 buildup. Substantial total protein concentration gradients of both peroxiredoxins emerge under these conditions, and the concentration of reduced peroxiredoxin 1 far from the H2O2 sources even increases with vsup. Altogether, the properties of 2-Cys peroxiredoxins and thioredoxin are such that localized H2O2 supply induces a redox and functional polarization between source-proximal regions (redox microdomains) that facilitate peroxiredoxin-mediated signaling and distal regions that maximize antioxidant protection.
Collapse
Affiliation(s)
- Matthew Griffith
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adérito Araújo
- CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3004-143, Coimbra, Portugal.
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
| | - Armindo Salvador
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
35
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
36
|
Shah R, Ibis B, Kashyap M, Boussiotis VA. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism 2024; 151:155747. [PMID: 38042522 PMCID: PMC10872310 DOI: 10.1016/j.metabol.2023.155747] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Reactive oxygen species (ROS) are a group of short-lived highly reactive molecules formed intracellularly from molecular oxygen. ROS can alter biochemical, transcriptional, and epigenetic programs and have an indispensable role in cellular function. In immune cells, ROS are mediators of specialized functions such as phagocytosis, antigen presentation, activation, cytolysis, and differentiation. ROS have a fundamental role in the tumor microenvironment (TME) where they are produced by immune cell-intrinsic and -extrinsic mechanisms. ROS can act as a double-edged sword with short exposures leading to activation in various innate and adaptative immune cells, and prolonged exposures, unopposed by redox balancing antioxidants leading to exhaustion, immunosuppression, and unresponsiveness to cancer immunotherapy. Due to its plasticity and impact on the anti-tumor function of immune cells, attempts are currently in process to harness ROS biology with the purpose to improve contemporary strategies of cancer immunotherapy. Here, we provide a short overview how ROS and various antioxidant systems impact on the function of innate and adaptive immune system cells with emphasis on the TME and immune-based therapies for cancer.
Collapse
Affiliation(s)
- Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Betul Ibis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Monisha Kashyap
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
37
|
Chiribao ML, Díaz-Viraqué F, Libisch MG, Batthyány C, Cunha N, De Souza W, Parodi-Talice A, Robello C. Paracrine Signaling Mediated by the Cytosolic Tryparedoxin Peroxidase of Trypanosoma cruzi. Pathogens 2024; 13:67. [PMID: 38251374 PMCID: PMC10818299 DOI: 10.3390/pathogens13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Peroxiredoxins are abundant and ubiquitous proteins that participate in different cellular functions, such as oxidant detoxification, protein folding, and intracellular signaling. Under different cellular conditions, peroxiredoxins can be secreted by different parasites, promoting the induction of immune responses in hosts. In this work, we demonstrated that the cytosolic tryparedoxin peroxidase of Trypanosoma cruzi (cTXNPx) is secreted by epimastigotes and trypomastigotes associated with extracellular vesicles and also as a vesicle-free protein. By confocal microscopy, we show that cTXNPx can enter host cells by an active mechanism both through vesicles and as a recombinant protein. Transcriptomic analysis revealed that cTXNPx induces endoplasmic reticulum stress and interleukin-8 expression in epithelial cells. This analysis also suggested alterations in cholesterol metabolism in cTXNPx-treated cells, which was confirmed by immunofluorescence showing the accumulation of LDL and the induction of LDL receptors in both epithelial cells and macrophages. BrdU incorporation assays and qPCR showed that cTXNPx has a mitogenic, proliferative, and proinflammatory effect on these cells in a dose-dependent manner. Importantly, we also demonstrated that cTXNPx acts as a paracrine virulence factor, increasing the susceptibility to infection in cTXNPx-pretreated epithelial cells by approximately 40%. Although the results presented in this work are from in vitro studies and likely underestimate the complexity of parasite-host interactions, our work suggests a relevant role for this protein in establishing infection.
