1
|
Evangelina R, Ganesan S, George M. The Epigenetic Landscape: From Molecular Mechanisms to Biological Aging. Rejuvenation Res 2025; 28:93-112. [PMID: 40094262 DOI: 10.1089/rej.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Epigenetics, the study of heritable changes in gene expression that do not involve alterations to the deoxyribonucleic acid (DNA) sequence, plays a pivotal role in cellular function, development, and aging. This review explores key epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, chromatin remodeling, RNA-based regulation, and long-distance chromosomal interactions. These modifications contribute to cellular differentiation and function, mediating the dynamic interplay between the genome and environmental factors. Epigenetic clocks, biomarkers based on DNAm patterns, have emerged as powerful tools to measure biological age and predict health span. This article highlights the evolution of epigenetic clocks, from first-generation models such as Horvath's multi-tissue clock to advanced second- and third-generation clocks such as DNAGrimAge and DunedinPACE, which incorporate biological parameters and clinical biomarkers for precise age estimation. Moreover, the role of epigenetics in aging and age-related diseases is discussed, emphasizing its impact on genomic stability, transcriptional regulation, and cellular senescence. Epigenetic dysregulation is implicated in cancer, genetic disorders, and neurodegenerative diseases, making it a promising target for therapeutic interventions. The reversibility of epigenetic modifications offers hope for mitigating age acceleration and enhancing health span through lifestyle changes and pharmacological approaches.
Collapse
Affiliation(s)
- Rachel Evangelina
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Subhashree Ganesan
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Ren C, Comes HP, Zhu S, Zhang X, Jiang W, Fu C, Chen J, Ma Y, Qiu Y. Genome-wide patterns of local adaptation associated with transposable elements in Tetrastigma hemsleyanum (Vitaceae). THE NEW PHYTOLOGIST 2025. [PMID: 40448394 DOI: 10.1111/nph.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
The mobility of transposable elements (TEs) partly drives genome evolution, potentially leading to either adaptive or deleterious effects. However, it remains far from clear whether and how TEs contribute to adaptation to changing environments, especially in plants. We analyzed whole-genome sequencing data from 29 ecologically diverse Tetrastigma hemsleyanum populations to infer the species' demographic history and its impact on TE polymorphisms. Integrated selective sweep and genome-environment association (GEA) approaches were employed to examine the contribution of TEs to environmental adaptation. The ancestor of T. hemsleyanum diverged during the late Miocene/Pliocene, forming two lineages that further split into four sublineages. These (sub)lineages underwent periodic population declines and recoveries during the late-Pleistocene climatic oscillations, with most polymorphic TEs transposing during the last glacial period. A small fraction of these TEs (0.033-0.40%) showed signatures of positive selection, while a broader subset (0.081-0.76%) correlated significantly with climatic variables. Notably, these selected or climate-linked TE polymorphisms were preferentially retained in gene-poor regions and frequently linked to genes involved in organ development and stress/defense response. Our findings demonstrate that TEs played a key regulatory and adaptive role in T. hemsleyanum's response to environmental change, underscoring their importance in better understanding the genomic mechanisms underlying adaptation.
Collapse
Affiliation(s)
- Chaoqian Ren
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, A-5020, Austria
| | - Shanshan Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Weimei Jiang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yazhen Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yingxiong Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
3
|
Durán-Fuentes JA, Maronna MM, Palacios-Gimenez OM, Castillo ER, Ryan JF, Daly M, Stampar SN. Repeatome diversity in sea anemone genomics (Cnidaria: Actiniaria) based on the Actiniaria-REPlib library. BMC Genomics 2025; 26:473. [PMID: 40361000 PMCID: PMC12070523 DOI: 10.1186/s12864-025-11591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Genomic repetitive DNA sequences (Repeatomes, REPs) are widespread in eukaryotes, influencing biological form and function. In Cnidaria, an early-diverging animal lineage, these sequences remain largely uncharacterized. This study investigates sea anemone REPs (Cnidaria: Actiniaria) in a phylogenetic context. We sequenced and assembled de novo the genome of Actinostella flosculifera and analyzed a total of 38 nuclear genomes to create the first ActiniariaREP library (Actiniaria-REPlib). We compared Actiniaria-REPlib with Repbase and RepeatModeler2 libraries, and used dnaPipeTE to annotate REPs from genomic short-read datasets of 36 species for divergence landscapes. RESULTS Our study assembled and annotated the mitochondrial genomes, including 27 newly assembled ones. We re-annotated ~92% of the unknown sequences from the initial nuclear genome library, finding that 6.4-30.6% were DNA transposons, 2.1-11.6% retrotransposons, 1-28.4% tandem repeat sequences, and 1.2-7% unclassifiable sequences. Actiniaria-REPlib recovered 9.4x more REP sequences from actiniarian genomes than Dfam and 10.4x more than Repbase. It yielded 79,903 annotated TE consensus sequences (74,643 known, 5,260 unknown), compared to Dfam with 7,697 (3,742 known, 3,944 unknown) and Repbae (763 known). CONCLUSIONS Our study significantly enhances the characterization of sea anemone repetitive DNA, assembling mitochondrial genomes, re-annotating nuclear sequences, and identifying diverse repeat elements. Actiniaria-REPlib vastly outperforms existing databases, recovering significantly more REP sequences and providing a comprehensive resource for future genomic and evolutionary studies in Actiniaria.
Collapse
Affiliation(s)
- Jeferson A Durán-Fuentes
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Maximiliano M Maronna
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil.
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Octavio M Palacios-Gimenez
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Elio R Castillo
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, E07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Instituto de Biología Subtropical (IBS) CONICET-UNaM, Universidad Nacional de Misiones LQH, Posadas, Misiones, Argentina
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience and the Department of Biology, University of Florida, Florida, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Sérgio N Stampar
- Laboratory of Evolution and Aquatic Diversity (LEDALab), São Paulo State University (UNESP), São Paulo, Bauru, Brazil
| |
Collapse
|
4
|
Gozashti L, Harringmeyer OS, Hoekstra HE. How repeats rearrange chromosomes: The molecular basis of chromosomal inversions in deer mice. Cell Rep 2025; 44:115644. [PMID: 40327505 DOI: 10.1016/j.celrep.2025.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/08/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Large genomic rearrangements, such as chromosomal inversions, can play a key role in evolution, but the mechanisms by which these rearrangements arise remain poorly understood. To study the origins of inversions, we generated chromosome-level de novo genome assemblies for four subspecies of the deer mouse (Peromyscus maniculatus) with known inversion polymorphisms. We identified ∼8,000 inversions, including 47 megabase-scale inversions, that together affect ∼30% of the genome. Analysis of inversion breakpoints suggests that while most small (<1 Mb) inversions arose via ectopic recombination between retrotransposons, large (>1 Mb) inversions are primarily associated with segmental duplications (SDs). Large inversion breakpoints frequently occur near centromeres, which may be explained by an accumulation of retrotransposons in pericentromeric regions driving SDs. Additionally, multiple large inversions likely arose from ectopic recombination between near-identical centromeric satellite arrays located megabases apart, suggesting that centromeric repeats may also facilitate inversions. Together, our results illuminate how repeats give rise to massive shifts in chromosome architecture.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Méhouas S, Hannon GJ, Czech Nicholson B, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. Cell Rep 2025; 44:115453. [PMID: 40209715 DOI: 10.1016/j.celrep.2025.115453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/26/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila ortholog of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco, which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flamenco expression, and derepression of gypsy-family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions, which both rely on a shared transcription factor.
