1
|
Hao Z, Guan W, Wei W, Li M, Xiao Z, Sun Q, Pan Y, Xin W. Unlocking the therapeutic potential of tumor-derived EVs in ischemia-reperfusion: a breakthrough perspective from glioma and stroke. J Neuroinflammation 2025; 22:84. [PMID: 40089793 PMCID: PMC11909855 DOI: 10.1186/s12974-025-03405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Clinical studies have revealed a bidirectional relationship between glioma and ischemic stroke, with evidence of spatial overlap between the two conditions. This connection arises from significant similarities in their pathological processes, including the regulation of cellular metabolism, inflammation, coagulation, hypoxia, angiogenesis, and neural repair, all of which involve common biological factors. A significant shared feature of both diseases is the crucial role of extracellular vesicles (EVs) in mediating intercellular communication. Extracellular vesicles, with their characteristic bilayer structure, encapsulate proteins, lipids, and nucleic acids, shielding them from enzymatic degradation by ribonucleases, deoxyribonucleases, and proteases. This structural protection facilitates long-distance intercellular communication in multicellular organisms. In gliomas, EVs are pivotal in intracranial signaling and shaping the tumor microenvironment. Importantly, the cargos carried by glioma-derived EVs closely align with the biological factors involved in ischemic stroke, underscoring the substantial impact of glioma on stroke pathology, particularly through the crucial roles of EVs as key mediators in this interaction. This review explores the pathological interplay between glioma and ischemic stroke, addressing clinical manifestations and pathophysiological processes across the stages of hypoxia, stroke onset, progression, and recovery, with a particular focus on the crucial role of EVs and their cargos in these interactions.
Collapse
Affiliation(s)
- Zhongnan Hao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Medical School of Qingdao University, Qingdao, 266100, Shandong Province, China
| | - Wenxin Guan
- Queen Mary School, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi, China
| | - Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, PR China
| | - Meihua Li
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China.
| | - Wenqiang Xin
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Liu Y, Luo Z, Xie Y, Sun Y, Yuan F, Jiang L, Lu H, Hu J. Extracellular vesicles from UTX-knockout endothelial cells boost neural stem cell differentiation in spinal cord injury. Cell Commun Signal 2024; 22:155. [PMID: 38424563 PMCID: PMC10903014 DOI: 10.1186/s12964-023-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Vascular endothelial cells are pivotal in the pathophysiological progression following spinal cord injury (SCI). The UTX (Ubiquitously Transcribed Tetratripeptide Repeat on Chromosome X) serves as a significant regulator of endothelial cell phenotype. The manipulation of endogenous neural stem cells (NSCs) offers a compelling strategy for the amelioration of SCI. METHODS Two mouse models were used to investigate SCI: NSCs lineage-traced mice and mice with conditional UTX knockout (UTX KO) in endothelial cells. To study the effects of UTX KO on neural differentiation, we harvested extracellular vesicles (EVs) from both UTX KO spinal cord microvascular endothelial cells (SCMECs) and negative control SCMECs. These EVs were then employed to modulate the differentiation trajectory of endogenous NSCs in the SCI model. RESULTS In our NSCs lineage-traced mice model of SCI, a marked decrease in neurogenesis was observed post-injury. Notably, NSCs in UTX KO SCMECs mice showed enhanced neuronal differentiation compared to controls. RNA sequencing and western blot analyses revealed an upregulation of L1 cell adhesion molecule (L1CAM), a gene associated with neurogenesis, in UTX KO SCMECs and their secreted EVs. This aligns with the observed promotion of neurogenesis in UTX KO conditions. In vivo administration of L1CAM-rich EVs from UTX KO SCMECs (KO EVs) to the mice significantly enhanced neural differentiation. Similarly, in vitro exposure of NSCs to KO EVs resulted in increased activation of the Akt signaling pathway, further promoting neural differentiation. Conversely, inhibiting Akt phosphorylation or knocking down L1CAM negated the beneficial effects of KO EVs on NSC neuronal differentiation. CONCLUSIONS In conclusion, our findings substantiate that EVs derived from UTX KO SCMECs can act as facilitators of neural differentiation following SCI. This study not only elucidates a novel mechanism but also opens new horizons for therapeutic interventions in the treatment of SCI. Video Abstract.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Srivastava R, Dodda M, Zou H, Li X, Hu B. Tumor Niches: Perspectives for Targeted Therapies in Glioblastoma. Antioxid Redox Signal 2023; 39:904-922. [PMID: 37166370 PMCID: PMC10654996 DOI: 10.1089/ars.2022.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Significance: Glioblastoma (GBM), the most common and lethal primary brain tumor with a median survival rate of only 15 months and a 5-year survival rate of only 6.8%, remains largely incurable despite the intensive multimodal treatment of surgical resection and radiochemotherapy. Developing effective new therapies is an unmet need for patients with GBM. Recent Advances: Targeted therapies, such as antiangiogenesis therapy and immunotherapy, show great promise in treating GBM based upon increasing knowledge about brain tumor biology. Single-cell transcriptomics reveals the plasticity, heterogeneity, and dynamics of tumor cells during GBM development and progression. Critical Issues: While antiangiogenesis therapy and immunotherapy have been highly effective in some types of cancer, the disappointing results from clinical trials represent continued challenges in applying these treatments to GBM. Molecular and cellular heterogeneity of GBM is developed temporally and spatially, which profoundly contributes to therapeutic resistance and tumor recurrence. Future Directions: Deciphering mechanisms of tumor heterogeneity and mapping tumor niche trajectories and functions will provide a foundation for the development of more effective therapies for GBM patients. In this review, we discuss five different tumor niches and the intercellular and intracellular communications among these niches, including the perivascular, hypoxic, invasive, immunosuppressive, and glioma-stem cell niches. We also highlight the cellular and molecular biology of these niches and discuss potential strategies to target these tumor niches for GBM therapy. Antioxid. Redox Signal. 39, 904-922.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Changsha, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Clerici M, Citro V, Byrne AL, Dale TP, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Endotenon-Derived Type II Tendon Stem Cells Have Enhanced Proliferative and Tenogenic Potential. Int J Mol Sci 2023; 24:15107. [PMID: 37894787 PMCID: PMC10606148 DOI: 10.3390/ijms242015107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon injuries caused by overuse or age-related deterioration are frequent. Incomplete knowledge of somatic tendon cell biology and their progenitors has hindered interventions for the effective repair of injured tendons. Here, we sought to compare and contrast distinct tendon-derived cell populations: type I and II tendon stem cells (TSCs) and tenocytes (TNCs). Porcine type I and II TSCs were isolated via the enzymatic digestion of distinct membranes (paratenon and endotenon, respectively), while tenocytes were isolated through an explant method. Resultant cell populations were characterized by morphology, differentiation, molecular, flow cytometry, and immunofluorescence analysis. Cells were isolated, cultured, and evaluated in two alternate oxygen concentrations (physiological (2%) and air (21%)) to determine the role of oxygen in cell biology determination within this relatively avascular tissue. The different cell populations demonstrated distinct proliferative potential, morphology, and transcript levels (both for tenogenic and stem cell markers). In contrast, all tendon-derived cell populations displayed multipotent differentiation potential and immunophenotypes (positive for CD90 and CD44). Type II TSCs emerged as the most promising tendon-derived cell population for expansion, given their enhanced proliferative potential, multipotency, and maintenance of a tenogenic profile at early and late passage. Moreover, in all cases, physoxia promoted the enhanced proliferation and maintenance of a tenogenic profile. These observations help shed light on the biological mechanisms of tendon cells, with the potential to aid in the development of novel therapeutic approaches for tendon disorders.
Collapse
Affiliation(s)
- Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| | - Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Amy L. Byrne
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Tina P. Dale
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
| | - Aldo R. Boccaccini
- Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Interdepartmental Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
- Department of Trauma and Orthopaedic Surgery, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK; (M.C.); (V.C.); (A.L.B.); (T.P.D.); (N.M.)
