1
|
Kovarova M, Wessel SE, Johnson CE, Anderson SV, Cottrell ML, Sykes C, Cohen MS, Garcia JV. EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition. mBio 2023; 14:e0222422. [PMID: 37306625 PMCID: PMC10470584 DOI: 10.1128/mbio.02224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5. Direct penile exposure to HIV leads to systemic infection including all tissues of the MGT. HIV replication throughout the MGT was reduced 100-1,000-fold by treatment with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), resulting in the restoration of CD4+ T cell levels. Importantly, systemic preexposure prophylaxis with EFdA effectively protects from penile HIV acquisition. IMPORTANCE Over 84.2 million people have been infected by the human immunodeficiency virus type 1 (HIV-1) during the past 40 years, most through sexual transmission. Men comprise approximately half of the HIV-infected population worldwide. Sexually transmitted HIV infections in exclusively heterosexual men are acquired through the penis. However, direct evaluation of HIV infection throughout the human male genital tract (MGT) is not possible. Here, we developed a new in vivo model that permits, for the first time, the detail analysis of HIV infection. Using BLT humanized mice, we showed that productive HIV infection occurs throughout the entire MGT and induces a dramatic reduction in human CD4 T cells compromising immune responses in this organ. Antiretroviral treatment with novel drug EFdA suppresses HIV replication in all tissues of the MGT, restores normal levels of CD4 T cells and is highly efficient at preventing penile transmission.
Collapse
Affiliation(s)
- Martina Kovarova
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah E. Wessel
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire E. Johnson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shelby V. Anderson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Craig Sykes
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Myron S. Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Herrera C, Cottrell ML, Prybylski J, Kashuba ADM, Veazey RS, García-Pérez J, Olejniczak N, McCoy CF, Ziprin P, Richardson-Harman N, Alcami J, Malcolm KR, Shattock RJ. The ex vivo pharmacology of HIV-1 antiretrovirals differs between macaques and humans. iScience 2022; 25:104409. [PMID: 35663021 PMCID: PMC9157191 DOI: 10.1016/j.isci.2022.104409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Non-human primates (NHP) are widely used for the pre-clinical assessment of antiretrovirals (ARVs) for HIV treatment and prevention. However, the utility of these models is questionable given the differences in ARV pharmacology between humans and macaques. Here, we report a model based on ex vivo ARV exposure and the challenge of mucosal tissue explants to define pharmacological differences between NHPs and humans. For colorectal and cervicovaginal explants in both species, high concentrations of tenofovir (TFV) and maraviroc were predictive of anti-viral efficacy. However, their combinations resulted in increased inhibitory potency in NHP when compared to human explants. In NHPs, higher TFV concentrations were measured in colorectal versus cervicovaginal explants (p = 0.042). In humans, this relationship was inverted with lower levels in colorectal tissue (p = 0.027). TFV-resistance caused greater loss of viral fitness for HIV-1 than SIV. This, tissue explants provide an important bridge to refine and appropriately interpret NHP studies. Tenofovir-maraviroc combinations show greater potency in NHP than in human tissue Opposite drug distribution in mucosal tissues was observed between both species Greater loss of viral replication fitness with RT mutations for SIV than for HIV-1 Ex vivo tissue models are a bridge between NHP studies and human clinical trials
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Mackenzie L Cottrell
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - John Prybylski
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Angela D M Kashuba
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Javier García-Pérez
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Olejniczak
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Clare F McCoy
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Paul Ziprin
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, UK
| | | | - José Alcami
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,HIV Unit, Hospital Clinic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Karl R Malcolm
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Robin J Shattock
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| |
Collapse
|
3
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
5
|
Leukocytospermia induces intraepithelial recruitment of dendritic cells and increases SIV replication in colorectal tissue explants. Commun Biol 2021; 4:861. [PMID: 34253821 PMCID: PMC8275775 DOI: 10.1038/s42003-021-02383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Collapse
|
6
|
Vincent KL, Frost PA, Motamedi M, Dick EJ, Wei J, Yang J, White R, Gauduin MC. High-Resolution Quantitative Mapping of Macaque Cervicovaginal Epithelial Thickness: Implications for Mucosal Vaccine Delivery. Front Immunol 2021; 12:660524. [PMID: 34262561 PMCID: PMC8273733 DOI: 10.3389/fimmu.2021.660524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Vaginal mucosal surfaces naturally offer some protection against sexually transmitted infections (STIs) including Human Immunodeficiency Virus-1, however topical preventative medications or vaccine designed to boost local immune responses can further enhance this protection. We previously developed a novel mucosal vaccine strategy using viral vectors integrated into mouse dermal epithelium to induce virus-specific humoral and cellular immune responses at the site of exposure. Since vaccine integration occurs at the site of cell replication (basal layer 100-400 micrometers below the surface), temporal epithelial thinning during vaccine application, confirmed with high resolution imaging, is desirable. In this study, strategies for vaginal mucosal thinning were evaluated noninvasively using optical coherence tomography (OCT) to map reproductive tract epithelial thickness (ET) in macaques to optimize basal layer access in preparation for future effective intravaginal mucosal vaccination studies. Twelve adolescent female rhesus macaques (5-7kg) were randomly assigned to interventions to induce vaginal mucosal thinning, including cytobrush mechanical abrasion, the chemical surfactant spermicide nonoxynol-9 (N9), the hormonal contraceptive depomedroxyprogesterone acetate (DMPA), or no intervention. Macaques were evaluated at baseline and after interventions using colposcopy, vaginal biopsies, and OCT imaging, which allowed for real-time in vivo visualization and measurement of ET of the mid-vagina, fornices, and cervix. P value ≤0.05 was considered significant. Colposcopy findings included pink, rugated tissue with variable degrees of white-tipped, thickened epithelium. Baseline ET of the fornices was thinner than the cervix and vagina (p<0.05), and mensing macaques had thinner ET at all sites (p<0.001). ET was decreased 1 month after DMPA (p<0.05) in all sites, immediately after mechanical abrasion (p<0.05) in the fornix and cervix, and after two doses of 4% N9 (1.25ml) applied over 14 hrs in the fornix only (p<0.001). Histological assessment of biopsied samples confirmed OCT findings. In summary, OCT imaging allowed for real time assessment of macaque vaginal ET. While varying degrees of thinning were observed after the interventions, limitations with each were noted. ET decreased naturally during menses, which may provide an ideal opportunity for accessing the targeted vaginal mucosal basal layers to achieve the optimum epithelial thickness for intravaginal mucosal vaccination.