Collapse
Affiliation(s)
- Azad Alizada
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Aline Martins
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Nolwenn Mouniée
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Julia V Rodriguez Suarez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Benjamin Bertin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Nathalie Gueguen
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Vincent Mirouse
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | - Anna-Maria Papameletiou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Austin J Rivera
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nelson C Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France
| | | | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK.
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
7
|
Yang Y, Liu X, Fan B, Wang Y, Wei S, Chen N, Zhang Y, Li S, Gao W. The evolutionary trajectories and gene regulatory roles of nuclear-integrated plastid DNA: clues for enhancing environmental adaptation in Caryophyllales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70131. [PMID: 40163242 DOI: 10.1111/tpj.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Environmental stimuli can induce the transfer of chloroplast DNA to the nuclear genome, resulting in nuclear-integrated plastid DNAs (NUPTs). However, their role in plant adaptability remains unclear. Species within the Caryophyllales order, known for their adaptation to extreme environments, provide an ideal model for studying the evolutionary dynamics and functions of NUPTs. In this study, we analyzed NUPTs in 24 Caryophyllales species to investigate their evolution and regulatory roles in gene expression, particularly in response to environmental stimuli. We found significant interspecies variation in NUPT abundance, ranging from 566 insertions in Amaranthus cruentus to 3585 in Beta vulgaris, with sizes spanning from 100 bp to over 100 kb. Approximately 62% of NUPTs were inserted within the last 20 million years, while some species exhibit insertion peaks dating back 49 million years. NUPT presence/absence polymorphisms in six related species suggest that NUPT insertions and deletions are dynamic processes influenced by phylogeny. NUPTs predominantly integrate into intergenic regions but also insert into genes and promoters, with certain regions acting as hotspots. Notably, NUPTs introduce numerous environmental-responsive cis-acting elements in promoter regions. Genes with NUPT insertions in their promoters are significantly enriched for functions related to environmental response. Further luciferase assays in Spinacia oleracea demonstrated that NUPT insertions can regulate the expression of genes related to environmental responses, indicating their potential role in adaptive evolution. Overall, our study provides insights into NUPT evolution and their influence on gene function and plant adaptability to environmental stimuli.
Collapse
Affiliation(s)
- Yi Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xuan Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Binfang Fan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yiran Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shuaijie Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Yang X, Lei C, Peng X, Min Y, Hu J, Sun X. Genotypic diversity and biological characterization of Alphabaculovirus mabrassicae isolates from a wide host range. PEST MANAGEMENT SCIENCE 2025; 81:2215-2224. [PMID: 39791309 DOI: 10.1002/ps.8620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A. mabrassicae isolates (MbMNPV-CHb1/CTa/K1/QD, MyseMNPV-Hb, HearMNPV and MacoNPV-B) have been identified in different hosts. Identifying more effective A. mabrassicae strains with detailed genetic information is crucial for commercial use. RESULTS Laboratory bioassays showed that the median lethal concentration (LC50) of MyseMNPV-Hb against Mythimna separata was significantly lower than those against Helicoverpa armigera and Spodoptera exigua, but higher than the LC50 of MbMNPV-CHb1, MbMNPV-QD and HearMNPV against H. armigera or S. exigua. Comparative genomic analysis revealed significant differences in genomic composition and single-nucleotide polymorphisms between MyseMNPV-Hb and the other isolates. A piggyBac-like element, likely to have been from Alcis repandata (Lepidoptera: Geometridae), was identified in the genomes of these isolates. Eight genes in the A. mabrassicae genomes were found to be under positive selection. CONCLUSION Alphabaculovirus mabrassicae isolates exhibit different infectivity in various pests, indicating the need for selecting appropriate isolates specific target pests. This study elucidates the genetic factors contributing to the differential infectivity of A. mabrassicae isolates and extends knowledge on its population characteristics. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaowei Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuanqin Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Zhu M, Zhou J, Chen N, Xu J, Wang H, Jiang L, Yang F. Identification and Characterization of LINE and SINE Retrotransposons in the African Hedgehog ( Atelerix albiventris, Erinaceidae) and Their Association with 3D Genome Organization and Gene Expression. Genes (Basel) 2025; 16:397. [PMID: 40282356 PMCID: PMC12026660 DOI: 10.3390/genes16040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The African hedgehog (Atelerix albiventris) exhibits specialized skin differentiation leading to spine formation, yet its regulatory mechanisms remain unclear. Transposable elements (TEs), particularly LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), are known to influence genome organization and gene regulation. OBJECTIVES Given the high proportion of SINEs in the hedgehog genome, this study aims to characterize the distribution, evolutionary dynamics, and potential regulatory roles of LINEs and SINEs, focusing on their associations with chromatin architecture, DNA methylation, and gene expression. METHODS We analyzed LINE and SINE distribution using HiFi sequencing and classified TE families through phylogenetic reconstruction. Hi-C data were used to explore TE interactions with chromatin architecture, while whole-genome 5mCpG methylation was inferred from PacBio HiFi reads of muscle tissue using a deep-learning-based approach. RNA-seq data from skin tissues were analyzed to assess TE expression and potential associations with genes linked to spine development. RESULTS SINEs form distinct genomic blocks in GC-rich and highly methylated regions, whereas LINEs are enriched in AT-rich, hypomethylated regions. LINEs and SINEs are associated differently with A/B compartments, with SINEs in euchromatin and LINEs in heterochromatin. Methylation analysis suggests that younger TEs tend to have higher methylation levels, and expression analysis indicates that some differentially expressed TEs may be linked to genes involved in epidermal and skeletal development. CONCLUSIONS This study provides a genome-wide perspective on LINE and SINE distribution, methylation patterns, and potential regulatory roles in A. albiventris. While not establishing a direct causal link, the findings suggest that TEs may influence gene expression associated with spine development, offering a basis for future functional studies.
Collapse
Affiliation(s)
- Mengyuan Zhu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Jianxuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Nannan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Haipeng Wang
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (J.X.)
| |
Collapse
|
10
|
Hasegawa R, Ito H. Transposition of the heat-activated retrotransposon ONSEN results in enhanced hypocotyl elongation. Genes Genet Syst 2025; 100:n/a. [PMID: 39864852 DOI: 10.1266/ggs.24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
We aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutant seedlings to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named Long hypocotyl in ONSEN-inserted line 1 (hyo1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type. Genetic analysis revealed that this trait was due to a single recessive mutation. Further mapping and sequencing identified the insertion of ONSEN into the HY2 gene, a crucial regulator of hypocotyl elongation. The insertion disrupted HY2 transcription, as confirmed by quantitative PCR, leading to the observed phenotype. To assess any influence of the nrpd1 background, we generated lines backcrossed twice to wild-type Col-0, and the results were consistent with those observed in the original mutant lines. Furthermore, we examined the effect of HY2 and HYO1 mutations on flowering time by analyzing the expression levels of FT. The hyo1 mutant exhibited earlier flowering compared to both wild type and the nrpd1 mutant, with increased FT expression levels. This research highlights the impact of ONSEN transposition on gene function and phenotypic variation in A. thaliana, providing new insights into the mutagenic potential of transposons and their role in shaping plant traits.