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, UK
| |
Collapse
|
5
|
Coni P, Piras M, Piludu M, Lachowicz JI, Matteddu A, Coni S, Reali A, Fanos V, Jaremko M, Faa G, Pichiri G. Exploring cell surface markers and cell-cell interactions of human breast milk stem cells. J Public Health Res 2023; 12:22799036221150332. [PMID: 36712902 PMCID: PMC9880586 DOI: 10.1177/22799036221150332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breakthrough studies have shown that pluripotent stem cells are present in human breast milk. The expression of pluripotency markers by breast milk cells is heterogeneous, relating to cellular hierarchy, from early-stage multi-lineage stem cells to fully differentiated mammary epithelial cells, as well as weeks of gestation and days of lactation. Design and methods Here, we qualitatively analyze cell marker expression in freshly isolated human breast milk cells, without any manipulation that could influence protein expression. Moreover, we use electron microscopy to investigate cell-cell networks in breast milk for the first time, providing evidence of active intercellular communication between cells expressing different cellular markers. Results The immunocytochemistry results of human breast milk cells showed positive staining in all samples for CD44, CD45, CD133, and Ki67 markers. Variable positivity was present with P63, Tβ4 and CK14 markers. No immunostaining was detected for Wt1, nestin, Nanog, OCT4, SOX2, CK5, and CD34 markers. Cells isolated from human breast milk form intercellular connections, which together create a cell-to-cell communication network. Conclusions Cells freshly isolated form human breast milk, without particular manipulations, show heterogeneous expression of stemness markers. The studied milk staminal cells show "pluripotency" at different stages of differentiation, and are present as single cells or grouped cells. The adjacent cell interactions are evidenced by electron microscopy, which showed the formation of intercellular connections, numerous contact regions, and thin pseudopods.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Piras
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Piludu
- Department of Biomedical Sciences,
University of Cagliari, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy,Joanna Izabela Lachowicz, Department of
Medical Sciences and Public Health, University of Cagliari, Cittadella
Universitaria, Monserrato, Cagliari 09048, Italy.
| | - Anna Matteddu
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Coni
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Reali
- Azienda Ospedaliero Universitaria di
Cagliari, Terapia Intesiva Neonatale (TIN), P.O. Duilio Casula di Monserrato,
Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences,
University of Cagliari, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red
Sea Research Center (RSRC), Division of Biological and Environ-mental Sciences and
Engineering (BESE), King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia
| | - Gavino Faa
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pichiri
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Astrocytes Protect Human Brain Microvascular Endothelial Cells from Hypoxia Injury by Regulating VEGF Expression. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1884959. [PMID: 35340230 PMCID: PMC8956445 DOI: 10.1155/2022/1884959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Hypoxic-ischemic stroke has been associated with changes in neurovascular behavior, mediated, in part, by induction of the vascular endothelial growth factor (VEGF). The objective of this study was to investigate the effects of human astrocytes on the proliferation, apoptosis, and function of human microvascular endothelial cells (hBMEC) in vitro. Human microvascular endothelial cells (hBMEC) and human normal astrocytes (HA-1800) were used to establish in vitro cocultured cell models. The coculture model was used to simulate hypoxic-ischemic stroke, and it was found that astrocytes could promote hBMEC proliferation, inhibit apoptosis, reduce cell damage, and enhance antioxidant capacity by activating the VEGF signaling pathway. When VEGF is knocked out in astrocytes, the protective effect of astrocytes on hBMEC was partially lost. In conclusion, our study confirms the protective effect of hBMEC and laid a foundation for the study of hypoxic-ischemic stroke.
Collapse
|
7
|
Tremblay C, Rahayel S, Vo A, Morys F, Shafiei G, Abbasi N, Markello RD, Gan-Or Z, Misic B, Dagher A. Brain atrophy progression in Parkinson's disease is shaped by connectivity and local vulnerability. Brain Commun 2021; 3:fcab269. [PMID: 34859216 PMCID: PMC8633425 DOI: 10.1093/braincomms/fcab269] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Brain atrophy has been reported in the early stages of Parkinson's disease, but there have been few longitudinal studies. How intrinsic properties of the brain, such as anatomical connectivity, local cell-type distribution and gene expression combine to determine the pattern of disease progression also remains unknown. One hypothesis proposes that the disease stems from prion-like propagation of misfolded alpha-synuclein via the connectome that might cause varying degrees of tissue damage based on local properties. Here, we used MRI data from the Parkinson Progression Markers Initiative to map the progression of brain atrophy over 1, 2 and 4 years compared with baseline. We derived atrophy maps for four time points using deformation-based morphometry applied to T1-weighted MRI from 120 de novo Parkinson's disease patients, 74 of whom had imaging at all four time points (50 Men: 24 Women) and 157 healthy control participants (115 Men: 42 Women). In order to determine factors that may influence neurodegeneration, we related atrophy progression to brain structural and functional connectivity, cell-type expression and gene ontology enrichment analyses. After regressing out the expected age and sex effects associated with normal ageing, we found that atrophy significantly progressed over 2 and 4 years in the caudate, nucleus accumbens, hippocampus and posterior cortical regions. This progression was shaped by both structural and functional brain connectivity. Also, the progression of atrophy was more pronounced in regions with a higher expression of genes related to synapses and was inversely related to the prevalence of oligodendrocytes and endothelial cells. In sum, we demonstrate that the progression of atrophy in Parkinson's disease is in line with the prion-like propagation hypothesis of alpha-synuclein and provide evidence that synapses may be especially vulnerable to synucleinopathy. In addition to identifying vulnerable brain regions, this study reveals different factors that may be implicated in the neurotoxic mechanisms leading to progression in Parkinson's disease. All brain maps generated here are available on request.
Collapse
Affiliation(s)
- Christina Tremblay
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shady Rahayel
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC H4J 1C5, Canada
| | - Andrew Vo
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Golia Shafiei
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ross D Markello
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Kim J, Lee KT, Lee JS, Shin J, Cui B, Yang K, Choi YS, Choi N, Lee SH, Lee JH, Bahn YS, Cho SW. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 2021; 5:830-846. [PMID: 34127820 DOI: 10.1038/s41551-021-00743-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood-brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans-the most common pathogen causing fungal meningitis-and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.