Collapse
Affiliation(s)
- María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Montevideo 11000, Uruguay;
| | - Narcisa Cunha
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11000, Uruguay
| | - Carlos Robello
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| |
Collapse
|
38
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
40
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
41
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
42
|
Piñeyro MD, Chiribao ML, Arias DG, Robello C, Parodi-Talice A. Overoxidation and Oligomerization of Trypanosoma cruzi Cytosolic and Mitochondrial Peroxiredoxins. Pathogens 2023; 12:1273. [PMID: 37887789 PMCID: PMC10610341 DOI: 10.3390/pathogens12101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Peroxiredoxins (Prxs) have been shown to be important enzymes for trypanosomatids, counteracting oxidative stress and promoting cell infection and intracellular survival. In this work, we investigate the in vitro sensitivity to overoxidation and the overoxidation dynamics of Trypanosoma cruzi Prxs in parasites in culture and in the infection context. We showed that recombinant m-TXNPx, in contrast to what was observed for c-TXNPx, exists as low molecular mass forms in the overoxidized state. We observed that T. cruzi Prxs were overoxidized in epimastigotes treated with oxidants, and a significant proportion of the overoxidized forms were still present at least 24 h after treatment suggesting that these forms are not actively reversed. In in vitro infection experiments, we observed that Prxs are overoxidized in amastigotes residing in infected macrophages, demonstrating that inactivation of at least part of the Prxs by overoxidation occurs in a physiological context. We have shown that m-TXNPx has a redox-state-dependent chaperone activity. This function may be related to the increased thermotolerance observed in m-TXNPx-overexpressing parasites. This study suggests that despite the similarity between protozoan and mammalian Prxs, T. cruzi Prxs have different oligomerization dynamics and sensitivities to overoxidation, which may have implications for their function in the parasite life cycle and infection process.
Collapse
Affiliation(s)
- María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego G. Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, UNL-CONICET, Santa Fe 3000, Argentina;
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.D.P.); (M.L.C.); (C.R.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
43
|
Sousa RH, Carvalho FE, Daloso DM, Lima-Melo Y, Margis-Pinheiro M, Komatsu S, Silveira JA. Impairment in photosynthesis induced by CAT inhibition depends on the intensity of photorespiration and peroxisomal APX expression in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108066. [PMID: 37797384 DOI: 10.1016/j.plaphy.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
We have previously shown that rice plants silenced for peroxisomal ascorbate peroxidase (OsAPX4-RNAi) display higher resilience to photosynthesis under oxidative stress and photorespiratory conditions. However, the redox mechanisms underlying that intriguing response remain unknown. Here, we tested the hypothesis that favorable effects triggered by peroxisomal APX deficiency on photosynthesis resilience under CAT inhibition are dependent on the intensity of photorespiration associated with the abundance of photosynthetic and redox proteins. Non-transformed (NT) and OsAPX4-RNAi silenced rice plants were grown under ambient (AC) or high CO2 (HC) conditions and subjected to 3-amino-1,2,4-triazole (3-AT)-mediated CAT activity inhibition. Photosynthetic measurements evidenced that OsAPX4-RNAi plants simultaneously exposed to CAT inhibition and HC lost the previously acquired advantage in photosynthesis resilience displayed under AC. Silenced plants exposed to environment photorespiration and CAT inhibition presented lower photorespiration as indicated by smaller Gly/Ser and Jo/Jc ratios and glycolate oxidase activity. Interestingly, when these silenced plants were exposed to HC and CAT-inhibition, they exhibited an inverse response compared to AC in terms of photorespiration indicators, associated with higher accumulation of proteins. Multivariate and correlation network analyses suggest that the proteomics changes induced by HC combined with CAT inhibition are substantially different between NT and OsAPX4-RNAi plants. Our results suggest that the intensity of photorespiration and peroxisomal APX-mediated redox signaling are tightly regulated under CAT inhibition induced oxidative stress, which can modulate the photosynthetic efficiency, possibly via a coordinated regulation of protein abundance and rearrangement, ultimately triggered by crosstalk involving H2O2 levels related to CAT and APX activities in peroxisomes.