Collapse
Affiliation(s)
- Ryu Hasegawa
- Graduate School of Life Science, Hokkaido University
| | | |
Collapse
|
11
|
Yu J, Kawasaki F, Izumi N, Kiuchi T, Katsuma S, Tomari Y, Shoji K. Autonomous shaping of the piRNA sequence repertoire by competition between adjacent ping-pong amplification sites. Mol Cell 2025; 85:1134-1146.e4. [PMID: 40118041 DOI: 10.1016/j.molcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/10/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs). In many species, piRNAs are generated via a complex process known as the ping-pong pathway, coupling TE cleavage with piRNA amplification. However, the biological significance of this complexity remains unclear. Here, we systematically compared piRNA profiles in two related silkworm cell lines and found significant changes in their sequence repertoire. Importantly, the changeability of this repertoire negatively correlated with the piRNA biogenesis efficiency, a trend also observed in Drosophila stocks and single silkworm eggs. This can be explained by competition between adjacent ping-pong sites, supported by our mathematical modeling. Moreover, this competition can rationalize how piRNAs autonomously avoid deleterious mismatches to target TEs in silkworms, flies, and mice. These findings unveil the intrinsic plasticity and adaptability of the piRNA system to combat diverse TE sequences and highlight the universal power of competition and self-amplification to drive autonomous optimization.
Collapse
Affiliation(s)
- Jie Yu
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fumiko Kawasaki
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Graduate school of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
12
|
Santos PKF, de Souza Araujo N, Françoso E, Werren JH, Kapheim KM, Arias MC. The genome of the solitary bee Tetrapedia diversipes (Hymenoptera, Apidae). G3 (BETHESDA, MD.) 2025; 15:jkae264. [PMID: 39718247 PMCID: PMC11797046 DOI: 10.1093/g3journal/jkae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 12/25/2024]
Abstract
Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes. Repetitive elements constitute 38.68% of the genome, notably Class II transposable elements. An investigation into lateral gene transfers identified a low frequency (0.037%) of nuclear copies of mitochondrial DNA and 18 candidate regions from bacterial origins. Furthermore, the annotation of 3 scaffolds reveals the presence of the Wolbachia endosymbiont genome, confirming the infection by 2 strains in T. diversipes populations. This genome contributes valuable insights into Neotropical bee genomics, offering a resource for comparative studies and enhancing our understanding of the molecular basis of solitary bee adaptations and interactions.
Collapse
Affiliation(s)
- Priscila K F Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Natalia de Souza Araujo
- Department of Evolutionary Biology and Ecology, Université Libre de Bruxelles, Av. Franklin Roosevelt 50, 1050 Bruxelles, Belgium
| | - Elaine Françoso
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
| | - John H Werren
- Department of Biology, University of Rochester, 210 Hutchison Rd, Rochester, NY 14620, USA
| | - Karen M Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Fischer D, Tapio M, Bitz O, Iso-Touru T, Kause A, Tapio I. Fine-tuning GBS data with comparison of reference and mock genome approaches for advancing genomic selection in less studied farmed species. BMC Genomics 2025; 26:111. [PMID: 39910437 PMCID: PMC11796084 DOI: 10.1186/s12864-025-11296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data. RESULTS DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations. CONCLUSIONS The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.
Collapse
Affiliation(s)
- Daniel Fischer
- Applied Statistical Methods, Natural Resources, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.
| | - Miika Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Oliver Bitz
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Terhi Iso-Touru
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Antti Kause
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| |
Collapse
|
14
|
Omole AD, Czuppon P. Maintenance of long-term transposable element activity through regulation by nonautonomous elements. Genetics 2025; 229:iyae209. [PMID: 39810601 DOI: 10.1093/genetics/iyae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times. However, previous modeling studies indicate that interactions between autonomous and nonautonomous elements usually result in the extinction of one type. Here, we study a stochastic model that allows for the stable coexistence of autonomous and nonautonomous retrotransposons. We determine the conditions for this coexistence and derive an analytical expression for the stationary distribution of their copy numbers, showing that nonautonomous elements regulate stochastic fluctuations and the number of autonomous elements in stationarity. We find that the stationary variances of each element can be expressed as a function of the average copy numbers and their covariance, enabling data comparison and model validation. These results suggest that continued transposition activity of transposable elements, regulated by nonautonomous elements, is a possible evolutionary outcome that could for example explain the long coevolutionary history of autonomous LINE1 and nonautonomous Alu element transposition in the human ancestry.
Collapse
Affiliation(s)
- Adekanmi Daniel Omole
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| |
Collapse
|
15
|
Majid M, Liu X, Khan H, Huang Y. Transcriptional dynamics and tissue-specific expression patterns of transposable elements in orthopteran insects. Gene 2025; 936:149090. [PMID: 39549779 DOI: 10.1016/j.gene.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Transposable elements (TEs) are prevalent in the genomes of orthopteran insects, contributing significantly to their genome evolution and diversity. In light of the existing gap in our understanding of TEs transcript dynamics in orthopteran insects, we recognize the critical need to undertake comprehensive analyses in this area. Therefore, we have decided to delve into the characterization of TE transcripts, their abundance profiles, and the formation of chimeric transcripts using RNA-seq data and genome assemblies. The transcript analysis of TEs across various species revealed significant differences in TE abundance and expression patterns. In particular, Schistocerca americana exhibited twice the number of transcripts within the genus Schistocerca compared to the average of other species, while Gryllus bimaculatus displayed the lowest number of transcripts. Despite this, all Schistocerca species shared similar fractions of TE transcripts at the clade level, with DNA transposons (45%) being the most abundant, followed by LINE (19%) and LTR elements (18%). Interestingly, Acrida cinerea displayed different TE abundance patterns compared to Schistocerca species, particularly with an increased proportion of LTR transcripts, accounting for 31% of the total transcripts. Further analysis revealed tissue-specific transcriptional activity of TE clades, with notable differences between male and female specimens. In Gryllus bimaculatus, TEs were highly transcribed across ovaries and gut tissues in females compared to male testes and gut. Conversely, Gastrimargus marmoratus displayed higher TE transcription in male tissues compared to females, indicating species-specific expression patterns. A similar pattern has been observed in Acrida cinerea, except in female gonads, where 4618 TEs were transcribed compared to 3757 in male gonads. Despite these variations, no correlation was found between genome size and TE transcript abundance. Additionally, highly conserved TEs were involved in the formation of chimeric transcripts, indicating potential regulatory roles in gene expression. The expression quantification analysis of chimeric TEs and genes revealed tissue-specific expression patterns, and TEs do not control the overall expression of all genes except some, suggesting regulatory roles of TEs in gene expression. Overall, our study underscores tissue-specific variations in TE expression and transcript abundance among different species. Additionally, our findings suggest the involvement of highly conserved TEs in the formation of chimeric transcripts across different species.