Collapse
Affiliation(s)
- Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soo Hyun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea. .,Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea. .,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Wang J, Song W, Yang R, Li C, Wu T, Dong XB, Zhou B, Guo X, Chen J, Liu Z, Yu QC, Li W, Fu J, Zeng YA. Endothelial Wnts control mammary epithelial patterning via fibroblast signaling. Cell Rep 2021; 34:108897. [PMID: 33789106 DOI: 10.1016/j.celrep.2021.108897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial and fibroblast niches are crucial for epithelial organs. How these heterotypic cells interact is of great interest. In this study, we reveal an axis of signaling in which fibroblasts relay Wnt signals from the endothelial niche to organize epithelial patterning. We generate an Axin2-membrane GFP (mGFP) reporter mouse and observe robust Wnt/β-catenin signaling activities in fibroblasts surrounding the mammary epithelium. To enable cell-type-specific gene manipulation in vitro, we establish an organoid system via coculture of endothelial cells (ECs), fibroblasts, and mammary epithelial cells. Deletion of β-catenin in fibroblasts impedes epithelium branching, and ECs are responsible for the activation of Wnt/β-catenin signaling in fibroblasts. In vivo, EC deletion of Wntless inhibits Wnt/β-catenin signaling activity in fibroblasts, rendering a reduction in epithelial branches. These findings highlight the significance of the endothelial niche in tissue patterning, shedding light on the interactive mechanisms in which distinct niche components orchestrate epithelial organogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Jingqiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenqian Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruikai Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Bing Dong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wen Li
- Center of reproductive medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
10
|
Wang L, Gong T, Brown Z, Gu Y, Teng K, Ye W, Ming W. Preparation of Ascidian-Inspired Hydrogel Thin Films to Selectively Induce Vascular Endothelial Cell and Smooth Muscle Cell Growth. ACS APPLIED BIO MATERIALS 2020; 3:2068-2077. [DOI: 10.1021/acsabm.9b01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingren Wang
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Tao Gong
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zachary Brown
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Yelian Gu
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Kangwen Teng
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wei Ye
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
11
|
Patel BB, Sharifi F, Stroud DP, Montazami R, Hashemi NN, Sakaguchi DS. 3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineering. Macromol Biosci 2018; 19:e1800236. [DOI: 10.1002/mabi.201800236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Bhavika B. Patel
- Department of Genetics Development, and Cell Biology and Neuroscience Program Iowa State University Ames IA 50011 USA
| | - Farrokh Sharifi
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Daniel P. Stroud
- Department of Genetics Development, and Cell Biology, Biology Program Iowa State University Ames IA 50011 USA
| | - Reza Montazami
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Department of Genetics Development, and Cell Biology and Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development, and Cell Biology, Biology Program Iowa State University Ames IA 50011 USA
| |
Collapse
|
12
|
Hwang JY, Won JS, Nam H, Lee HW, Joo KM. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
13
|
Kinouchi T, Kitazato KT, Shimada K, Yagi K, Tada Y, Matsushita N, Kurashiki Y, Satomi J, Sata M, Nagahiro S. Treatment with the PPARγ Agonist Pioglitazone in the Early Post-ischemia Phase Inhibits Pro-inflammatory Responses and Promotes Neurogenesis Via the Activation of Innate- and Bone Marrow-Derived Stem Cells in Rats. Transl Stroke Res 2017; 9:306-316. [PMID: 29110250 PMCID: PMC5982463 DOI: 10.1007/s12975-017-0577-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022]
Abstract
Neurogenesis is essential for a good post-stroke outcome. Exogenous stem cells are currently being tested to promote neurogenesis after stroke. Elsewhere, we demonstrated that treatment with the PPARγ agonist pioglitazone (PGZ) before cerebral ischemia induction reduced brain damage and activated survival-related genes in ovariectomized (OVX) rats. Here, we tested our hypothesis that post-ischemia treatment with PGZ inhibits brain damage and contributes to neurogenesis via activated stem cells. Bone marrow (BM) cells of 7-week-old Wistar female rats were replaced with BM cells from green fluorescent protein-transgenic (GFP+BM) rats. Three weeks later, they were ovariectomized (OVX/GFP+BM rats). We subjected 7-week-old Wistar male and 13-week-old OVX/GFP+BM rats to 90-min cerebral ischemia. Male and OVX/GFP+BM rats were divided into two groups, one was treated with PGZ (2.5 mg/kg/day) and the other served as the vehicle control (VC). In both male and OVX/GFP+BM rats, post-ischemia treatment with PGZ reduced neurological deficits and the infarct volume. In male rats, PGZ decreased the mRNA level of IL-6 and M1-like macrophages after 24 h. In OVX/GFP+BM rats, PGZ augmented the proliferation of resident stem cells in the subventricular zone (SVZ) and the recruitment of GFP+BM stem cells on days 7–14. Both types of proliferated stem cells migrated from the SVZ into the peri-infarct area. There, they differentiated into mature neurons, glia, and blood vessels in association with activated Akt, MAP2, and VEGF. Post-ischemia treatment with PGZ may offer a new avenue for stroke treatment through contribution to neuroprotection and neurogenesis.
Collapse
Affiliation(s)
- Tomoya Kinouchi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Keiko T Kitazato
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenji Yagi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Nobuhisa Matsushita
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yoshitaka Kurashiki
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Junichiro Satomi
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinji Nagahiro
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
14
|
O'Léime CS, Cryan JF, Nolan YM. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 2017; 66:394-412. [PMID: 28751020 DOI: 10.1016/j.bbi.2017.07.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function.
Collapse
Affiliation(s)
- Ciarán S O'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
15
|
Torres-Pérez M, Rosillo JC, Berrosteguieta I, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain. Brain Res 2017; 1673:11-22. [DOI: 10.1016/j.brainres.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
|
16
|
Hooshmand MJ, Nguyen HX, Piltti KM, Benavente F, Hong S, Flanagan L, Uchida N, Cummings BJ, Anderson AJ. Neutrophils Induce Astroglial Differentiation and Migration of Human Neural Stem Cells via C1q and C3a Synthesis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1069-1085. [PMID: 28687659 DOI: 10.4049/jimmunol.1600064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2017] [Indexed: 12/23/2022]
Abstract
Inflammatory processes play a key role in pathophysiology of many neurologic diseases/trauma, but the effect of immune cells and factors on neurotransplantation strategies remains unclear. We hypothesized that cellular and humoral components of innate immunity alter fate and migration of human neural stem cells (hNSC). In these experiments, conditioned media collected from polymorphonuclear leukocytes (PMN) selectively increased hNSC astrogliogenesis and promoted cell migration in vitro. PMN were shown to generate C1q and C3a; exposure of hNSC to PMN-synthesized concentrations of these complement proteins promoted astrogliogenesis and cell migration. Furthermore, in vitro, Abs directed against C1q and C3a reversed the fate and migration effects observed. In a proof-of-concept in vivo experiment, blockade of C1q and C3a transiently altered hNSC migration and reversed astroglial fate after spinal cord injury. Collectively, these data suggest that modulation of the innate/humoral inflammatory microenvironment may impact the potential of cell-based therapies for recovery and repair following CNS pathology.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Hal X Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Katja M Piltti
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Francisca Benavente
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697
| | - Samuel Hong
- Bridges to Stem Cell Research Program, California State University, Fullerton, Fullerton, CA 92834; and
| | - Lisa Flanagan
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697
| | | | - Brian J Cummings
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697.,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
17
|
Kim SH, Ahn K, Park JY. Responses of human adipose-derived stem cells to interstitial level of extremely low shear flows regarding differentiation, morphology, and proliferation. LAB ON A CHIP 2017; 17:2115-2124. [PMID: 28541365 DOI: 10.1039/c7lc00371d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human cells encounter a range of shear stress levels in situ and this natural variability in shear stress implies that realistic investigations of cell type characteristics may depend on nontrivial shear stress models. Human adipose-derived stem cells (hASCs) differentiate near the blood capillary vessels where interstitial flows predominate. However, the effects of interstitial levels of shear on hASCs are not fully understood. In this study, we propose a microfluidic shear generation system, in which a gradient distribution of the interstitial level of shear flow is created to investigate the effects of interstitial-level shear flow on hASCs. To generate such a gradient profile of interstitial-level shear stress, we fabricated a semicircle-shaped microfluidic channel, and generated an extremely low flow using an osmosis-driven pump. Changes to hASC morphology, proliferation, and differentiation were observed under shear stresses of 1.8 × 10-3-2.4 × 10-3 Pa. At higher shear stresses, we found higher proliferation rates, stronger actin structures, and lower differentiation. We also conducted computational simulations of a monolayer culture, which showed that the shear stress level even on a single cell varies owing to the change of the cell thickness between the pseudopodia and the nucleus. We found that hASCs detectably respond to extremely low levels of shear flow, above a threshold of ∼2.0 × 10-3 Pa. Our microplatform may be useful for quantitating biological responses and function changes of other stem cells and cancer cells to interstitial-level shear flows.
Collapse
Affiliation(s)
- Sung-Hwan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | | | | |
Collapse
|
18
|
Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells Dev 2017; 26:933-947. [PMID: 28446071 PMCID: PMC5510676 DOI: 10.1089/scd.2017.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic disability after stroke represents a major unmet neurologic need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single-arm Phase II multicenter trial in patients with stable upper-limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-mycERTAM technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets the demands of research, clinical development, and, eventually, the market. CTX has key pro-angiogenic, pro-neurogenic, and immunomodulatory characteristics that are mechanistically important in functional recovery poststroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look into the late stage clinical future.