Collapse
Affiliation(s)
- Kathleen L. Vincent
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Patrice A. Frost
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Southwest National Primate Research Center, San Antonio, TX, United States
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Edward J. Dick
- Southwest National Primate Research Center, San Antonio, TX, United States
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jingna Wei
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jinping Yang
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Robert White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Marie-Claire Gauduin
- Southwest National Primate Research Center, San Antonio, TX, United States
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
7
|
Isaikina P, Tsai CJ, Dietz N, Pamula F, Grahl A, Goldie KN, Guixà-González R, Branco C, Paolini-Bertrand M, Calo N, Cerini F, Schertler GFX, Hartley O, Stahlberg H, Maier T, Deupi X, Grzesiek S. Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. SCIENCE ADVANCES 2021; 7:7/25/eabg8685. [PMID: 34134983 PMCID: PMC8208711 DOI: 10.1126/sciadv.abg8685] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
The human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in cancer, HIV, and COVID-19. Despite its importance as a drug target, the molecular activation mechanism of CCR5, i.e., how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N terminus of agonist chemokines pushes onto specific structural motifs at the bottom of the orthosteric pocket that activate the canonical GPCR microswitch network. This activation mechanism differs substantially from other CC chemokine receptors that bind chemokines with shorter N termini in a shallow binding mode involving unique sequence signatures and a specialized activation mechanism.
Collapse
Affiliation(s)
- Polina Isaikina
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Nikolaus Dietz
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Filip Pamula
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anne Grahl
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | | - Camila Branco
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Calo
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gebhard F X Schertler
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
- Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Orion Biotechnology, Ottawa, Canada
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Xavier Deupi
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Qi B, Fang Q, Liu S, Hou W, Li J, Huang Y, Shi J. Advances of CCR5 antagonists: From small molecules to macromolecules. Eur J Med Chem 2020; 208:112819. [PMID: 32947226 DOI: 10.1016/j.ejmech.2020.112819] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
C-C chemokine receptor 5(CCR5) is a cell membrane protein from G protein-coupled receptors (GPCR) family, which is an important modulator for leukocyte activation and mobilization. In the 1980s, several reports suggest that lack of the HIV-1 co-receptor, the chemokine receptor CCR5, offers protection against HIV infection. Later, it was shown that CCR5 was confirmed to be the most common co-receptor for the HIV-1 virus R5 strain. In recent years, many studies have shown that CCR5 is closely related to the development of various cancers and inflammations to facilitate the discovery of CCR5 antagonists. There are many types of CCR5 antagonists, mainly including chemokine derivatives, non-peptide small molecule compounds, monoclonal antibodies, and peptide compounds. This review focus on the recent research processes and pharmacological effects of CCR5 antagonists such as Maraviroc, TAK-779 and PRO 140. After focusing on the therapeutic effect of CCR5 antagonists on AIDS, it also discusses the therapeutic prospect of CCR5 in other diseases such as inflammation and tumor.
Collapse
Affiliation(s)
- Baowen Qi
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qiang Fang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shiyuan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wenli Hou
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
| | - Jian Li
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, China.
| | - Yingchun Huang
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
10
|
Miller CJ, Veazey RS. T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. ACTA ACUST UNITED AC 2019; 15:36-40. [PMID: 31431806 DOI: 10.2174/1573395514666180807113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.
Collapse
Affiliation(s)
- Christopher J Miller
- Professor of Pathology, Microbiology, and Immunology, Center for Comparative Medicine.,California National Primate Research Center, University of California, Davis, Davis, Ca, 95616
| | - Ronald S Veazey
- Professor of Pathology and Laboratory Medicine, Tulane University School of Medicine.,Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
11
|
Rico CA, Berchiche YA, Horioka M, Peeler JC, Lorenzen E, Tian H, Kazmi MA, Fürstenberg A, Gaertner H, Hartley O, Sakmar TP, Huber T. High-Affinity Binding of Chemokine Analogs that Display Ligand Bias at the HIV-1 Coreceptor CCR5. Biophys J 2019; 117:903-919. [PMID: 31421836 DOI: 10.1016/j.bpj.2019.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
The chemokine receptor CCR5 is a drug target to prevent transmission of HIV/AIDS. We studied four analogs of the native chemokine regulated, on activation, normal T-cell-expressed, and secreted (RANTES) (CCL5) that have anti-HIV potencies of around 25 pM, which is more than four orders of magnitude higher than that of RANTES itself. It has been hypothesized that the ultrahigh potency of the analogs is due to their ability to bind populations of receptors not accessible to native chemokines. To test this hypothesis, we developed a homogeneous dual-color fluorescence cross-correlation spectroscopy assay for saturation- and competition-binding experiments. The fluorescence cross-correlation spectroscopy assay has the advantage that it does not rely on competition with radioactively labeled native chemokines used in conventional assays. We prepared site-specifically labeled fluorescent analogs using native chemical ligation of synthetic peptides, followed by bioorthogonal fluorescent labeling. We engineered a mammalian cell expression construct to provide fluorescently labeled CCR5, which was purified using a tandem immunoaffinity and size-exclusion chromatography approach to obtain monomeric fluorescent CCR5 in detergent solution. We found subnanomolar binding affinities for the two analogs 5P12-RANTES and 5P14-RANTES and about 20-fold reduced affinities for PSC-RANTES and 6P4-RANTES. Using homologous and heterologous competition experiments with unlabeled chemokine analogs, we conclude that the analogs all bind at the same binding site, whereas the native chemokines (RANTES and MIP-1α) fail to displace bound fluorescent analogs even at tens of micromolar concentrations. Our results can be rationalized with de novo structural models of the N-terminal tails of the synthetic chemokines that adopt a different binding mode as compared to the parent compound.