Collapse
Affiliation(s)
- Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
16
|
Law CT, Burns KH. Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.635956. [PMID: 39975348 PMCID: PMC11838501 DOI: 10.1101/2025.02.02.635956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long interspersed element-1 (LINE-1, L1) retrotransposons are the most abundant protein-coding transposable elements (TE) in mammalian genomes, and have shaped genome content over 170 million years of evolution. LINE-1 is self-propagating and mobilizes other sequences, including Alu elements. Occasionally, LINE-1 forms chimeric insertions with non-coding RNAs and mRNAs. U6 spliceosomal small nuclear RNA/LINE-1 chimeras are best known, though there are no comprehensive catalogs of LINE-1 chimeras. To address this, we developed TiMEstamp, a computational pipeline that leverages multiple sequence alignments (MSA) to estimate the age of LINE-1 insertions and identify candidate chimeric insertions where an adjacent sequence arrives contemporaneously. Candidates were refined by detecting hallmark features of L1 retrotransposition, such as target site duplication (TSD). Applying this pipeline to the human genome, we recovered all known species of LINE-1 chimeras and discovered new chimeric insertions involving small RNAs, Alu elements, and mRNA fragments. Some insertions are compatible with known mechanisms, such as RNA ligation. Other structures nominate novel mechanisms, such as trans-splicing. We also see evidence that LINE-1 loci with defunct promoters can acquire regulatory elements from nearby genes to restore retrotransposition activity. These discoveries highlight the recombinatory potential of LINE-1 RNA with implications for genome evolution and TE domestication.
Collapse
Affiliation(s)
- Cheuk-Ting Law
- Corresponding authors: Cheuk-Ting Law (), Kathleen H. Burns ()
| | | |
Collapse
|
17
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Mehouas S, Hannon GJ, Nicholson BC, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612307. [PMID: 39314383 PMCID: PMC11419008 DOI: 10.1101/2024.09.10.612307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila orthologue of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco , which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flam expression and de-repression of gypsy -family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions that both rely on a shared transcription factor. Highlights - Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . - Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis and Ovo in fly ovaries. - Cis -regulatory elements with Tj motifs are present at the promoters of somatic piRNA pathway genes. - The expression of the flamenco piRNA cluster is directly controlled by Tj.
Collapse
|
18
|
Scarpa A, Pianezza R, Gellert HR, Haider A, Kim BY, Lai EC, Kofler R, Signor S. Double trouble: two retrotransposons triggered a cascade of invasions in Drosophila species within the last 50 years. Nat Commun 2025; 16:516. [PMID: 39788974 PMCID: PMC11718211 DOI: 10.1038/s41467-024-55779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Hannah R Gellert
- Department of Biology, Stanford University, Stanford, California, USA
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, California, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, USA.
| |
Collapse
|
19
|
Higgins KW, Itoigawa A, Toda Y, Bellott DW, Anderson R, Márquez R, Weng JK. Rapid expansion and specialization of the TAS2R bitter taste receptor family in amphibians. PLoS Genet 2025; 21:e1011533. [PMID: 39888968 PMCID: PMC11798467 DOI: 10.1371/journal.pgen.1011533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/05/2025] [Accepted: 12/09/2024] [Indexed: 02/02/2025] Open
Abstract
TAS2Rs are a family of G protein-coupled receptors that function as bitter taste receptors in vertebrates. Mammalian TAS2Rs have historically garnered the most attention, leading to our understanding of their roles in taste perception relevant to human physiology and behaviors. However, the evolution and functional implications of TAS2Rs in other vertebrate lineages remain less explored. Here, we identify 9,291 TAS2Rs from 661 vertebrate genomes. Large-scale phylogenomic analyses reveal that frogs and salamanders contain unusually high TAS2R gene content, in stark contrast to other vertebrate lineages. In most species, TAS2R genes are found in clusters; compared to other vertebrates, amphibians have additional clusters and more genes per cluster. We find that vertebrate TAS2Rs have few one-to-one orthologs between closely related species, although total TAS2R count is stable in most lineages. Interestingly, TAS2R count is proportional to the receptors expressed solely in extra-oral tissues. In vitro receptor activity assays uncover that many amphibian TAS2Rs function as tissue-specific chemosensors to detect ecologically important xenobiotics.
Collapse
Affiliation(s)
- Kathleen W. Higgins
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, United States of America
| | - Akihiro Itoigawa
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo, Japan
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yasuka Toda
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo, Japan
| | - Daniel Winston Bellott
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute for Plant-Human Interface, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Kalendar R, Kairov U. Genome-Wide Tool for Sensitive de novo Identification and Visualisation of Interspersed and Tandem Repeats. Bioinform Biol Insights 2024; 18:11779322241306391. [PMID: 39703748 PMCID: PMC11656428 DOI: 10.1177/11779322241306391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Genomic repeats are functionally ubiquitous structural units found in all genomes. Studying these repeats of different origins is essential for understanding the evolution and adaptation of a given organism. These repeating patterns have manifold signatures and structures with varying degrees of homology, making their identification challenging. To address this challenge, we developed a new algorithm and software that can rapidly and accurately detect any repeated sequences de novo with varying degrees of homology in genomic sequences in interspersed or clustered repeats. Numerous forms of repeated sequences and complex patterns can be identified, even for complex sequence variants and implicit or mixed types of repeat blocks. Direct and inverted-repeat elements, perfect and imperfect microsatellite repeats, and any short or long tandem repeat belonging to a wide range of higher-order repeat structures of telomeres or large satellite sequences can be detected. By combining precision and versatility, our tool contributes significantly to elucidating the intricate landscape of genomic repeats.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
21
|
Li T, Zhen H, Wu W, Yang F, Cao Z. tsRNAs: A Prospective, Effective Therapeutic Intervention for Neurodegenerative Diseases. CNS Neurosci Ther 2024; 30:e70177. [PMID: 39690867 DOI: 10.1111/cns.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated. Accordingly, it is challenging to find medications that could stop or slow neurodegeneration. MAIN BODY The tsRNAs are a type of small non-coding RNAs derived from mature tRNAs or tRNA precursors. tsRNAs control gene expression and have a role in many physiological and pathological processes, including neurological illnesses. Antisense oligonucleotides are effective therapeutic agents for neurological diseases, and they may be the treatment of choice for neurodegenerative diseases in the future. Here, we review the biogenesis of tsRNA, its physiological and pathological functions in the central nervous system and neurological disorders, and its prospective use as a nucleic acid medication to treat NDDs, providing theoretical support and guidance for further exploration of tsRNAs in therapeutic intervention. CONCLUSION tsRNAs are emerging as important regulatory molecules in neurodegenerative diseases. Understanding the functions of tsRNAs in neurodegenerative diseases may provide new insights into disease mechanisms and lead to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Tianqi Li
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Hui Zhen
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiwei Wu
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fengtang Yang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhonghong Cao
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
22
|
Liu X, Sun L, Li Z, Zhao H, Yang Y. Development of Reliable Male-Specific Molecular Markers for Genetic Sex Identification in Sea Cucumber Apostichopus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1194-1205. [PMID: 39215885 DOI: 10.1007/s10126-024-10364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Apostichopus japonicus is an important marine aquaculture species in China, with high nutritional and economic value. In A. japonicus, there is no obvious sexual dimorphism in external appearance, and sex differentiation primarily relies on the observation of mature gonads after dissection, which leads to difficulties in sex identification. The confusion in sex identification greatly reduces breeding efficiency in the sea cucumber industry. Therefore, developing a reliable sex-specific marker is crucial. In this study, we identified 586 male-specific sequences through whole-genome assembly and sequence alignment, but did not identify any female-specific sequences, inferring an XY-type sex determination system in sea cucumbers. We developed a set of male-specific molecular markers to establish an accurate, stable, and widely adaptable genetic sex identification technique for A. japonicus. The male-specific molecular markers were validated with 100% accuracy in sea cucumber populations from six different geographical regions in China. In conclusion, this study provides further evidence for the XY-type sex determination system in A. japonicus and establishes an effective genetic sex identification method for multi-geographic populations, which benefits future study on reproductive biology and has significant implications in sea cucumber aquaculture industry.