Collapse
|
19
|
Hashemi E, Sadeghi Y, Aliaghaei A, Seddighi A, Piryaei A, Broujeni ME, Shaerzadeh F, Amini A, Pouriran R. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid. Neural Regen Res 2017; 12:84-89. [PMID: 28250752 PMCID: PMC5319247 DOI: 10.4103/1673-5374.198989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As the key producer of cerebrospinal fluid (CSF), the choroid plexus (CP) provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2), as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic) led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.
Collapse
Affiliation(s)
- Elham Hashemi
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsoun Seddighi
- Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Eskandarian Broujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdollah Amini
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ehret F, Vogler S, Kempermann G. A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Res 2015; 15:514-521. [DOI: 10.1016/j.scr.2015.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/21/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023] Open
|
21
|
Colín-Castelán D, Ramírez-Santos J, Gutiérrez-Ospina G. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain. J Neurosci Res 2015; 94:161-9. [PMID: 26492830 DOI: 10.1002/jnr.23682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022]
Abstract
Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains.
Collapse
Affiliation(s)
- Dannia Colín-Castelán
- Departmento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Ciudad de México, México.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Ciudad de México, México
| | - Jesús Ramírez-Santos
- Departmento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Ciudad de México, México
| | - Gabriel Gutiérrez-Ospina
- Departmento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Ciudad de México, México.,Coordinación de Psicobiología, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Ciudad de México, México
| |
Collapse
|
22
|
|
23
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
24
|
Schnegg CI, Yang MH, Ghosh SK, Hsu MY. Induction of Vasculogenic Mimicry Overrides VEGF-A Silencing and Enriches Stem-like Cancer Cells in Melanoma. Cancer Res 2015; 75:1682-90. [PMID: 25769726 DOI: 10.1158/0008-5472.can-14-1855] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/31/2015] [Indexed: 12/15/2022]
Abstract
The basis for resistance to VEGF inhibition is not fully understood despite its clinical importance. In this study, we examined the adaptive response to VEGF-A inhibition by a loss-of-function analysis using plasmid-based shRNA. Tumor xenografts that initially responded to VEGF-A inhibition underwent an adaptation in vivo, leading to acquired resistance. VEGF-A blockade in tumors was associated with HIF1α expression and an increase in CD144(+) vasculogenic mimicry (VM), leading to formation of channels displaying Tie-1 and MMP-2 upregulation. CD133(+) and CD271(+) melanoma stem-like cells (MSLC) accumulated in the perivascular niche. Tumor xenografts of melanoma cell populations that were intrinsically resistant to VEGF-A blockade did not exhibit any of these features, compared with nontarget control counterparts. Thus, melanomas that are initially sensitive to VEGF-A blockade acquire adaptive resistance by adopting VM as an alternate angiogenic strategy, thereby enriching for deposition of MSLC in the perivascular niche through an HIF1α-dependent process. Conversely, melanomas that are intrinsically resistant to VEGF-A blockade do not show any evidence of compensatory survival mechanisms that promote MSLC accumulation. Our work highlights the potential risk of anti-VEGF treatments owing to a selective pressure for an adaptive resistance mechanism that empowers the development of stem-like cancer cells, with implications for how to design combination therapies that can improve outcomes in patients.
Collapse
Affiliation(s)
- Caroline I Schnegg
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Moon Hee Yang
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Subrata K Ghosh
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts
| | - Mei-Yu Hsu
- Department of Dermatology, Boston University Medical Center, Boston, Massachusetts.
| |
Collapse
|
25
|
Beltz BS, Cockey EL, Li J, Platto JF, Ramos KA, Benton JL. Adult neural stem cells: Long-term self-renewal, replenishment by the immune system, or both? Bioessays 2015; 37:495-501. [PMID: 25761245 DOI: 10.1002/bies.201400198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.
Collapse
|
26
|
Zizkova M, Sucha R, Tyleckova J, Jarkovska K, Mairychova K, Kotrcova E, Marsala M, Gadher SJ, Kovarova H. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies. Expert Rev Proteomics 2014; 12:83-95. [PMID: 25363140 DOI: 10.1586/14789450.2015.977381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation. This review summarizes the potential of proteomics in revealing molecular mechanisms underlying neural differentiation of stem cells and presents novel candidate proteins of neural subpopulations, where understanding of their functionality may accelerate transition to cell replacement therapies.
Collapse
Affiliation(s)
- Martina Zizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Libechov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fitzsimons CP, van Bodegraven E, Schouten M, Lardenoije R, Kompotis K, Kenis G, van den Hurk M, Boks MP, Biojone C, Joca S, Steinbusch HWM, Lunnon K, Mastroeni DF, Mill J, Lucassen PJ, Coleman PD, van den Hove DLA, Rutten BPF. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. Mol Neurodegener 2014; 9:25. [PMID: 24964731 PMCID: PMC4080757 DOI: 10.1186/1750-1326-9-25] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Emma van Bodegraven
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Marijn Schouten
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Roy Lardenoije
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Konstantinos Kompotis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Mark van den Hurk
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Biojone
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Samia Joca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Harry WM Steinbusch
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Diego F Mastroeni
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Jonathan Mill
- University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Paul D Coleman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands
| | - Daniel LA van den Hove
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
| | - Bart PF Rutten
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
28
|
Abstract
As the emergence of cancer is most frequent in proliferating tissues, replication errors are considered to be at the base of this disease. This review concentrates mainly on two neural cancers, neuroblastoma and glioma, with completely different backgrounds that are well documented with respect to their ontogeny. Although clinical data on other cancers of the nervous system are available, usually little can be said about their origins. Neuroblastoma is initiated in the embryo at a moment when the nervous system (NS) is in full expansion and occasionally genomic damage can lead to neoplasia. Glioma, to the contrary, occurs in the adult brain supposed to be mostly in a postmitotic state. According to current consensus, neural stem cells located in the subventricular zone (SVZ) in the adult are thought to accumulate enough genomic mutations to diverge on a carcinogenic course leading to diverse forms of glioma. After weighing the pros and cons of this current hypothesis in this review, it will be argued that this may be improbable, yielding to the original old concept of glial origin of glioma.
Collapse
|
29
|
Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci 2014; 71:2499-515. [PMID: 24522255 PMCID: PMC4055840 DOI: 10.1007/s00018-014-1568-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Adult neurogenesis, the birth of new neurons in the mature brain, has attracted considerable attention in the last decade. One of the earliest identified and most profound factors that affect adult neurogenesis both positively and negatively is stress. Here, we review the complex interplay between stress and adult neurogenesis. In particular, we review the role of the glucocorticoid receptor, the main mediator of the stress response in the proliferation, differentiation, migration, and functional integration of newborn neurons in the hippocampus. We review a multitude of mechanisms regulating glucocorticoid receptor activity in relationship to adult neurogenesis. We postulate a novel concept in which the level of glucocorticoid receptor expression directly regulates the excitation-inhibition balance, which is key for proper neurogenesis. We furthermore argue that an excitation-inhibition dis-balance may underlie aberrant functional integration of newborn neurons that is associated with psychiatric and paroxysmal brain disorders.