Collapse
Affiliation(s)
- Carlos A Rico
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, New York
| | - Yamina A Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland
| | - Mizuho Horioka
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, New York
| | - Jennifer C Peeler
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Deparment of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Manija A Kazmi
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Department of Inorganic and Analytical Chemistry, Geneva, Switzerland
| | - Hubert Gaertner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
12
|
Herrera C. The Pre-clinical Toolbox of Pharmacokinetics and Pharmacodynamics: in vitro and ex vivo Models. Front Pharmacol 2019; 10:578. [PMID: 31178736 PMCID: PMC6543330 DOI: 10.3389/fphar.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Prevention strategies against sexual transmission of human immunodeficiency virus (HIV) are essential to curb the rate of new infections. In the absence of a correlate of protection against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate prioritization of prevention candidates and their formulations in a rapidly evolving clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD) properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro and ex vivo systems for pharmacological assessment allow experimental flexibility and adaptability at a relatively low cost without raising as significant ethical concerns as in vivo models. Applications and limitations of pre-clinical PK/PD models and future alternatives are reviewed in the context of HIV prevention.
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
Microbicides are antiseptic topical drugs that help directly or indirectly inhibit the penetration of an infectious agent into the human body, thereby preventing the sexual transmission of HIV-infection and other sexually transmitted diseases. Microbicides have an antiviral mechanism of action in the sexual transmission of HIV and affect the components of mucosal immunity in the vagina. In this article, the pharmaceutical and biomedical aspects of microbicide application are examined and diverse classifications of microbicides are presented. For each group of chemicals, the most important representatives and their mechanisms of action are described. This article also presents the structure and function of mucosal immunity, and shows the importance of the mucosal immune response in the sexual transmission of HIV. This work also exhibits the experimental models for testing of candidate microbicides. For each compound described, a review of preclinical research and clinical trials is provided, covering its development as a microbicide. This paper gives an overview of microbicides, a new class of chemically diverse immunobiological medications reducing the risk of sexual transmission of HIV. The use of microbicides is believed to curb the HIV/AIDS epidemic in the nearest future.
Collapse
|
14
|
Paolini-Bertrand M, Cerini F, Martins E, Scurci I, Hartley O. Rapid and low-cost multiplex synthesis of chemokine analogs. J Biol Chem 2018; 293:19092-19100. [PMID: 30305389 DOI: 10.1074/jbc.ra118.004370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
Peptides represent a promising source of new medicines, but improved technologies are needed to facilitate discovery and optimization campaigns. In particular, longer peptides with multiple disulfide bridges are challenging to produce, and producing large numbers of structurally related variants is dissuasively costly and time-consuming. The principal cost and time drivers are the multiple column chromatography purification steps that are used during the multistep chemical synthesis procedure, which involves both ligation and oxidative refolding steps. In this study, we developed a method for multiplex parallel synthesis of complex peptide analogs in which the structurally variant region of the molecule is produced as a small peptide on a 384-well synthesizer with subsequent ligation to the longer, structurally invariant region and oxidative refolding carried out in-well without any column purification steps. To test the method, we used a panel of 96 analogs of the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 (69 residues, two disulfide bridges), which had been synthesized using standard approaches and characterized pharmacologically in an earlier study. Although, as expected, the multiplex method generated chemokine analogs of lower purity than those produced in the original study, it was nonetheless possible to closely match the pharmacological attributes (anti-HIV potency, capacity to elicit G protein signaling, and capacity to elicit intracellular receptor sequestration) of each chemokine analog to reference data from the earlier study. This rapid, low-cost approach has the potential to support discovery and optimization campaigns based on analogs of other chemokines as well as those of other complex peptide and small protein targets of a similar size.
Collapse
Affiliation(s)
- Marianne Paolini-Bertrand
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Fabrice Cerini
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Elsa Martins
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Ilaria Scurci
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Oliver Hartley
- From the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
16
|
Epigallocatechin-3-gallate local pre-exposure application prevents SHIV rectal infection of macaques. Mucosal Immunol 2018; 11:1230-1238. [PMID: 29855550 PMCID: PMC6030487 DOI: 10.1038/s41385-018-0025-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), a natural and major ingredient of green tea, has been shown to have anti-inflammation and anti-HIV-1 properties. We demonstrated that the intrarectal administration of EGCG could protect rhesus macaques from repetitive, intrarectal challenges with low-dose SHIVSF162P3N. This protection has a per-exposure risk reduction of 91.5% (P = 0.0009; log-rank test) and a complete protection of 87.5% (P < 0.001; Fisher's exact test). All protected animals showed no evidence of systemic and mucosal SHIV infection as demonstrated by the absence of viral RNA, DNA and antibodies. In contrast, all controls became infected after repeated SHIV challenges (a median of 2.5 times, range of 1-8 times). Mechanistically, EGCG could block the binding of HIV-1 gp120 to CD4 receptor and suppress the macrophage infiltration/activation in the rectal mucosa of macaques. These data support further clinical evaluation and development of EGCG as a novel, safe and cost-effective microbicide for preventing sexual transmission of HIV-1.
Collapse
|
17
|
Hoelscher M, Tiller N, Teh AYH, Wu GZ, Ma JKC, Bock R. High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. PLANT MOLECULAR BIOLOGY 2018; 97:357-370. [PMID: 29948657 PMCID: PMC6061503 DOI: 10.1007/s11103-018-0744-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, enabling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand.