Collapse
Affiliation(s)
- Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ziming Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Hongyuan Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences & Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
23
|
Liu X, Liu N, Jing X, Khan H, Yang K, Zheng Y, Nie Y, Song H, Huang Y. Genomic and transcriptomic perspectives on the origin and evolution of NUMTs in Orthoptera. Mol Phylogenet Evol 2024; 201:108221. [PMID: 39454737 DOI: 10.1016/j.ympev.2024.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Nuclear mitochondrial pseudogenes (NUMTs) result from the transfer of mitochondrial DNA (mtDNA) to the nuclear genome. NUMTs, as "frozen" snapshots of mitochondria, can provide insights into diversification patterns. In this study, we analyzed the origins and insertion frequency of NUMTs using genome assembly data from ten species in Orthoptera. We found divergences between NUMTs and contemporary mtDNA in Orthoptera ranging from 0 % to 23.78 %. The results showed that the number of NUMT insertions was significantly positively correlated with the content of transposable elements in the genome. We found that 39.09 %-68.65 % of the NUMTs flanking regions (2,000 bp) contained retrotransposons, and more NUMTs originated from mitochondrial rDNA regions. Based on the analysis of the mitochondrial transcriptome, we found a potential mechanism of NUMT integration: mitochondrial transcripts are reverse transcribed into double-stranded DNA and then integrated into the genome. The probability of this mechanism occurring accounts for 0.30 %-1.02 % of total mitochondrial nuclear transfer events. Finally, based on the phylogenetic tree constructed using NUMTs and contemporary mtDNA, we provide insights into ancient evolutionary events such as species-specific "autaponumts" and "synaponumts" shared among different species, as well as post-integration duplication events.
Collapse
Affiliation(s)
- Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nian Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuan Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kaiyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanna Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
24
|
Carotti E, Tittarelli E, Carducci F, Barucca M, Canapa A, Biscotti MA. The arms race of ray-finned fish against the derepression of LTR retroelements. Sci Rep 2024; 14:29431. [PMID: 39604523 PMCID: PMC11603059 DOI: 10.1038/s41598-024-81149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Transposable elements (TEs) are dynamic components of eukaryotic genomes that are important in speciation. Evolutionary pressure has led to the evolution of silencing mechanisms, such as the involvement of Krüppel box-associated zinc finger proteins (KRAB-ZFPs) that regulate TE transcription via TRIM28-mediated NuRD complex recruitment in sarcopterygians. The transcriptional activity of genes that encode proteins of the NuRD complex was also detected in actinopterygians, even though genes encoding crucial proteins such as TRIM28 and KRAB-ZNF are missing in this evolutionary lineage. This study hypothesized that TRIM33 could serve as a replacement for TRIM28 in this lineage and suggested an evolutionary relationship between the sarcopterygian KRAB-ZFPs, the actinopterygian KRAB-like ZNFs and the fish N-terminal zinc-associated domain (FiNZ) ZNFs that are specific to cyprinids. Through coimmunoprecipitation analyses conducted in the basal teleost Anguilla marmorata and the cyprinid Danio rerio, we evaluated the interaction of TRIM33 with the KRAB-like and FiNZ ZFPs. Moreover, we explored the expression profiles of TEs and genes that encode proteins that are potentially involved in their silencing during zebrafish development. Our results may provide new evidence for more thoroughly understanding the evolutionary mechanisms underlying the adaptation of ray-finned fish.
Collapse
Affiliation(s)
- Elisa Carotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Edith Tittarelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
- Scuola Universitaria Superiore Pavia - IUSS, Piazza della Vittoria n.15, Pavia, 27100, Italy
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| |
Collapse
|
25
|
Zhao L, Gong F, Lou K, Wang L, Wang J, Sun H, Wang D, Shi Y, Wang Z. Retrotransposon involves in photoperiodic spermatogenesis in Brandt's voles (Lasiopodomys brandtii) by co-transcription with flagellar genes. Int J Biol Macromol 2024; 281:136224. [PMID: 39362423 DOI: 10.1016/j.ijbiomac.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Photoperiod is a pivotal factor in affecting spermatogenesis in seasonal-breeding animals. Transposable elements have regulatory functions during spermatogenesis. However, whether it also functions in photoperiodic spermatogenesis in seasonal breeding animals is unknown. To explore this, we first annotated 5,501,822 transposons in the whole genome of Brandt's voles (Lasiopodomys brandtii), and revealed that LINEs were the most abundant, comprising 16.61 % of the genome. Following closely, SINEs accounted for 10.13 %, LTRs for 7.54 %, and DNA transposons for 0.70 %. Subsequently, we exposed male Brandt's voles to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) from their embryonic stages, and obtained testes transcriptome at 4 and 10 weeks after birth. Differential expression and Pearson analysis indicated strongly positive correlations between the expression of differentially expressed retrotransposons and the adjacent genes. KO, KEGG and GSEA results showed that sperm flagellar genes were most enriched nearby the retrotransposons such as Dnah1, Dnah2, Dnah17, Dnali1. RT-PCR results showed that SINE/Alu_1213291 co-transcripted with Dnali1 gene. Our findings first reveal the regulatory function of transposons in photoperiodic spermatogenesis, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kang Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China.
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
26
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
27
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
28
|
Cai Y, Chen H, Ni Y, Li J, Zhang J, Liu C. Repeat-mediated recombination results in Complex DNA structure of the mitochondrial genome of Trachelospermum jasminoides. BMC PLANT BIOLOGY 2024; 24:966. [PMID: 39407117 PMCID: PMC11481363 DOI: 10.1186/s12870-024-05568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Trachelospermum jasminoides has medicinal and ornamental value and is widely distributed in China. Although the chloroplast genome has been documented, the mitochondrial genome has not yet been studied. RESULTS The mitochondrial genome of T. jasminoides was assembled and functionally annotated using Illumina and nanopore reads. The mitochondrial genome comprises a master circular molecular structure of 605,764 bp and encodes 65 genes: 39 protein-coding genes, 23 transfer RNA (tRNA) genes and 3 ribosomal RNA genes. In addition to the single circular conformation, we found many alternative conformations of the T. jasminoides mitochondrial genome mediated by 42 repetitive sequences. Six repetitive sequences (DRS01-DRS06) were supported by nanopore long reads, polymerase chain reaction (PCR) amplifications, and Sanger sequencing of the PCR products. Eleven homologous fragments were identified by comparing the mitochondrial and chloroplast genome sequences, including three complete tRNA genes. Moreover, 531 edited RNA sites were identified in the protein-coding sequences based on RNA sequencing data, with nad4 having the highest number of sites (54). CONCLUSION To our knowledge, this is the first description of the mitochondrial genome of T. jasminoides. Our results demonstrate the existence of multiple conformations. These findings lay a foundation for understanding the genetics and evolutionary dynamics of Apocynaceae.