Collapse
Affiliation(s)
- Dirk-Jan Saaltink
- Department of Medical Pharmacology, Leiden University Medical Center/Leiden Amsterdam Center for Drug Research, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
30
|
Dietrich J, Diamond EL, Kesari S. Glioma stem cell signaling: therapeutic opportunities and challenges. Expert Rev Anticancer Ther 2014; 10:709-22. [DOI: 10.1586/era.09.190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
How do immune cells support and shape the brain in health, disease, and aging? J Neurosci 2013; 33:17587-96. [PMID: 24198349 DOI: 10.1523/jneurosci.3241-13.2013] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, several axioms have prevailed with respect to the relationships between the CNS and circulating immune cells. Specifically, immune cell entry was largely considered to be pathological or to mark the beginning of pathology within the brain. Moreover, local inflammation associated with neurodegenerative diseases such Alzheimer's disease or amyotrophic lateral sclerosis, were considered similar in their etiology to inflammatory diseases, such as remitting relapsing-multiple sclerosis. The ensuing confusion reflected a lack of awareness that the etiology of the disease as well as the origin of the immune cells determines the nature of the inflammatory response, and that inflammation resolution is an active cellular process. The last two decades have seen a revolution in these prevailing dogmas, with a significant contribution made by the authors. Microglia and infiltrating monocyte-derived macrophages are now known to be functionally distinct and of separate origin. Innate and adaptive immune cells are now known to have protective/healing properties in the CNS, as long as their activity is regulated, and their recruitment is well controlled; their role is appreciated in maintenance of brain plasticity in health, aging, and chronic neurodevelopmental and neurodegenerative diseases. Moreover, it is now understood that the barriers of the brain are not uniform in their interactions with the circulating immune cells. The implications of these new findings to the basic understanding of CNS repair processes, brain aging, and a wide spectrum of CNS disorders, including acute injuries, Rett syndrome, Alzheimer's disease, and multiple sclerosis, will be discussed.
Collapse
|
32
|
Guo J, Wang J, Liang C, Yan J, Wang Y, Liu G, Jiang Z, Zhang L, Wang X, Wang Y, Zhou X, Liao H. proNGF inhibits proliferation and oligodendrogenesis of postnatal hippocampal neural stem/progenitor cells through p75NTR in vitro. Stem Cell Res 2013; 11:874-87. [PMID: 23838122 DOI: 10.1016/j.scr.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/23/2022] Open
Abstract
Neural stem/progenitor cells (NSCs) proliferate and differentiate under tight regulation by various factors in the stem cell niche. Recent studies have shown that the precursor of nerve growth factor (NGF), proNGF, abounds in the central nervous system (CNS) and that its expression level in the brain is substantially elevated with aging as well as in several types of CNS disorders. In this study, we found for the first time that proNGF inhibited the proliferation of NSCs isolated from postnatal mouse hippocampus and caused cell cycle arrest in the G0/G1 phase without affecting apoptosis. In addition, proNGF reduced the differentiation of NSCs to oligodendrocytes. The effects of proNGF were blocked by the fusion protein of p75 neurotrophin receptor extracellular domain and human IgG Fc fragment (p75NTR/Fc), and by p75NTR knockout, suggesting that proNGF/p75NTR interaction was involved in the effects of proNGF on NSC proliferation and differentiation. proNGF decreased the phosphorylation level of extracellular signal responsive kinase 1/2 (ERK 1/2) in a p75NTR-dependent manner under both self-renewal and differentiation conditions. The inhibition of ERK 1/2 phosphorylation by U0126 significantly reduced the proliferation and oligodendrogenesis of NSCs, indicating that ERK 1/2 inhibition by proNGF partially explains its effects on NSC proliferation and oligodendrogenesis. These results suggest that the proNGF/p75NTR signal plays a key role in the regulation of NSCs' behavior.
Collapse
Affiliation(s)
- Jingjing Guo
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xiong YJ, Yin B, Xiao LC, Wang Q, Gan L, Zhang YC, Zhang SM. Proliferation and differentiation of neural stem cells co-cultured with cerebral microvascular endothelial cells after oxygen-glucose deprivation. ACTA ACUST UNITED AC 2013; 33:63-68. [PMID: 23392709 DOI: 10.1007/s11596-013-1072-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 12/26/2022]
Abstract
Various stem cells, including neural stem cells (NSCs), have been extensively studied in stroke models, but how to increase neuronal differentiation rate of NSCs remains unresolved, particularly in a damaged environment. The purpose of this study was to investigate the effects of cerebral microvascular endothelial cells (CMECs) on the neurogenesis of NSCs with or without oxygen-glucose deprivation (OGD). The NSCs acquired from primary culture were immunostained to prove cell purity. Survival and proliferation of NSCs were determined after the co-culture with CMECs for 7 days. After removing the CMECs, NSCs were randomly divided into two groups as follows: OGD and non-OGD groups. Both groups were maintained in differentiation culture for 4 days to evaluate the differentiation rate. Mouse embryo fibroblast (MEF) cells co-cultured with NSCs served as control group. NSCs co-cultured with CMECs had an increase in size (on the 7th day: 89.80±26.12 μm vs. 73.08±15.01 μm, P<0.001) (n=12) and number [on the 7th day: 6.33±5.61/high power objective (HP) vs. 2.23±1.61/HP, P<0.001] (n=12) as compared with those co-cultured with MEF cells. After further differentiation culture for 4 days, NSCs co-cultured with CMECs had an increase in neuronal differentiation rate in OGD and non-OGD groups, but not in the control group (15.16% and 16.07% vs. 8.81%; both P<0.001) (n=6). This study provided evidence that OGD could not alter the effects of CMECs in promoting the neuronal differentiation potential of NSCs. These findings may have important implications for the development of new cell therapies for cerebral vascular diseases.
Collapse
Affiliation(s)
- Yong-Jie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bo Yin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian-Chen Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Gan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-Chi Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Su-Ming Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Gershon TR, Crowther AJ, Tikunov A, Garcia I, Annis R, Yuan H, Miller CR, Macdonald J, Olson J, Deshmukh M. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab 2013; 1:2. [PMID: 24280485 PMCID: PMC3782751 DOI: 10.1186/2049-3002-1-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND While aerobic glycolysis is linked to unconstrained proliferation in cancer, less is known about its physiological role. Why this metabolic program that promotes tumor growth is preserved in the genome has thus been unresolved. We tested the hypothesis that aerobic glycolysis derives from developmental processes that regulate rapid proliferation. METHODS We performed an integrated analysis of metabolism and gene expression in cerebellar granule neuron progenitors (CGNPs) with and without Sonic Hedgehog (Shh), their endogenous mitogen. Because our analysis highlighted Hexokinase-2 (Hk2) as a key metabolic regulator induced by Shh, we studied the effect of conditional genetic Hk2 deletion in CGNP development. We then crossed Hk2 conditional knockout mice with transgenic SmoM2 mice that develop spontaneous medulloblastoma and determined changes in SmoM2-driven tumorigenesis. RESULTS We show that Shh and phosphoinositide 3-kinase (PI3K) signaling combine to induce an Hk2-dependent glycolytic phenotype in CGNPs. This phenotype is recapitulated in medulloblastoma, a malignant tumor of CGNP origin. Importantly, cre-mediated ablation of Hk2 abrogated aerobic glycolysis, disrupting CGNP development and Smoothened-induced tumorigenesis. Comparing tumorigenesis in medulloblastoma-prone SmoM2 mice with and without functional Hk2, we demonstrate that loss of aerobic glycolysis reduces the aggressiveness of medulloblastoma, causing tumors to grow as indolent lesions and allowing long-term survival of tumor bearing mice. CONCLUSIONS Our investigations demonstrate that aerobic glycolysis in cancer derives from developmental mechanisms that persist in tumorigenesis. Moreover, we demonstrate in a primary tumor model the anti-cancer potential of blocking aerobic glycolysis by targeting Hk2.See commentary article:http://www.biomedcentral.com/1741-7007/11/3.