Collapse
Affiliation(s)
- Matthijs Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Audrey Y-H Teh
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Secchi M, Grampa V, Vangelista L. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers. Sci Rep 2018; 8:1890. [PMID: 29382912 PMCID: PMC5790001 DOI: 10.1038/s41598-018-20300-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
Efforts to improve existing anti-HIV-1 therapies or develop preventatives have identified CCR5 as an important target and CCL5 as an ideal scaffold to sculpt potent HIV-1 entry inhibitors. We created novel human CCL5 variants that exhibit exceptional anti-HIV-1 features using recombinant lactobacilli (exploited for live microbicide development) as a screening platform. Protein design, expression and anti-HIV-1 activity flowed in iterative cycles, with a stepwise integration of successful mutations and refinement of an initial CCL5 mutant battery towards the generation of two ultimate CCL5 derivatives, a CCR5 agonist and a CCR5 antagonist with similar anti-HIV-1 potency. The CCR5 antagonist was tested in human macrophages and against primary R5 HIV-1 strains, exhibiting cross-clade low picomolar IC50 activity. Moreover, its successful combination with several HIV-1 inhibitors provided the ground for conceiving therapeutic and preventative anti-HIV-1 cocktails. Beyond HIV-1 infection, these CCL5 derivatives may now be tested against several inflammation-related pathologies where the CCL5:CCR5 axis plays a relevant role.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Valentina Grampa
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy
- INSERM, UMRS-839, Institut du Fer à Moulin, 75005, Paris, France
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|
19
|
Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2017; 57:136-148. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Wei Feng
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Kimberly B Barosh
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Amy H Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Jaimie Zhu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Xu Wang
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
20
|
Venuti A, Pastori C, Lopalco L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front Immunol 2017; 8:1358. [PMID: 29163468 PMCID: PMC5670346 DOI: 10.3389/fimmu.2017.01358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies (Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN) or HIV-infected individuals who control disease progression (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.
Collapse
Affiliation(s)
- Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
22
|
Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration. Antimicrob Agents Chemother 2017; 61:AAC.00965-17. [PMID: 28784672 DOI: 10.1128/aac.00965-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (105 to 107 ng/ml), followed by vaginal tissue (104 to 106 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<102 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as a microbicide.
Collapse
|
23
|
Cerini F, Offord R, McGowan I, Hartley O. Stability of 5P12-RANTES, A Candidate Rectal Microbicide, in Human Rectal Lavage. AIDS Res Hum Retroviruses 2017; 33:768-777. [PMID: 28177261 DOI: 10.1089/aid.2016.0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the absence of an effective vaccine, strategies to prevent HIV transmission are urgently needed. Condomless receptive anal intercourse represents a major route of transmission, and efforts are being made to develop strategies, in which potent anti-HIV drugs are formulated for topical application to the rectum before sex. 5P12-RANTES is a promising candidate for such a purpose. It is an analog of the human chemokine RANTES/CCL5, which potently blocks CCR5, the principal coreceptor used by HIV to enter and infect target cells. As a protein, 5P12-RANTES is potentially vulnerable to attack by proteases in the rectal environment. In this study, we tested the stability of 5P12-RANTES on exposure to rectal lavage samples obtained from healthy volunteers, using a sensitive HIV entry inhibition assay as an indicator of stability. Varying levels of inactivating activity toward 5P12-RANTES were detected across the different lavage samples. Analysis of even the most aggressive samples indicated that protease activity in the rectal environment is unlikely to impact on the anti-HIV activity of 5P12-RANTES when applied pericoitally at the envisaged clinical dose (1 mM). This study indicates that 5P12-RANTES has adequate stability for further development as an HIV prevention drug for rectal use.
Collapse
Affiliation(s)
- Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Robin Offord
- The Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Ian McGowan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- The Mintaka Foundation for Medical Research, Geneva, Switzerland
| |
Collapse
|
24
|
Machado D, Gaspar C, Palmeira-de-Oliveira A, Cavaleiro C, Salgueiro L, Martinez-de-Oliveira J, Cerca N. Thymbra capitata essential oil as potential therapeutic agent against Gardnerella vaginalis biofilm-related infections. Future Microbiol 2017; 12:407-416. [DOI: 10.2217/fmb-2016-0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the antibacterial activity of Thymbra capitata essential oil and its main compound, carvacrol, against Gardnerella vaginalis grown planktonically and as biofilms, and its effect of vaginal lactobacilli. Materials & methods: Minimal inhibitory concentration, minimal lethal concentration determination and flow cytometry analysis were used to assess the antibacterial effect against planktonic cells. Antibiofilm activity was measured through quantification of biomass and visualization of biofilm structure by confocal laser scanning microscopy. Results: T. capitata essential oil and carvacrol exhibited a potent antibacterial activity against G. vaginalis cells. Antibiofilm activity was more evident with the essential oil than carvacrol. Furthermore, vaginal lactobacilli were significantly more tolerant to the essential oil. Conclusion: T. capitata essential oil stands up as a promising therapeutic agent against G. vaginalis biofilm-related infections.
Collapse
Affiliation(s)
- Daniela Machado
- Centre of Biological Engineering, LIBRO – Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710–057 Braga, Portugal
| | - Carlos Gaspar
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200–506 Covilhã, Portugal
- Labfit – HPRD: Health Products Research & Development Lda, Edificio UBIMEDICAL, Estrada Municipal 506, 6200–284 Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200–506 Covilhã, Portugal
- Labfit – HPRD: Health Products Research & Development Lda, Edificio UBIMEDICAL, Estrada Municipal 506, 6200–284 Covilhã, Portugal
| | - Carlos Cavaleiro
- CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba 3000–354 Coimbra, Portugal
| | - Lígia Salgueiro
- CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba 3000–354 Coimbra, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200–506 Covilhã, Portugal
- Women & Child Health Department, Centro Hospitalar Cova da Beira EPE, Covilhã, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO – Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710–057 Braga, Portugal
| |
Collapse
|
25
|
Prevention of SHIV transmission by topical IFN-β treatment. Mucosal Immunol 2016; 9:1528-1536. [PMID: 26838048 PMCID: PMC4972705 DOI: 10.1038/mi.2015.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/13/2015] [Indexed: 02/04/2023]
Abstract
Understanding vaginal and rectal HIV transmission and protective cellular and molecular mechanisms is critical for designing new prevention strategies, including those required for an effective vaccine. The determinants of protection against HIV infection are, however, poorly understood. Increasing evidence suggest that innate immune defenses may help protect mucosal surfaces from HIV transmission in highly exposed, uninfected subjects. More recent studies suggest that systemically administered type 1 interferon protects against simian immunodeficiency virus infection of macaques. Here we hypothesized that topically applied type 1 interferons might stimulate vaginal innate responses that could protect against HIV transmission. We therefore applied a recombinant human type 1 interferon (IFN-β) to the vagina of rhesus macaques and vaginally challenged them with pathogenic simian/human immunodeficiency virus (SHIV). Vaginal administration of IFN-β resulted in marked local changes in immune cell phenotype, increasing immune activation and HIV co-receptor expression, yet provided significant protection from SHIV acquisition as interferon response genes were also upregulated. These data suggest that protection from vaginal HIV acquisition may be achieved by activating innate mucosal defenses.