Collapse
Affiliation(s)
- Rachel Hv Sousa
- Center of Agricultural Sciences and Biodiversity, Federal University of Cariri, Brazil
| | - Fabricio El Carvalho
- Colombian Corporation for Agricultural Research (AGROSAVIA), CI La Suiza, Rionegro, Colombia
| | - Danilo M Daloso
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Yugo Lima-Melo
- Department of Botany, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Margis-Pinheiro
- Department of Genetics, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui, Japan
| | - Joaquim Ag Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
44
|
Bai Z, Yin W, Liu R, Tang M, Shi X, Luo C, Xie X. PRDX1 Cys52Ser variant alleviates nonalcoholic steatohepatitis by reducing inflammation in mice. Mol Metab 2023; 76:101789. [PMID: 37562742 PMCID: PMC10470253 DOI: 10.1016/j.molmet.2023.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE Peroxiredoxin 1 (PRDX1) is a peroxidase and guards against oxidative stress by scavenging intracellular peroxides, whereas it also has been shown to stimulate inflammatory response by functioning as a chaperone protein. The potential in vivo link between PRDX1's peroxidase activity and its pro-inflammatory activity remains elusive. METHODS We generated peroxidase-dead PRDX1 variant mice by mutating its peroxidatic cysteine at 52 (Cys52) to serine, here referred to as PRDX1Cys52Ser. Trx-TrxR-NADPH coupled activity assay was applied to evaluate the peroxidase activity of global PRDX in PRDX1Cys52Ser variant mice. PRDX1Cys52Ser mice and their wild-type littermates were subjected to western diet or methionine and choline deficient diet feeding. NASH phenotypes were assessed through different analyses including physiological measurements, immunohistochemical staining, and quantitative PCR (qPCR). RNA sequencing, qPCR and western blotting were used to reveal and validate any changes in the signaling pathways responsible for the altered NASH phenotypes observed between WT and PRDX1Cys52Ser variant mice. RESULTS PRDX1Cys52Ser variant mice showed impaired global PRDX peroxidase activity and reduced susceptibility to diet-induced NASH and liver fibrosis. Mechanistically, PRDX1 Cys52Ser variant suppressed NF-κB signaling and STAT1 signaling pathways that are known to promote inflammation and NASH. CONCLUSION The peroxidatic Cys52 of PRDX1 is required for its pro-inflammatory activity in vivo. This study further suggests that PRDX1 may play dual but opposing roles in NASH.
Collapse
Affiliation(s)
- Zhonghao Bai
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Wen Yin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Rui Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
45
|
Koren SA, Ahmed Selim N, De la Rosa L, Horn J, Farooqi MA, Wei AY, Müller-Eigner A, Emerson J, Johnson GVW, Wojtovich AP. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat Commun 2023; 14:6036. [PMID: 37758713 PMCID: PMC10533892 DOI: 10.1038/s41467-023-41682-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
Collapse
Affiliation(s)
- Shon A Koren
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nada Ahmed Selim
- University of Rochester Medical Center, Department of Pharmacology and Physiology, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Lizbeth De la Rosa
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Jacob Horn
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - M Arsalan Farooqi
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacen Emerson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Gail V W Johnson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA.
| |
Collapse
|
46
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Kuzekova AA, Novoselova TV, Sharapov MG, Mubarakshina EK, Goncharov RG, Khrenov MO. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch Biochem Biophys 2023; 746:109729. [PMID: 37633587 DOI: 10.1016/j.abb.2023.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
This study aimed to assess the effects of the immunomodulator thymulin, a thymic peptide with anti-inflammatory effects, and peroxiredoxin 6 (Prdx6), an antioxidant enzyme with dual peroxidase and phospholipase A2 activities, on the blood‒brain barrier (BBB) condition and general health status of animals with relapsing-remitting experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis in humans. Both thymulin and Prdx6 significantly improved the condition of the BBB, which was impaired by EAE induction, as measured by Evans blue dye accumulation, tight-junction protein loss in brain tissue, and lymphocyte infiltration through the BBB. The effect was associated with significant amelioration of EAE symptoms. Thymulin treatment was accompanied by a decrease in immune cell activation as judged by interleukin-6, -17, and interferon-gamma cytokine levels in serum and NF-kappaB cascade activation in splenocytes of mice with EAE. Prdx6 did not induce significant immunomodulatory effects but abruptly decreased EAE-induced NOX1 and NOX4 gene expression in brain tissue, which may be one of the possible mechanisms of its beneficial effects on BBB conditions and health status. The simultaneous administration of thymulin and Prdx6 resulted in complete symptomatic restoration of mice with EAE. The results demonstrate prospective strategies for multiple sclerosis treatment.
Collapse
Affiliation(s)
- S M Lunin
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia.
| | - E G Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - O V Glushkova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - S B Parfenyuk
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - A A Kuzekova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - T V Novoselova
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - E K Mubarakshina
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - R G Goncharov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| | - M O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, Russia
| |
Collapse
|
47
|
Villar SF, Möller MN, Denicola A. Biophysical tools to study the oligomerization dynamics of Prx1-class peroxiredoxins. Biophys Rev 2023; 15:601-609. [PMID: 37681093 PMCID: PMC10480382 DOI: 10.1007/s12551-023-01076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/04/2023] [Indexed: 09/09/2023] Open
Abstract
Peroxiredoxins (Prx) are ubiquitous, highly conserved peroxidases whose activity depends on catalytic cysteine residues. The Prx1-class of the peroxiredoxin family, also called typical 2-Cys Prx, organize as head-to-tail homodimers containing two active sites. The peroxidatic cysteine CP of one monomer reacts with the peroxide substrate to form sulfenic acid that reacts with the resolving cysteine (CR) of the adjacent subunit to form an intermolecular disulfide, that is reduced back by the thioredoxin/thioredoxin reductase/NADPH system. Although the minimal catalytic unit is the dimer, these Prx oligomerize into (do)decamers. In addition, these ring-shaped decamers can pile-up into high molecular weight structures. Prx not only display peroxidase activity reducing H2O2, peroxynitrous acid and lipid hydroperoxides (antioxidant enzymes), but also exhibit holdase activity protecting other proteins from unfolding (molecular chaperones). Highly relevant is their participation in redox cellular signaling that is currently under active investigation. The different activities attributed to Prx are strongly ligated to their quaternary structure. In this review, we will describe different biophysical approaches used to characterize the oligomerization dynamics of Prx that include the classical size-exclusion chromatography, analytical ultracentrifugation, calorimetry, and also fluorescence anisotropy and lifetime measurements, as well as mass photometry.