Collapse
Affiliation(s)
- Timothy R Gershon
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC School of Medicine, 170 Manning Drive CB7025, Chapel Hill, NC, 27599, USA
| | - Andrew J Crowther
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrey Tikunov
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Idoia Garcia
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ryan Annis
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - C Ryan Miller
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology, Division of Neuropathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jeffrey Macdonald
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
35
|
Lao CL, Lu CS, Chen JC. Dopamine D3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 2013; 61:475-89. [PMID: 23322492 DOI: 10.1002/glia.22449] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/09/2012] [Indexed: 12/31/2022]
Abstract
The neurotransmitter dopamine acts on the subventricular zone (SVZ) to regulate both prenatal and postnatal neurogenesis, in particular through D(3) receptor (D(3) R) subtype. In this study, we explored the cellular mechanism(s) underlying D(3) R-mediated cell proliferation and tested if systemic delivery of a D(3) R agonist would induce SVZ multipotent neural stem/precursor cell (NSC/NPC) proliferation in vivo. We found that treatment with the D(3) R agonist, 7-OH-DPAT, enhances cell proliferation in a dose-dependent manner in cultured SVZ neurospheres from wild-type, but not D(3) R knock-out mice. Furthermore, D(3) R activation also stimulates S-phase and enhances mRNA and protein levels of cyclin D1 in wild-type neurospheres, a process which requires cellular Akt and ERK1/2 signaling. Moreover, chronic treatment with low dose 7-OH-DAPT in vivo increases BrdU(+) cell numbers in the adult SVZ, but this effect was not seen in D(3) R KO mice. Additionally, we probed the cell type specificity of D(3) R agonist-mediated cell proliferation. We found that in adult SVZ, GFAP(+) astrocytes, type-B GFAP(+) /nestin(+) and type-C EGF receptor (EGFR(+) )/nestin(+) cells express D(3) R mRNA, but type-A Doublecortin (Dcx)(+) neuroblasts do not. Using flow cytometry and immunofluorescence, we demonstrated that D(3) R activation increases GFAP(+) type-B and EGFR(+) type-C cell numbers, and the newly divided Dcx(+) type-A cells. However, BrdU(+) /Dcx(+) cell numbers were decreased in D(3) R KO mice compared to wildtype, suggesting that D(3) R maintains constitutive NSC/NPCs population in the adult SVZ. Overall, we demonstrate that D(3) R activation induces NSC/NPC proliferation through Akt and ERK1/2 signaling and increases the numbers of type-B and -C NSC/NPCs in the adult SVZ.
Collapse
Affiliation(s)
- Chu Lan Lao
- Department of Physiology and Pharmacology, Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Kwei-Shan, Taiwan
| | | | | |
Collapse
|
36
|
Ozen I, Boix J, Paul G. Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 2012; 1:30. [PMID: 23369339 PMCID: PMC3561038 DOI: 10.1186/2001-1326-1-30] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/20/2012] [Indexed: 12/14/2022] Open
Abstract
Perivascular adult stem cells have been isolated from several tissues, including the adult human brain. They have unique signatures resembling both pericytes and mesenchymal stem cells. Understanding the nature of these cells in their specific vascular niches is important to determine their clinical potential as a new adult stem cell source. Indeed, they have promising features in vitro in terms of multipotency, immunomodulation and secretion of growth factors and cytokines. However, their in vivo function is less known as yet. Recent emerging data show a crucial role of perivascular mesenchymal stem cells in tissue homeostasis and repair. Furthermore, these cells may play an important role in adult stem cell niche regulation and in neurodegeneration. Here we review the recent literature on perivascular mesenchymal stem cells, discuss their different in vitro functions and highlight especially the specific properties of brain-derived perivascular mesenchymal stem cells. We summarize current evidence that suggests an important in vivo function of these cells in terms of their regenerative potential that may indicate a new target cell for endogenous tissue regeneration and repair.
Collapse
Affiliation(s)
- Ilknur Ozen
- Department of Clinical Sciences, Translational Neurology, Lund University, Wallenberg Neuroscience Center, Lund 22 184, Sweden.
| | | | | |
Collapse
|
37
|
Hicks C, Stevanato L, Stroemer RP, Tang E, Richardson S, Sinden JD. In vivo and in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells. Cell Transplant 2012; 22:1541-52. [PMID: 23067568 DOI: 10.3727/096368912x657936] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CTX0E03 is a human neural stem cell line previously reported to reduce sensory motor deficits in a middle cerebral artery occlusion (MCAo) model of stroke. The objective of this study was to investigate if CTX0E03 treatment promotes angiogenesis. As stroke leads to damage of the vasculature in the brain, angiogenesis may contribute to the functional recovery. To test this hypothesis, the angiogenic activity of CTX0E03 was assessed both in vitro and in vivo. In vitro, CTX0E03 expression of trophic and proangiogenic factors was determined by real-time RT-PCR, Western blot, and ELISA, and its angiogenic activity was investigated in well-established angiogenesis assays. In vivo, angiogenesis was investigated in naive mice and MCAo rat brain and was evaluated by immunohistochemistry (IHC) using Von Willebrand factor (VWF), a marker of blood vessel formation, and BrdU/CD31 double labeling in naive mice only. In vitro results showed that CTX0E03-conditioned medium and coculture significantly increased total tubule formation compared with controls (p=0.002 and p=0.0008, respectively). Furthermore, CTX0E03 cells were found to be in direct association with the tubules by ICC. In vivo CTX0E03-treated brains demonstrated a significant increase in areas occupied by VWF-positive microvessels compared with vehicle-treated naive mice (two-way ANOVA, Interaction p<0.05, Treatment p<0.0001, Time p<0.0) and MCAo rat (p=0.001 unpaired t test, Welch's correction). CTX0E03-treated naive mouse brains showed an increase in BrdU/CD31 colabeling. In conclusion, in vitro CTX0E03 cells express proangiogenic factors and may promote angiogenesis by both release of paracrine factors and direct physical interaction. Furthermore, in vivo CTX0E03-treated rodent brains exhibited a significant increase in microvessels at the site of implantation compared with vehicle-injected groups. Taken together these data suggest that CTX0E03 cell therapy may provide significant benefit to stroke patients through upregulation of angiogenesis in the ischemic brain.
Collapse
Affiliation(s)
- Caroline Hicks
- ReNeuron Limited, Surrey Research Park, Guildford, Surrey, UK
| | | | | | | | | | | |
Collapse
|
38
|
Gao X, Chen J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol 2012; 239:38-48. [PMID: 23022454 DOI: 10.1016/j.expneurol.2012.09.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in the adult hippocampus; however, it remains inconclusive whether proliferation of these cells results in newly generated mature neurons, leading to increased neurogenesis. When we traced the fates of proliferating cells labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) we found that the number of BrdU-positive cells increased in the hippocampus of TBI mice compared to the sham control. However, double immunostaining to distinguish their cell types showed that most of these cells were glia, and that only a small subpopulation is newborn granular neurons. There was no significant difference with respect to neurogenesis in the adult hippocampus between the injured and the control mice. These results indicate that TBI promotes cell proliferation including astrocyte activation and NSC proliferation. Nevertheless, the majority of the BrdU-positive cells are glia. The neurogenesis is not increased by TBI. These data suggest that TBI activates through promotion of NSC proliferation an innate repair and/or plasticity mechanism in the brain. However, additional intervention is required to increase neurogenesis for successfully repairing the damaged brain following TBI.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
39
|
Lai CY, Schwartz BE, Hsu MY. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 2012; 72:5111-8. [PMID: 22865455 DOI: 10.1158/0008-5472.can-12-0624] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell subpopulations that express cancer stem cell markers such as CD133 (prominin1) or ABCB5 are thought to be crucial for tumor initiation and heterogeneity, but their biological significance in melanoma has been controversial. Here, we report that CD133(+) and ABCB5(+) subpopulations are colocalized in melanomas in perivascular niches that contain CD144 (VE-cadherin)(+) melanoma cells forming vessel-like channels, a phenomenon termed vasculogenic mimicry (VM). RNAi-mediated attenuation of CD133 established its critical function in morphogenesis of these perivascular niches as well as in melanoma tumorigenicity. Niche-associated genes CD144 and ABCB5 were downregulated in tumors derived from CD133 knockdown (KD) melanoma cells compared with controls. CD133KD cells also lacked the ability to form CD144(+) VM-like channels in a manner that was associated with a depletion of the ABCB5(+) cell subpopulation. Finally, CD133 KD cells exhibited poorer tumor growth in vivo. Taken together, our findings corroborate models in which CD133(+)/ABCB5(+) melanoma cells reside in a complex anastomosing microvascular niche that encompasses CD144(+) VM channels as well as authentic endothelial cell-lined blood vessels. Further, they indicate that CD133(+) cells act as stem-like cells, which drive tumor growth by promoting VM and the morphogenesis of a specialized perivascular niche in melanoma.