Collapse
|
26
|
CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Sci Rep 2016; 6:34829. [PMID: 27721488 PMCID: PMC5056392 DOI: 10.1038/srep34829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The CD4 and the cryptic coreceptor binding sites of the HIV-1 envelope glycoprotein are key to viral attachment and entry. We developed new molecules comprising a CD4 mimetic peptide linked to anionic compounds (mCD4.1-HS12 and mCD4.1-PS1), that block the CD4-gp120 interaction and simultaneously induce the exposure of the cryptic coreceptor binding site, rendering it accessible to HS12- or PS1- mediated inhibition. Using a cynomolgus macaque model of vaginal challenge with SHIV162P3, we report that mCD4.1-PS1, formulated into a hydroxyethyl-cellulose gel provides 83% protection (5/6 animals). We next engineered the mCD4 moiety of the compound, giving rise to mCD4.2 and mCD4.3 that, when conjugated to PS1, inhibited cell-free and cell-associated HIV-1 with particularly low IC50, in the nM to pM range, including some viral strains that were resistant to the parent molecule mCD4.1. These chemically defined molecules, which target major sites of vulnerability of gp120, are stable for at least 48 hours in conditions replicating the vaginal milieu (37 °C, pH 4.5). They efficiently mimic several large gp120 ligands, including CD4, coreceptor or neutralizing antibodies, to which their efficacy compares very favorably, despite a molecular mass reduced to 5500 Da. Together, these results support the development of such molecules as potential microbicides.
Collapse
|
27
|
Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and Perspectives on HIV-1 microbicide development. Virology 2016; 497:69-80. [PMID: 27429040 DOI: 10.1016/j.virol.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
The majority of HIV-1 infections occur via sexual intercourse. Women are the most affected by the epidemic, particularly in developing countries, due to their socio-economic dependence on men and the fact that they are often victims of gender based sexual violence. Despite significant efforts that resulted in the reduction of infection rates in some countries, there is still need for effective prevention methods against the virus. One of these methods for preventing sexual transmission in women is the use of microbicides. In this review we provide a summary of the progress made toward the discovery of affordable and effective HIV-1 microbicides and suggest future directions. We show that there is a wide range of compounds that have been proposed as potential microbicides. Although most of them have so far failed to show protection in humans, there are many promising ones currently in pre-clinical studies and in clinical trials.
Collapse
Affiliation(s)
- Kabamba B Alexandre
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa.
| | - Hazel T Mufhandu
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - Grace M London
- Department of Health Free State District Health Services and Health Programs, South Africa
| | - E Chakauya
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - M Khati
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa; University of Cape Town and Groote Schuur Hospital, Department of Medicine, Cape Town, South Africa
| |
Collapse
|
28
|
Mauck C, Chen PL, Morrison CS, Fichorova RN, Kwok C, Chipato T, Salata RA, Doncel GF. Biomarkers of Cervical Inflammation and Immunity Associated with Cervical Shedding of HIV-1. AIDS Res Hum Retroviruses 2016; 32:443-51. [PMID: 26650885 DOI: 10.1089/aid.2015.0088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cervicovaginal HIV shedding is associated with increased female-to-male and mother-to-child transmission. Genital inflammation may increase shedding through cytokines/chemokines which recruit and activate HIV target cells. We evaluated whether cervical immune mediators present before seroconversion affected HIV shedding and whether mediators differed between shedders and nonshedders. METHODS We used cervical samples from 187 African women with documented HIV seroconversion in the Hormonal Contraception and HIV study. Samples were from the two visits before seroconversion (T-2 and/or T-1), and/or at seroconversion (T0), and/or the two visits (T + 1 and/or T + 2) after seroconversion. We measured interleukin (IL)-1β, IL-1 Receptor Antagonist (IL-1RA), IL-6, IL-8, RANTES (Regulated on Activation, Normal T-Cell Expressed and Secreted), MIP-3α, vascular endothelial growth factor (VEGF), Intercellular Adhesion Molecule-1 (ICAM-1), secretory leukocyte protease inhibitor (SLPI), and BD-2 and used the Wilcoxon test and generalized linear models to evaluate the association between mediators and shedding. RESULTS The only immune mediator that differed at T-1 was RANTES, which was higher among shedders (p ≤ .05). HIV seroconversion was followed by significant decreases in many mediators, but a significant increase in RANTES. The magnitude of the change was significantly different for shedders versus nonshedders with regard to RANTES (increased in both groups, significantly more so in shedders), SLPI (decreased in both groups, significantly more so in shedders), and MIP-3α (decreased in shedders and increased in nonshedders). At T0, shedders had lower levels of SLPI and MIP-3α than nonshedders. CONCLUSIONS In this study, a specific immune mediator profile was associated with risk of cervical HIV shedding. Higher and increasing levels of RANTES and lower and decreasing levels of SLPI and MIP-3α were associated with increased risk of HIV shedding.