Collapse
Affiliation(s)
- Yisha Cai
- School of Medicine, Huaqiao University, Fujian, 362021, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jinghong Zhang
- School of Medicine, Huaqiao University, Fujian, 362021, China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
29
|
Zhang T, Wu Z, Ge L, Shang J, Huang Y, Liu Y, Huang L. Acidithiobacillus species mediated mineral weathering promotes lead immobilization in ferric-silica microstructures at sulfidic tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124492. [PMID: 38960117 DOI: 10.1016/j.envpol.2024.124492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Immobilization and stabilization of heavy metals (HMs) in sulfidic and metallic tailings are critical to long-term pollution control and sustainable ecological rehabilitation. This study aims to unravel immobilization mechanisms of Pb (Ⅱ) in the neoformed hardpan structure resulting from Acidithiobacillus spp. accelerated bioweathering of sulfides in the presence of silicates. It was found that the bioweathered mineral composite exhibited an elevated Pb (Ⅱ) adsorption capacity compared to that of natural weathered mineral composite. A suit of microspectroscopic techniques such as synchrotron-based X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Field-Emission Scanning Electron Microscope (FE-SEM) indicated that secondary Fe-bearing minerals, functional groups, and surface properties in the neoformed hardpan were key factors contributing to Pb (Ⅱ) adsorption and immobilization in ferric-silica microstructures. The underlying mechanisms might involve surface adsorption-complexation, dissolution-precipitation, electrostatic attraction, and ion exchange. Microbial communities within the muscovite groups undergoing bioweathering processes demonstrated distinctive survival strategies and community composition under the prevailing geochemical conditions. This proof of concept regarding Pb (Ⅱ) immobilization in microbial transformed mineral composite would provide the basis for scaling up trials for developing field-feasible methodology to management HMs pollution in sulfidic and metallic tailings in near future.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zeqi Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Liqiang Ge
- National Research Center for Geoanalysis, Beijing, 100037, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
30
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
31
|
Li M, Abbas T, Wang Y, Zhi A, Zhou J, Ma A, Murtaza G, Wu Y, Shah W, Zubair M, Khan MA, Iqbal F, Jiang X, Zhang H, Shi Q. A homozygous nonsense variant in HENMT1 causes male infertility in humans and mice. Andrology 2024. [PMID: 39318356 DOI: 10.1111/andr.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND HENMT1 encodes a small RNA methyltransferase that plays a crucial role in mouse spermatogenesis through the methylation of the 3' end of PIWI-interacting RNAs. OBJECTIVES Our study aims to elucidate the relationship between HENMT1 and male infertility in humans. MATERIALS AND METHODS A consanguineous family, having a single non-obstructive azoospermia patient was recruited for pathogenic variants screening. The research includes genetic analysis and experimental validation using mouse models. The patient was diagnosed with non-obstructive azoospermia. Whole-exome sequencing and subsequent bioinformatic analyses were performed to screen for candidate pathogenic variants. The pathogenicity of the identified variant was assessed and studied in vivo using a mouse model that mimicked the patient's mutation. RESULTS Through whole-exome sequencing, we identified a homozygous nonsense variant (c.555G > A, p.Trp185*) in HENMT1 in the patient. The presence of the mutant HENMT1 mRNA was detected in the patient's blood, and the truncated HENMT1 protein was observed in transfected HEK293T cells. The mutant mice modeling this HENMT1 variant displayed an infertile phenotype similar to that of the patient, characterized by spermiogenesis arrest. Further analysis revealed a significant derepression of retrotransposon LINE1 in the testes of the Henmt1 mutant mice, and increased apoptosis of spermatids. DISCUSSION AND CONCLUSION Our findings provide the evidence of pathogenicity of the identified HENMT1 variant, thus shedding light on the indispensable role of HENMT1 in human spermatogenesis.
Collapse
Affiliation(s)
- Ming Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Tanveer Abbas
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Yue Wang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Aoran Zhi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ao Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Ghulam Murtaza
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Yufan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Wasim Shah
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muhammad Zubair
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology Gomal University, Dera Ismail Khan, Pakistan
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
dos Santos PVBE, Brasil ADA, Milone LTV, Chalfun G, Saide SCADO, Salú MDS, de Oliveira MBG, Robaina JR, Lima-Setta F, Rodrigues-Santos G, de Magalhães-Barbosa MC, da Cunha AJLA, Prata-Barbosa A. Impact of prematurity on LINE-1 promoter methylation. Epigenomics 2024; 16:1253-1264. [PMID: 39297700 PMCID: PMC11486321 DOI: 10.1080/17501911.2024.2397329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Aim: Promoter methylation of LINE-1 may be affected by prematurity, but there is little evidence in the literature.Materials & methods: Blood from premature and full-term neonates on days 0, 5, 30 and 90 was analyzed for DNA methylation percentage in a promoter region of the LINE-1, after bisulfite conversion and pyrosequencing.Results: Premature infants, as a whole, showed significantly lower methylation percentage at birth, but this difference diminished over time. However, the subgroup of extremely premature (<28 weeks gestational age) had higher methylation percentages, similar to full-term newborns.Conclusion: This research underscores the critical role of prematurity on the methylation pattern of LINE-1. These findings underline the complexity of epigenetic regulation in prematurity and emphasize the need for further studies.
Collapse
Affiliation(s)
- Paulo Victor Barbosa Eleutério dos Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Leo Travassos Vieira Milone
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Department of Neonatology, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil
| | - Stephanie Cristina Alves de Oliveira Saide
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Institute of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | | | - Fernanda Lima-Setta
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Gustavo Rodrigues-Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, Brazil
- Martagão Gesteira Institute of Childcare & Pediatrics (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Bolner M, Bovo S, Ballan M, Schiavo G, Taurisano V, Ribani A, Bertolini F, Fontanesi L. A comprehensive atlas of nuclear sequences of mitochondrial origin (NUMT) inserted into the pig genome. Genet Sel Evol 2024; 56:64. [PMID: 39285356 PMCID: PMC11403998 DOI: 10.1186/s12711-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.
Collapse
Affiliation(s)
- Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Mohamad Ballan
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
34
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
35
|
Wu Y, Wang F, Lyu K, Liu R. Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera. PLANTS (BASEL, SWITZERLAND) 2024; 13:2462. [PMID: 39273946 PMCID: PMC11397423 DOI: 10.3390/plants13172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.