Collapse
Affiliation(s)
- Chiou-Yan Lai
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Lampe KJ, Heilshorn SC. Building stem cell niches from the molecule up through engineered peptide materials. Neurosci Lett 2012; 519:138-46. [PMID: 22322073 PMCID: PMC3691058 DOI: 10.1016/j.neulet.2012.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
The native stem cell niche is a dynamic and complex microenvironment. Recapitulating this niche is a critical focus within the fields of stem cell biology, tissue engineering, and regenerative medicine and requires the development of well-defined, tunable materials. Recent biomaterial design strategies seek to create engineered matrices that interact with cells at the molecular scale and allow on-demand, cell-triggered matrix modifications. Peptide and protein engineering can accomplish these goals through the molecular-level design of bioinductive and bioresponsive materials. This brief review focuses on engineered peptide and protein materials suitable for use as in vitro neural stem cell niche mimics and in vivo central nervous system repair. A key hallmark of these materials is the immense design freedom to specify the exact amino acid sequence leading to multi-functional bulk materials with tunable properties. These advanced materials are engineered using rational design strategies to recapitulate key aspects of the native neural stem cell niche. The resulting materials often combine the advantages of biological matrices with the engineering control of synthetic polymers. Future design strategies are expected to endow these materials with multiple layers of bi-directional feedback between the cell and the matrix, which will lead to more advanced mimics of the highly dynamic neural stem cell niche.
Collapse
Affiliation(s)
- Kyle J Lampe
- Materials Science and Engineering, 476 Lomita Mall, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
41
|
Kan EM, Ling EA, Lu J. Microenvironment changes in mild traumatic brain injury. Brain Res Bull 2012; 87:359-72. [PMID: 22289840 DOI: 10.1016/j.brainresbull.2012.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is a major public-health problem for which mild TBI (MTBI) makes up majority of the cases. MTBI is a poorly-understood health problem and can persist for years manifesting into neurological and non-neurological problems that can affect functional outcome. Presently, diagnosis of MTBI is based on symptoms reporting with poor understanding of ongoing pathophysiology, hence precluding prognosis and intervention. Other than rehabilitation, there is still no pharmacological treatment for the treatment of secondary injury and prevention of the development of cognitive and behavioural problems. The lack of external injuries and absence of detectable brain abnormalities lend support to MTBI developing at the cellular and biochemical level. However, the paucity of suitable and validated non-invasive methods for accurate diagnosis of MTBI poses as a substantial challenge. Hence, it is crucial that a clinically useful evaluation and management procedure be instituted for MTBI that encompasses both molecular pathophysiology and functional outcome. The acute microenvironment changes post-MTBI presents an attractive target for modulation of MTBI symptoms and the development of cognitive changes later in life.
Collapse
Affiliation(s)
- Enci Mary Kan
- Combat Care Laboratory, Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | | | | |
Collapse
|
42
|
Wójcik-Stanaszek L, Sypecka J, Szymczak P, Ziemka-Nalecz M, Khrestchatisky M, Rivera S, Zalewska T. The potential role of metalloproteinases in neurogenesis in the gerbil hippocampus following global forebrain ischemia. PLoS One 2011; 6:e22465. [PMID: 21799862 PMCID: PMC3143139 DOI: 10.1371/journal.pone.0022465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 06/28/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus.
Collapse
Affiliation(s)
- Luiza Wójcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Szymczak
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michel Khrestchatisky
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, CNRS, Aix-Marseille University, Marseille, France
| | - Santiago Rivera
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, CNRS, Aix-Marseille University, Marseille, France
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Sun J, Zhou W, Ma D, Yang Y. Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling. Dev Dyn 2011; 239:2345-53. [PMID: 20730910 DOI: 10.1002/dvdy.22377] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To investigate whether and how endothelial cells affect neurogenesis, we established a system to co-culture endothelial cells and brain slices of neonatal rat and observed how subventricular zone cells differentiate in the presence of endothelial cells. In the presence of endothelial cells, neural stem cells increased in number, as did differentiated neurons and glia. The augmentation of neurogenesis was reversed by diminishing vascular endothelial growth factor (VEGF) expression in endothelial cells with RNA interference (RNAi). Microarray analysis indicated that expression levels of 112 genes were significantly altered by co-culture and that expression of 81 of the 112 genes recovered to normal levels following RNAi of VEGF in endothelial cells. Pathway mapping showed an enrichment of genes in the Notch and Pten pathways. These data indicate that endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF, possibly by activating the Notch and Pten pathways.
Collapse
Affiliation(s)
- Jinqiao Sun
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
44
|
GSK-3β: a signaling pathway node modulating neural stem cell and endothelial cell interactions. Angiogenesis 2011; 14:173-85. [PMID: 21253820 DOI: 10.1007/s10456-011-9201-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/06/2011] [Indexed: 12/14/2022]
Abstract
The neurogenic areas of the brain are highly organized structures in which there is dynamic reciprocal modulation of neural stem cells (NSC) and microvascular endothelial cells (BEC) resulting in control of neural stem cell and vascular proliferation, survival and differentiation throughout the life of the individual. Select molecules such as GSK-3β, functioning as signaling nodes, and their downstream signaling components including HIF-1α, HIF-2α and β-catenin participate in regulating and orchestrating the diverse responses involved in this complex process. In this report we demonstrate GSK-3β's role as a signaling node in two mouse strains (C57BL/6, which have been found to respond to and recover from a hypoxic insult from P3 to P11 poorly and CD-1, which have been found to respond to and recover from a hypoxic insult from P3 to P11 well both in vivo and in vitro) which mimic the wide range of responsiveness to hypoxic insult observed in the very low birth weight premature infant population. Differences in levels of neural stem cell and microvascular endothelial cell GSK-3β activation, β-catenin serine phosphorylation, HIF-1α and 2α, BDNF, SDF-1 and VEGF, β-III-tubulin and cleaved notch-1 expression in C57BL/6 and CD-1 subventricular zone tissues, and cultured NSC and BEC were noted. Specifically, CD1 pups, SVZ tissues and isolated NSC and BEC exhibit less GSK-3β and β-catenin serine phoslphorylation and greater HIF-1α and 2α, BDNF, SDF-1 and VEGF, β-III-tubulin and cleaved notch-1 expression compared to C57BL/6. Correlating with these changes were differences of several neural stem cell and microvascular endothelial cell behaviors including proliferation, apoptosis, migration and differentiation with CD1 NSC exhibiting greater proliferation and migration and decreased apoptosis and differentiation and CD1 BEC exhibiting greater angiogenesis. Further, upon treatment with nanomolar concentrations of a GSK-3β inhibitor (SB412682), C57 NSC and BEC behaviors could be brought to CD1 levels, consistent with the concept of GSK-3β functioning as a multifunctional signaling pathway node, modulating several behaviors in these cells. Lastly, the therapeutic potential of targeting GSK-3β is discussed.