Collapse
Affiliation(s)
- Christine Mauck
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, CONRAD, Arlington, Virginia
| | - Pai-Lien Chen
- Department of Biostatistics, FHI 360, Durham, North Carolina
| | | | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cynthia Kwok
- Department of Biostatistics, FHI 360, Durham, North Carolina
| | - Tsungai Chipato
- Department of Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Robert A. Salata
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gustavo F. Doncel
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, CONRAD, Arlington, Virginia
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Preexposure prophylaxis (PrEP) with daily Truvada has demonstrated clinical efficacy against HIV-1 acquisition that correlates with high adherence. Long-acting antiretroviral drugs offer an alternative to daily regimens and may improve PrEP adherence. This review summarizes the preclinical nonhuman primate studies for evaluating the efficacy of cabotegravir long-acting as PrEP and the ongoing phase 2a studies assessing safety, tolerability, and acceptability of cabotegravir long-acting. RECENT FINDINGS Cabotegravir is an HIV-1 integrase strand transfer inhibitor with intrinsic properties that permit its formulation as a long-acting injectable suspension. In clinical evaluation, cabotegravir long-acting has a half-life that permits infrequent dosing, possibly once every 3 months. In validated macaque models, cabotegravir long-acting demonstrated high protection against both rectal and vaginal transmission at clinically achievable drug concentrations. SUMMARY PrEP, after approval of Truvada, continues to evolve to address adherence limitations of daily dosing. As a long-acting injectable antiretroviral drug, cabotegravir long-acting permits quarterly dosing and demonstrated high efficacy in macaque models supporting dose selection and clinical development. Clinical studies have confirmed dose selection in phase 2a trials with cabotegravir long-acting to ultimately lead to phase 2b/3 PrEP efficacy trials.
Collapse
|
30
|
Cerini F, Gaertner H, Madden K, Tolstorukov I, Brown S, Laukens B, Callewaert N, Harner JC, Oommen AM, Harms JT, Sump AR, Sealock RC, Peterson DJ, Johnson SK, Abramson SB, Meagher M, Offord R, Hartley O. A scalable low-cost cGMP process for clinical grade production of the HIV inhibitor 5P12-RANTES in Pichia pastoris. Protein Expr Purif 2015; 119:1-10. [PMID: 26506568 PMCID: PMC4725576 DOI: 10.1016/j.pep.2015.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide. New medicines are required to prevent the spread of HIV/AIDS in low-resource regions. 5P12-RANTES, a chemokine analog, is a promising new candidate drug. We describe a process for producing clinical grade cGMP 5P12-RANTES in Pichia pastoris. This is a key step to achieving production at cost and scale appropriate for use worldwide.
Collapse
Affiliation(s)
- Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hubert Gaertner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Ilya Tolstorukov
- BioGrammatics Inc., Carlsbad, CA 92011, USA; Keck Graduate Institute, Claremont, CA, USA
| | - Scott Brown
- Biologics Process Development, Inc., Poway, CA 92064, USA
| | - Bram Laukens
- Department of Medical Protein Research, VIB-UGent, Ghent, Belgium; Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Department of Medical Protein Research, VIB-UGent, Ghent, Belgium; Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Ghent, Belgium
| | - Jay C Harner
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anna M Oommen
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John T Harms
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anthony R Sump
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert C Sealock
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dustin J Peterson
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Scott K Johnson
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Michael Meagher
- University of Nebraska-Lincoln Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robin Offord
- The Mintaka Foundation for Medical Research, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; The Mintaka Foundation for Medical Research, Geneva, Switzerland.
| |
Collapse
|
31
|
Andrews CD, Yueh YL, Spreen WR, St Bernard L, Boente-Carrera M, Rodriguez K, Gettie A, Russell-Lodrigue K, Blanchard J, Ford S, Mohri H, Cheng-Mayer C, Hong Z, Ho DD, Markowitz M. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge. Sci Transl Med 2015; 7:270ra4. [PMID: 25589630 DOI: 10.1126/scitranslmed.3010298] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Long-acting GSK1265744 (GSK744 LA) is a strand transfer inhibitor of the HIV/SIV (simian immunodeficiency virus) integrase and was shown to be an effective preexposure prophylaxis (PrEP) agent in a low-dose intrarectal SHIV (simian-human immunodeficiency virus) rhesus macaque challenge model. We examined the pharmacokinetics and efficacy of GSK744 LA as PrEP against repeat high-dose intravaginal SHIV challenge in female rhesus macaques treated with Depo-Provera (depot medroxyprogesterone acetate), which promotes viral transmission vaginally. When Depo-Provera-treated female rhesus macaques were dosed with GSK744 LA (50 mg/kg) monthly, systemic and tissue drug concentrations were lower than previously observed in male rhesus macaques. GSK744 concentrations were fivefold lower on average in cervical tissues than in rectal tissues. Eight female rhesus macaques were treated with GSK744 LA at week 0, and four female rhesus macaques served as controls. All animals received a high-dose challenge of SHIV162P3 at week 1. No infection was detected in GSK744 LA-treated rhesus macaques, whereas viremia was detected 1 to 2 weeks after SHIV challenge in all control animals. The GSK744 LA-treated rhesus macaques were given a second administration of drug at week 4 and further challenged at weeks 5 and 7. GSK744 LA treatment protected six of eight female rhesus macaques against three high-dose SHIV challenges, whereas all control animals became infected after the first challenge (P = 0.0003, log-rank test). These results support further clinical development of GSK744 LA for PrEP.
Collapse
Affiliation(s)
- Chasity D Andrews
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Yun Lan Yueh
- GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | | | - Leslie St Bernard
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Mar Boente-Carrera
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Kristina Rodriguez
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | | | - James Blanchard
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Susan Ford
- GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Zhi Hong
- GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
32
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
33
|
Sepúlveda-Crespo D, Sánchez-Rodríguez J, Serramía MJ, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine (Lond) 2015; 10:899-914. [PMID: 25867856 DOI: 10.2217/nnm.14.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To research the synergistic activity by triple combinations of carbosilane dendrimers with tenofovir and maraviroc as topical microbicide. METHODS Cytotoxicity, anti-HIV-1 activity, vaginal irritation and histological analysis of triple combinations were determined. Analysis of combined effects and the median effective concentration were performed using CalcuSyn software. RESULTS Combinations showed a greater broad-spectrum anti-HIV-1 activity than the single-drug, and preserved this activity in acid environment or seminal fluid. The strongest combinations were G2-STE16/G2-S24P/tenofovir, G2-STE16/G2-S16/maraviroc and G2-STE16/tenofovir/maraviroc at 2:2:1, 10:10:1 10:5:1 ratios, respectively. They demonstrated strong synergistic activity profile due to the weighted average combination indices varied between 0.06 and 0.38. No irritation was detected in female BALB/c mice. CONCLUSION The three-drug combination increases their antiviral potency and act synergistically as potential microbicide.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Spanish HIV-HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Fox JM, Kasprowicz R, Hartley O, Signoret N. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells. J Leukoc Biol 2015; 98:59-71. [PMID: 25957306 PMCID: PMC4560160 DOI: 10.1189/jlb.2a0414-193rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/03/2015] [Indexed: 01/04/2023] Open
Abstract
CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.