Collapse
Affiliation(s)
- Yilei Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Keliang Lyu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
36
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
38
|
Battaglia C, Michieletto D. Loops are geometric catalysts for DNA integration. Nucleic Acids Res 2024; 52:8184-8192. [PMID: 38864388 DOI: 10.1093/nar/gkae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
The insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates. More specifically, we explore the role of loops within the polymeric substrate and discover that they act as 'geometric catalysts' for DNA integration by reducing the energy barrier for substrate deformation. Additionally, we discover that the 1D pattern and 3D conformation of loops have a marked effect on the distribution of integration sites. Finally, we show that loops may compete with nucleosomes to attract DNA integrations. These results may be tested in vitro and they may help to understand patterns of DNA insertions with implications in genome evolution and engineering.
Collapse
Affiliation(s)
- Cleis Battaglia
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
39
|
Vieira de Souza E, L Bookout A, Barnes CA, Miller B, Machado P, Basso LA, Bizarro CV, Saghatelian A. Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery. Nat Commun 2024; 15:6839. [PMID: 39122697 PMCID: PMC11316118 DOI: 10.1038/s41467-024-50301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
There has been a dramatic increase in the identification of non-canonical translation and a significant expansion of the protein-coding genome. Among the strategies used to identify unannotated small Open Reading Frames (smORFs) that encode microproteins, Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple genomic sites are removed since they cannot be unambiguously assigned to a specific genomic location. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of multi-mapping alignments, such that smORFs residing in these regions cannot be identified by Ribo-Seq. Moreover, it has been challenging to identify protein evidence for Ribo-Seq. To solve this, we developed Rp3, a pipeline that integrates proteogenomics and Ribosome profiling to provide unambiguous evidence for a subset of microproteins missed by current Ribo-Seq pipelines. Here, we show that Rp3 maximizes proteomics detection and confidence of microprotein-encoding smORFs.
Collapse
Affiliation(s)
- Eduardo Vieira de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Brendan Miller
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
40
|
Li Y, Wang K, Liu W, Zhang Y. The potential emerging role of piRNA/PIWI complex in virus infection. Virus Genes 2024; 60:333-346. [PMID: 38833149 DOI: 10.1007/s11262-024-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Kai Wang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
41
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Oh JW, Beer MA. Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals. Nat Commun 2024; 15:6464. [PMID: 39085231 PMCID: PMC11291912 DOI: 10.1038/s41467-024-50708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Gene regulatory elements drive complex biological phenomena and their mutations are associated with common human diseases. The impacts of human regulatory variants are often tested using model organisms such as mice. However, mapping human enhancers to conserved elements in mice remains a challenge, due to both rapid enhancer evolution and limitations of current computational methods. We analyze distal enhancers across 45 matched human/mouse cell/tissue pairs from a comprehensive dataset of DNase-seq experiments, and show that while cell-specific regulatory vocabulary is conserved, enhancers evolve more rapidly than promoters and CTCF binding sites. Enhancer conservation rates vary across cell types, in part explainable by tissue specific transposable element activity. We present an improved genome alignment algorithm using gapped-kmer features, called gkm-align, and make genome wide predictions for 1,401,803 orthologous regulatory elements. We show that gkm-align discovers 23,660 novel human/mouse conserved enhancers missed by previous algorithms, with strong evidence of conserved functional activity.
Collapse
Affiliation(s)
- Jin Woo Oh
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
43
|
Borgognone A, Casadellà M, Martínez de Lagrán M, Paredes R, Clotet B, Dierssen M, Elizalde-Torrent A. Lamivudine modulates the expression of neurological impairment-related genes and LINE-1 retrotransposons in brain tissues of a Down syndrome mouse model. Front Aging Neurosci 2024; 16:1386944. [PMID: 39100749 PMCID: PMC11294114 DOI: 10.3389/fnagi.2024.1386944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Elevated activity of retrotransposons is increasingly recognized to be implicated in a wide range of neurodegenerative and neurodevelopmental diseases, including Down syndrome (DS), which is the most common chromosomal condition causing intellectual disability globally. Previous research by our group has revealed that treatment with lamivudine, a reverse transcriptase inhibitor, improved neurobehavioral phenotypes and completely rescued hippocampal-dependent recognition memory in a DS mouse model, Ts65Dn. We hypothesized that retrotransposition rates would increase in the Ts65Dn mouse model, and lamivudine could block retrotransposons. We analyzed the differentially expressed long interspersed element-1 (LINE-1 or L1) mapping on MMU16 and 17, and showed for the first time that retrotransposition could be associated with Ts65Dn's pathology, as misregulation of L1 was found in brain tissues associated with trisomy. In the cerebral cortex, 6 out of 26 upregulated L1s in trisomic treated mice were located in the telomeric region of MMU16 near Ttc3, Kcnj6, and Dscam genes. In the hippocampus, one upregulated L1 element in trisomic treated mice was located near the Fgd4 gene on MMU16. Moreover, two downregulated L1s rescued after treatment with lamivudine were located in the intronic region of Nrxn1 (MMU17) and Snhg14 (MMU7), implicated in a variety of neurodegenerative disorders. To gain further insight into the mechanism of this improvement, we here analyzed the gene expression profile in the hippocampus and cerebral cortex of trisomic mice treated and no-treated with lamivudine compared to their wild-type littermates. We found that treatment with lamivudine rescued the expression of 24% of trisomic genes in the cortex (located on mouse chromosome (MMU) 16 and 17) and 15% in the hippocampus (located in the human chromosome 21 orthologous regions), with important DS candidate genes such as App and Ets2, rescued in both regions.
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Badalona, Spain
- Department of Infeccious Diseases and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | | |
Collapse
|
44
|
Skalon EK, Panyushev NV, Podgornaya OI, Smolyaninova AR, Solovyeva AI. Expression of Transposable Elements throughout the Fasciola hepatica Trematode Life Cycle. Noncoding RNA 2024; 10:39. [PMID: 39051373 PMCID: PMC11270206 DOI: 10.3390/ncrna10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Transposable elements (TEs) are major components of eukaryotic genomes. The extensive body of evidence suggests that although they were once considered "genomic parasites", transposons and their transcripts perform specific functions, such as regulation of early embryo development. Understanding the role of TEs in such parasites as trematodes is becoming critically important. Fasciola hepatica, a parasite affecting humans and livestock, undergoes a complex life cycle in diverse environments and hosts, and knowledge about its life cycle regulation is scarce so far. METHODS We summarized the data regarding the repetitive elements in F. hepatica and conducted bulk RNA-seq analysis across its life cycle stages. TE expression profiles were analyzed, focusing on differential expression and potential homology with previously described long non-coding RNAs (lncRNAs). RESULTS Differential expression analysis revealed stage-specific TE transcription patterns, notably peaking during egg and metacercariae stages. Some TEs showed homology with known lncRNAs and contained putative transcription factor binding sites. Interestingly, TE transcription levels were highest in eggs and metacercariae compared to adults, suggesting regulatory roles in trematode life cycle transitions. CONCLUSIONS These findings suggest that TEs may play roles in regulating trematode life cycle transitions. Moreover, TE homology with lncRNAs underscores their significance in gene regulation.