Collapse
Affiliation(s)
- Sebastián F. Villar
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
48
|
Kim SR, Park JW, Lee BH, Lim KM, Chang TS. Peroxiredoxin V Protects against UVB-Induced Damage of Keratinocytes. Antioxidants (Basel) 2023; 12:1435. [PMID: 37507973 PMCID: PMC10376850 DOI: 10.3390/antiox12071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ultraviolet B (UVB) irradiation generates reactive oxygen species (ROS), which can damage exposed skin cells. Mitochondria and NADPH oxidase are the two principal producers of ROS in UVB-irradiated keratinocytes. Peroxiredoxin V (PrxV) is a mitochondrial and cytosolic cysteine-dependent peroxidase enzyme that robustly removes H2O2. We investigated PrxV's role in protecting epidermal keratinocytes against UVB-induced ROS damage. We separated mitochondrial and cytosolic H2O2 levels from other types of ROS using fluorescent H2O2 indicators. Upon UVB irradiation, PrxV-knockdown HaCaT human keratinocytes showed higher levels of mitochondrial and cytosolic H2O2 than PrxV-expressing controls. PrxV depletion enhanced hyperoxidation-mediated inactivation of mitochondrial PrxIII and cytosolic PrxI and PrxII in UVB-irradiated keratinocytes. PrxV-depleted keratinocytes exhibited mitochondrial dysfunction and were more susceptible to apoptosis through decreased oxygen consumption rate, loss of mitochondrial membrane potential, cardiolipin oxidation, cytochrome C release, and caspase activation. Our findings show that PrxV serves to protect epidermal keratinocytes from UVB-induced damage such as mitochondrial dysfunction and apoptosis, not only by directly removing mitochondrial and cytosolic H2O2 but also by indirectly improving the catalytic activity of mitochondrial PrxIII and cytosolic PrxI and PrxII. It is possible that strengthening PrxV defenses could aid in preventing UVB-induced skin damage.
Collapse
Affiliation(s)
- Sin Ri Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Ji Won Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Min Lim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Tong-Shin Chang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
49
|
Yu B, Yang X, Yuan Z, Wang B. Prodrugs of sulfide and persulfide species: Implications in their different pharmacological activities. Curr Opin Chem Biol 2023; 75:102329. [PMID: 37279623 DOI: 10.1016/j.cbpa.2023.102329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Reactive sulfur species (RSS), such as H2S, hydrogen polysulfide (H2Sn, n ≥ 2), and hydropersulfides (RSSnH, n ≥ 1), are known to mediate diverse signaling pathways and possess a plethora of exciting therapeutic opportunities. Historically, due to the rapid inter-conversion among those species in vivo, the biological differences of distinct sulfur species were often overlooked. These species were considered to enrich the global sulfur pool in almost an equal fashion. However, advancement in this field has revealed that sulfur species at different oxidation states result in different pharmacological effects including scavenging reactive oxygen species (ROS), activating ion channels, and exhibiting analgesic effects. Here, we summarize recent advances in studying the biological and pharmacological differences of distinct sulfur species; discuss this phenomenon from the view of chemical properties and sulfur signaling pathways; and lay out a roadmap to transforming such new knowledge into general principles in developing sulfur-based therapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
50
|
Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR. J Am Chem Soc 2023; 145:10700-10711. [PMID: 37140345 PMCID: PMC10197130 DOI: 10.1021/jacs.3c01200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.
Collapse
Affiliation(s)
- Laura Troussicot
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| | - Alicia Vallet
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
| | - Mikael Molin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Department
of Life Sciences, Chalmers University of
Technology, SE-405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Paul Schanda
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| |
Collapse
|