Collapse
Affiliation(s)
- James M Fox
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Richard Kasprowicz
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nathalie Signoret
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Potent Anti-HIV Chemokine Analogs Direct Post-Endocytic Sorting of CCR5. PLoS One 2015; 10:e0125396. [PMID: 25923671 PMCID: PMC4414452 DOI: 10.1371/journal.pone.0125396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/23/2015] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are desensitized and internalized following activation. They are then subjected to post-endocytic sorting (degradation, slow recycling or fast recycling). The majority of research on post-endocytic sorting has focused on the role of sequence-encoded address structures on receptors. This study focuses on trafficking of CCR5, a GPCR chemokine receptor and the principal entry coreceptor for HIV. Using Chinese Hamster Ovary cells stably expressing CCR5 we show that two different anti-HIV chemokine analogs, PSC-RANTES and 5P14-RANTES, direct receptor trafficking into two distinct subcellular compartments: the trans-Golgi network and the endosome recycling compartment, respectively. Our results indicate that a likely mechanism for ligand-directed sorting of CCR5 involves capacity of the chemokine analogs to elicit the formation of durable complexes of CCR5 and arrestin2 (beta-arrestin-1), with PSC-RANTES eliciting durable association in contrast to 5P14-RANTES, which elicits only transient association.
Collapse
|
36
|
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015; 93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix-associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Steinbach JM. Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs. Cell Mol Life Sci 2015; 72:469-503. [PMID: 25323132 PMCID: PMC11113570 DOI: 10.1007/s00018-014-1756-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 01/17/2023]
Abstract
Intravaginal delivery offers an effective option for localized, targeted, and potent microbicide delivery. However, an understanding of the physiological factors that impact intravaginal delivery must be considered to develop the next generation of microbicides. In this review, a comprehensive discussion of the opportunities and challenges of intravaginal delivery are highlighted, in the context of the intravaginal environment and currently utilized dosage forms. After a subsequent discussion of the stages of microbicide development, the intravaginal delivery of proteins and oligonucleotides is addressed, with specific application to HSV and HIV. Future directions may include the integration of more targeted delivery modalities to virus and host cells, in addition to the use of biological agents to affect specific genes and proteins involved in infection. More versatile and multipurpose solutions are envisioned that integrate new biologicals and materials into potentially synergistic combinations to achieve these goals.
Collapse
Affiliation(s)
- Jill M Steinbach
- Department of Bioengineering, Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., CTRB, Room 623, Louisville, KY, 40202, USA.
| |
Collapse
|
38
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
The role of human dendritic cells in HIV-1 infection. J Invest Dermatol 2014; 135:1225-1233. [PMID: 25407434 DOI: 10.1038/jid.2014.490] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/25/2014] [Accepted: 09/27/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections.
Collapse
|
40
|
Sánchez-Rodríguez J, Vacas-Córdoba E, Gómez R, De La Mata FJ, Muñoz-Fernández MÁ. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res 2014; 113:33-48. [PMID: 25446339 DOI: 10.1016/j.antiviral.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
More than three decades since its discovery, HIV infection remains one of the most aggressive epidemics worldwide, with more than 35 million people infected. In sub-Saharan Africa, heterosexual transmissions represent nearly 80% of new infections, with 50% of these occurring in women. In an effort to stop the dramatic spread of the HIV epidemic, new preventive treatments, such as microbicides, have been developed. Nanotechnology has revolutionized this field by designing and engineering novel highly effective nano-sized materials as microbicide candidates. This review illustrates the most recent advances in nanotech-derived HIV prevention strategies, as well as the main steps required to translate promising in vitro results into clinical trials.
Collapse
Affiliation(s)
- Javier Sánchez-Rodríguez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - F Javier De La Mata
- Dendrimers for Biomedical Applications Group (BioInDen), University of Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
41
|
Danial M, Klok HA. Polymeric anti-HIV therapeutics. Macromol Biosci 2014; 15:9-35. [PMID: 25185484 DOI: 10.1002/mabi.201400298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/14/2014] [Indexed: 11/09/2022]
Abstract
The scope of this review is to highlight the application of polymer therapeutics in an effort to curb the transmission and infection of the human immunodeficiency virus (HIV). Following a description of the HIV life cycle, the use of approved antiretroviral drugs that inhibit critical steps in the HIV infection process is highlighted. After that, a comprehensive overview of the structure and inhibitory properties of polymeric anti-HIV therapeutic agents is presented. This overview will include inhibitors based on polysaccharides, synthetic polymers, dendritic polymers, polymer conjugates as well as polymeric DC-SIGN antagonists. The review will conclude with a section that discusses the applications of polymers and polymer conjugates as systemic and topical anti-HIV therapeutics.