Collapse
Affiliation(s)
- Elizaveta K. Skalon
- Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | | | - Olga I. Podgornaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (O.I.P.); (A.R.S.)
| | - Anastasia R. Smolyaninova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (O.I.P.); (A.R.S.)
| | - Anna I. Solovyeva
- Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (O.I.P.); (A.R.S.)
| |
Collapse
|
45
|
Scarpa A, Pianezza R, Wierzbicki F, Kofler R. Genomes of historical specimens reveal multiple invasions of LTR retrotransposons in Drosophila melanogaster during the 19th century. Proc Natl Acad Sci U S A 2024; 121:e2313866121. [PMID: 38564639 PMCID: PMC11009621 DOI: 10.1073/pnas.2313866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna1210, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien1210, Austria
| |
Collapse
|
46
|
Nunes Santos L, Sousa Costa ÂM, Nikolov M, Carvalho JE, Coelho Sampaio A, Stockdale FE, Wang GF, Andrade Castillo H, Bortoletto Grizante M, Dudczig S, Vasconcelos M, Rosenthal N, Jusuf PR, Nim HT, de Oliveira P, Guimarães de Freitas Matos T, Nikovits W, Tambones IL, Figueira ACM, Schubert M, Ramialison M, Xavier-Neto J. Unraveling the evolutionary origin of the complex Nuclear Receptor Element (cNRE), a cis-regulatory module required for preferential expression in the atrial chamber. Commun Biol 2024; 7:371. [PMID: 38575811 PMCID: PMC10995137 DOI: 10.1038/s42003-024-05972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac function requires appropriate proteins in each chamber. Atria requires slow myosin to act as reservoirs, while ventricles demand fast myosin for swift pumping. Myosins are thus under chamber-biased cis-regulation, with myosin gene expression imbalances leading to congenital heart dysfunction. To identify regulatory inputs leading to cardiac chamber-biased expression, we computationally and molecularly dissected the quail Slow Myosin Heavy Chain III (SMyHC III) promoter that drives preferential expression to the atria. We show that SMyHC III gene states are orchestrated by a complex Nuclear Receptor Element (cNRE) of 32 base pairs. Using transgenesis in zebrafish and mice, we demonstrate that preferential atrial expression is achieved by a combinatorial regulatory input composed of atrial activation motifs and ventricular repression motifs. Using comparative genomics, we show that the cNRE might have emerged from an endogenous viral element through infection of an ancestral host germline, revealing an evolutionary pathway to cardiac chamber-specific expression.
Collapse
Affiliation(s)
- Luana Nunes Santos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ângela Maria Sousa Costa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Martin Nikolov
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Allysson Coelho Sampaio
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Faculdade Santa Marcelina - São Paulo, São Paulo, SP, Brazil
| | | | - Gang Feng Wang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hozana Andrade Castillo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia
| | - Mariana Bortoletto Grizante
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Michelle Vasconcelos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Hieu T Nim
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paulo de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | | | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, VIC Australia - Systems Biology Institute, Melbourne, Australia.
- Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - José Xavier-Neto
- Department of Morphology, Federal University of Ceará (UFC), Ceará, CE, Brazil.
- Health Scientist-in-Chief of Ceará State, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico, Ceará, CE, Brazil.
| |
Collapse
|
47
|
Hu L, Meng A, Tu Z, Jia S, Liu Q, Chen F. The analysis of complete genome sequence and comparative genomics of Vibrio parahaemolyticus LF1113 in Hainan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105574. [PMID: 38373468 DOI: 10.1016/j.meegid.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Vibrio parahaemolyticus is a Gram-negative, halophilic and polymorphic coccobacillus. It is world-widely distributed and has resulted in great economic losses since its first appearance. In this study, a pathogenic strain was isolated from diseased pearl gentian grouper and identified as V. parahaemolyticus based on the sequencing results of 16S rDNA gene. In order to gain a comprehensive understanding of this isolation, the whole genome sequencing was conducted. Phylogenetic analysis of the complete genomes of 16 Vibrio species showed that LF1113, ATCC17802, ATCC33787, 2210633, FORC 004, and 160807 were the most closely related. Animal experiments demonstrated that the isolated LF1113 strain was pathogenic in a fish model. This study is the first study to describe the complete genome sequence of a V. parahaemolyticus isolate, which infected pearl gentian grouper from an outbreak in a fish factory farm in Hainan. The results will expand our understanding of genetic characteristics, pathogenesis, diagnostics and disease prevention of V. parahaemolyticus, and lay the foundation for further study.
Collapse
Affiliation(s)
- Linlin Hu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China, Haikou 570228, China.
| | - Aiyun Meng
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China, Haikou 570228, China
| | - Zhigang Tu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China, Haikou 570228, China
| | - Shuwen Jia
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Qingming Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Fuxiao Chen
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China, Haikou 570228, China
| |
Collapse
|
48
|
Zhao H, Liu LL, Sun J, Jin L, Xie HB, Li JB, Xu H, Wu DD, Zhuang XL, Peng MS, Guo YJ, Qian WZ, Otecko NO, Sun WJ, Qu LH, He J, Chen ZL, Liu R, Chen CS, Zhang YP. A human-specific insertion promotes cell proliferation and migration by enhancing TBC1D8B expression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:765-777. [PMID: 38110796 DOI: 10.1007/s11427-023-2442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 12/20/2023]
Abstract
Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Lin-Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jian Sun
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian Jin
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian-Bo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Xu
- The Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya-Jun Guo
- National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai, 201203, China
| | - Wei-Zhu Qian
- National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering and Antibody, Shanghai, 201203, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei-Jie Sun
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Liang-Hu Qu
- The Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhao-Li Chen
- Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ce-Shi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Life Sciences, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
49
|
Chen Z, Ain NU, Zhao Q, Zhang X. From tradition to innovation: conventional and deep learning frameworks in genome annotation. Brief Bioinform 2024; 25:bbae138. [PMID: 38581418 PMCID: PMC10998533 DOI: 10.1093/bib/bbae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024] Open
Abstract
Following the milestone success of the Human Genome Project, the 'Encyclopedia of DNA Elements (ENCODE)' initiative was launched in 2003 to unearth information about the numerous functional elements within the genome. This endeavor coincided with the emergence of numerous novel technologies, accompanied by the provision of vast amounts of whole-genome sequences, high-throughput data such as ChIP-Seq and RNA-Seq. Extracting biologically meaningful information from this massive dataset has become a critical aspect of many recent studies, particularly in annotating and predicting the functions of unknown genes. The core idea behind genome annotation is to identify genes and various functional elements within the genome sequence and infer their biological functions. Traditional wet-lab experimental methods still rely on extensive efforts for functional verification. However, early bioinformatics algorithms and software primarily employed shallow learning techniques; thus, the ability to characterize data and features learning was limited. With the widespread adoption of RNA-Seq technology, scientists from the biological community began to harness the potential of machine learning and deep learning approaches for gene structure prediction and functional annotation. In this context, we reviewed both conventional methods and contemporary deep learning frameworks, and highlighted novel perspectives on the challenges arising during annotation underscoring the dynamic nature of this evolving scientific landscape.
Collapse
Affiliation(s)
- Zhaojia Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Noor ul Ain
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
50
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|