Collapse
|
45
|
CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway. Mol Cell Neurosci 2011; 46:296-307. [DOI: 10.1016/j.mcn.2010.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/26/2010] [Accepted: 09/29/2010] [Indexed: 12/14/2022] Open
|
46
|
Zheng Q, Zhu D, Bai Y, Wu Y, Jia J, Hu Y. Exercise Improves Recovery after Ischemic Brain Injury by Inducing the Expression of Angiopoietin-1 and Tie-2 in Rats. TOHOKU J EXP MED 2011; 224:221-8. [DOI: 10.1620/tjem.224.221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qingping Zheng
- Department of Rehabilitation, Huashan Hospital, Fudan University
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Medical College of Fudan University
| | - Yulong Bai
- Department of Rehabilitation, Huashan Hospital, Fudan University
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University
- State Key Laboratory of Medical Neurobiology, Fudan University
| |
Collapse
|
47
|
Oh J, McCloskey MA, Blong CC, Bendickson L, Nilsen-Hamilton M, Sakaguchi DS. Astrocyte-derived interleukin-6 promotes specific neuronal differentiation of neural progenitor cells from adult hippocampus. J Neurosci Res 2010; 88:2798-809. [PMID: 20568291 DOI: 10.1002/jnr.22447] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to investigate the ability of astrocyte-derived factors to influence neural progenitor cell differentiation. We previously demonstrated that rat adult hippocampal progenitor cells (AHPCs) immunoreactive for the neuronal marker class III beta-tubulin (TUJ1) were significantly increased in the presence of astrocyte-derived soluble factors under noncontact coculture conditions. Using whole-cell patch-clamp analysis, we observed that the cocultured AHPCs displayed two prominent voltage-gated conductances, tetraethyl ammonium (TEA)-sensitive outward currents and fast transient inward currents. The outward and inward current densities of the cocultured AHPCs were approximately 2.5-fold and 1.7-fold greater, respectively, than those of cells cultured alone. These results suggest that astrocyte-derived soluble factors induce neuronal commitment of AHPCs. To investigate further the activity of a candidate neurogenic factor on AHPC differentiation, we cultured AHPCs in the presence or absence of purified rat recombinant interleukin-6 (IL-6). We also confirmed that the astrocytes used in this study produced IL-6 by ELISA and RT-qPCR. When AHPCs were cultured with IL-6 for 6-7 days, the TUJ1-immunoreactive AHPCs and the average length of TUJ1-immunoreactive neurites were significantly increased compared with the cells cultured without IL-6. Moreover, IL-6 increased the inward current density to an extent comparable to that of coculture with astrocytes, with no significant differences in the outward current density, apparent resting potential, or cell capacitance. These results suggest that astrocyte-derived IL-6 may facilitate AHPC neuronal differentiation. Our findings have important implications for understanding injury-induced neurogenesis and developing cell-based therapeutic strategies using neural progenitors.
Collapse
Affiliation(s)
- Jisun Oh
- Neuroscience Program, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
48
|
Denysenko T, Gennero L, Roos MA, Melcarne A, Juenemann C, Faccani G, Morra I, Cavallo G, Reguzzi S, Pescarmona G, Ponzetto A. Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochem Funct 2010; 28:343-51. [PMID: 20535838 DOI: 10.1002/cbf.1666] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma Multiforme (GBM) is an incurable malignancy. GBM patients have a short life expectancy despite aggressive therapeutic approaches based on surgical resection followed by adjuvant radiotherapy and concomitant chemotherapy. Glioblastoma growth is characterized by a high motility of tumour cells, their resistance to both chemo/radio-therapy, apoptosis inhibition leading to failure of conventional therapy. Cancer Stem Cells (CSCs), identified in GBM as well as in many other cancer types, express the membrane antigen prominin-1 (namely CD133). These cells and normal Neural Stem Cells (NSC) share surface markers and properties, i.e. are able to self-renew and differentiate into multiple cell types. Stem cell self-renewal depends on microenvironmental cues, including Extracellular Matrix (ECM) composition and cell types. Therefore, the role of microenvironment needs to be evaluated to clarify its importance in tumour initiation and progression through CSCs. The specific microenvironment of CSCs was found to mimic in part the vascular niche of normal stem cells. The targeting of GMB CSCs may represent a powerful treatment approach. Lastly, in GBM patients cancer-initiating cells contribute to the profound immune suppression that in turn correlated with CSCs STAT3 (CD133 + ). Further studies of microenvironment are needed to better understand the origin of GMB/GBM CSCs and its immunosuppressive properties.
Collapse
Affiliation(s)
- Tetyana Denysenko
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao LH, Ding YX, Zhang L, Li L. Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria-fornix transected rats. Eur J Pharmacol 2010; 647:68-74. [PMID: 20826142 DOI: 10.1016/j.ejphar.2010.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 08/21/2010] [Indexed: 11/29/2022]
Abstract
Cornel iridoid glycoside (CIG) is a main component extracted from a traditional Chinese herb Cornus officinalis. Our previous study found that CIG improved neurological function in cerebral ischemic rats. The aim of this study was to investigate the therapeutic benefit of CIG in rats with fimbria-fornix transection (FFT) and explore the underlying molecular mechanisms. CIG (20, 60 and 180 mg/kg) or vehicle was intragastrically administered once daily to rats, starting immediately after the surgery and lasting for 4 weeks. Morris water maze and step-through tests showed that the memory deficits seen in FFT rats were significantly improved by CIG treatment. Immunohistochemical analysis showed that CIG treatment attenuated the loss of neurons in hippocampus. To elucidate the memory-improving mechanism of CIG, the neurotrophic factors, synaptic proteins and Bcl-2 family proteins in hippocampus were measured by Western blot analysis. FFT reduced hippocampal protein levels of nerve growth factor (NGF), tyrosine receptor kinase A (Trk A), brain-derived neurotrophic factor (BDNF), synaptophysin (SYP) and B-cell lymphoma-2 (Bcl-2), but not levels of tyrosine receptor kinase B (Trk B) and growth-associated protein 43 (GAP-43). FFT also elevated cytochorome C (Cyt c) and bcl-2-associated X protein (Bax). Administration of CIG to FFT rats significantly elevated the expression of NGF, TrkA, BDNF, SYP, GAP-43 and Bcl-2, and decreased the expression of Cyt c and Bax. These results indicated that CIG effectively counteracted cognitive impairments caused by fimbria-fornix lesions, and the mechanisms might be related to promoting neuronal survival and providing a beneficial environment for brain repair.
Collapse
Affiliation(s)
- Li-hong Zhao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, PR China
| | | | | | | |
Collapse
|
50
|
Lee PT, Lin HH, Jiang ST, Lu PJ, Chou KJ, Fang HC, Chiou YY, Tang MJ. Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells 2010; 28:573-84. [PMID: 20099318 DOI: 10.1002/stem.310] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute tubular necrosis is followed by regeneration of damaged renal tubular epithelial cells, and renal stem cells are supposed to contribute to this process. The purpose of our study is to test the hypothesis that renal stem cells isolated from adult mouse kidney accelerate renal regeneration via participation in the repair process. A unique population of cells exhibiting characteristics consistent with renal stem cells, mouse kidney progenitor cells (MKPC), was isolated from Myh9 targeted mutant mice. Features of these cells include (1) spindle-shaped morphology, (2) self-renewal of more than 100 passages without evidence of senescence, and (3) expression of Oct-4, Pax-2, Wnt-4, WT-1, vimentin, alpha-smooth muscle actin, CD29, and S100A4 but no SSEA-1, c-kit, or other markers of more differentiated cells. MKPC exhibit plasticity as demonstrated by the ability to differentiate into endothelial cells and osteoblasts in vitro and endothelial cells and tubular epithelial cells in vivo. The origin of the isolated MKPC was from the interstitium of medulla and papilla. Importantly, intrarenal injection of MKPC in mice with ischemic injury rescued renal damage, as manifested by decreases in peak serum urea nitrogen, the infarct zone, and the necrotic injury. Seven days after the injury, some MKPC formed vessels with red blood cells inside and some incorporated into renal tubules. In addition, MKPC treatment reduces the mortality in mice after ischemic injury. Our results indicate that MKPC represent a multipotent adult stem cell population, which may contribute to the renal repair and prolong survival after ischemic injury.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|