Collapse
Affiliation(s)
- Maarten Danial
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland.
| | | |
Collapse
|
42
|
Combination of the CCL5-derived peptide R4.0 with different HIV-1 blockers reveals wide target compatibility and synergic cobinding to CCR5. Antimicrob Agents Chemother 2014; 58:6215-23. [PMID: 25114130 DOI: 10.1128/aac.03559-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
R4.0, a synthetic CCL5/RANTES-derived peptide, exerts potent anti-HIV-1 activity via its nonactivating interaction with CCR5, the major HIV-1 coreceptor. CCR5 chronic activation may promote undesirable inflammatory effects and enhance viral infection; thus, receptor antagonism is a necessary requisite. HIV-1 gp120, CCL5, and maraviroc dock on CCR5 by sharing two receptor sites: the N terminus and the second extracellular loop. In combination studies, R4.0, CCL5, and maraviroc exhibited concomitant interactions with CCR5 and promoted synergic inhibition of HIV-1 in acute-infection assays. Furthermore, various degrees of additive/synergic HIV-1 inhibition were observed when R4.0 was tested in combination with drugs and lead compounds directed toward different viral targets (gp120, gp41, reverse transcriptase, and protease). In combination with tenofovir, R4.0 provides cross-clade synergic inhibition of primary HIV-1 isolates. Remarkably, an in vitro-generated maraviroc-resistant R5 HIV-1 strain was inhibited by R4.0 comparably to the wild-type strain, suggesting the presence of viral resistance barriers similar to those reported for CCL5. Overall, R4.0 appears to be a promising lead peptide with potential for combination in anti-HIV-1 therapy and in microbicide development to prevent sexual HIV-1 transmission.
Collapse
|
43
|
Jin J, Colin P, Staropoli I, Lima-Fernandes E, Ferret C, Demir A, Rogée S, Hartley O, Randriamampita C, Scott MGH, Marullo S, Sauvonnet N, Arenzana-Seisdedos F, Lagane B, Brelot A. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry. J Biol Chem 2014; 289:19042-52. [PMID: 24855645 DOI: 10.1074/jbc.m114.559831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.
Collapse
Affiliation(s)
- Jun Jin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Philippe Colin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | - Isabelle Staropoli
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Evelyne Lima-Fernandes
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Cécile Ferret
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Arzu Demir
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Sophie Rogée
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Oliver Hartley
- the Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland, and
| | - Clotilde Randriamampita
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Mark G H Scott
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Stefano Marullo
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Nathalie Sauvonnet
- the Unité de Biologie des Interactions Cellulaires, Institut Pasteur, 75015 Paris, France
| | - Fernando Arenzana-Seisdedos
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Bernard Lagane
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Anne Brelot
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France,
| |
Collapse
|
44
|
Spear M, Guo J, Wu Y. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways. Immunol Rev 2014; 256:300-12. [PMID: 24117829 DOI: 10.1111/imr.12106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
45
|
Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues. Histochem Cell Biol 2014; 142:69-77. [DOI: 10.1007/s00418-014-1206-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
46
|
Flegler AJ, Cianci GC, Hope TJ. CCR5 conformations are dynamic and modulated by localization, trafficking and G protein association. PLoS One 2014; 9:e89056. [PMID: 24586501 PMCID: PMC3938464 DOI: 10.1371/journal.pone.0089056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
CCR5 acts as the principal coreceptor during HIV-1 transmission and early stages of infection. Efficient HIV-1 entry requires a series of processes, many dependent on the conformational state of both viral envelope protein and cellular receptor. Monoclonal antibodies (MAbs) are able to identify different CCR5 conformations, allowing for their use as probes to distinguish CCR5 populations. Not all CCR5 MAbs are able to reduce HIV-1 infection, suggesting the use of select CCR5 populations for entry. In the U87.CD4.CCR5-GFP cell line, we used such HIV-1-restricting MAbs to probe the relation between localization, trafficking and G protein association for individual CCR5 conformations. We find that CCR5 conformations not only exhibit different localization and abundance patterns throughout the cell, but that they also display distinct sensitivities to endocytosis inhibition. Using chemokine analogs that vary in their HIV-1 inhibitory mechanisms, we also illustrate that responses to ligand engagement are conformation-specific. Additionally, we provide supporting evidence for the select sensitivity of conformations to G protein association. Characterizing the link between the function and dynamics of CCR5 populations has implications for understanding their selective targeting by HIV-1 and for the development of inhibitors that will block CCR5 utilization by the virus.
Collapse
Affiliation(s)
- Ayanna J. Flegler
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gianguido C. Cianci
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
INTRODUCTION HIV type 1 infection, despite having fallen by one-third over the past decade, remains a global health concern affecting millions of individuals worldwide. A focal point in contemporary research aimed at global HIV prevention has been the development of safe and efficacious coitally dependent and coitally independent anti-HIV microbicides to curb heterosexual HIV transmission. Despite extensive research efforts to develop novel vaginal antiretroviral (ARV) formulations and intravaginal ring delivery systems, the clinical advancement of microbicides with improved safety, efficacy and tolerability has significantly lagged behind. AREAS COVERED This review focuses on the current status of both coitally dependent and coitally independent delivery platforms designed to increase user acceptability and clinical effectiveness of anti-HIV microbicides. The clinical failure of several vaginal microbicide candidates has propelled the field to mechanism-based ARV candidates that act more specifically on viral receptors, viral enzymes and host proteins. Consequently, improved vaginal microbicide delivery strategies that achieve uniform drug distribution with enhanced solubility, sustained drug release, improved product adherence with reduced dosing frequency and lack of effect on the vaginal mucosa and microbiota are being sought. EXPERT OPINION Clinical success with vaginal microbicides may best be achieved through the combined effects of ARV compounds that exhibit different mechanisms of action with potent activity against multidrug-resistant HIV and efficacious delivery systems.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Children's Center for Cancer and Blood Diseases , Children's Hospital Los Angeles, Smith Research Tower Suite 316, 4650 Sunset Boulevard, CHLA Mailstop 160, Los Angeles, CA , USA
| | | |
Collapse
|
48
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
49
|
Flanagan CA. Receptor Conformation and Constitutive Activity in CCR5 Chemokine Receptor Function and HIV Infection. ADVANCES IN PHARMACOLOGY 2014; 70:215-63. [DOI: 10.1016/b978-0-12-417197-8.00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Abstract
PURPOSE OF REVIEW Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. RECENT FINDINGS Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. SUMMARY Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.
Collapse
|