1
|
Nickel KF, Jämsä A, Konrath S, Papareddy P, Butler LM, Stavrou EX, Frye M, Gelderblom M, Nieswandt B, Hammerschmidt S, Herwald H, Renné T. Factor XII-driven coagulation traps bacterial infections. J Exp Med 2025; 222:e20250049. [PMID: 40261297 PMCID: PMC12013512 DOI: 10.1084/jem.20250049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Blood coagulation is essential for stopping bleeding but also drives thromboembolic disorders. Factor XII (FXII)-triggered coagulation promotes thrombosis while being dispensable for hemostasis, making it a potential anticoagulant target. However, its physiological role remains unclear. Here, we demonstrate that FXII-driven coagulation enhances innate immunity by trapping pathogens and restricting bacterial infection in mice. Streptococcus pneumoniae infection was more severe in FXII-deficient (F12-/-) mice, with increased pulmonary bacterial burden, systemic spread, and mortality. Similarly, Staphylococcus aureus skin infections and systemic dissemination were exacerbated in F12-/- mice. Reconstitution with human FXII restored bacterial containment. Plasma kallikrein amplifies FXII activation, and its deficiency aggravated S. aureus skin infections, similarly to F12-/- mice. FXII deficiency impaired fibrin deposition in abscess walls, leading to leaky capsules and bacterial escape. Bacterial long-chain polyphosphate activated FXII, triggering fibrin formation. Deficiency in FXII substrate factor XI or FXII/factor XI co-deficiency similarly exacerbated S. aureus infection. The data reveal a protective role for FXII-driven coagulation in host defense, urging caution in developing therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Katrin F. Nickel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinical Chemistry, Department of Molecular Medicine and Surgery, and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Anne Jämsä
- Clinical Chemistry, Medical Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Praveen Papareddy
- Department of Laboratory Medicine, Biomedical Center (BMC), Lund University, Lund, Sweden
| | - Lynn M. Butler
- Clinical Chemistry, Department of Molecular Medicine and Surgery, and Center of Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH, USA
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Luebeck/Kiel, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Heiko Herwald
- Department of Laboratory Medicine, Biomedical Center (BMC), Lund University, Lund, Sweden
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
2
|
Proctor E, Frost HR, Mantri B, Satapathy S, Botquin G, Gorman J, De Oliveira DMP, McArthur J, Davies MR, Tolun G, Botteaux A, Smeesters P, Sanderson‐Smith M. Fibrinogen-binding M-related proteins facilitate the recruitment of plasminogen by Streptococcus pyogenes. Protein Sci 2025; 34:e70078. [PMID: 40100134 PMCID: PMC11917135 DOI: 10.1002/pro.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 03/20/2025]
Abstract
Group A Streptococcus (GAS) M-related proteins (Mrp) are dimeric α-helical coiled-coil cell-wall-attached proteins. During infection, Mrp recruit human fibrinogen (Fg) to the bacterial surface, enhancing phagocytosis resistance and promoting growth in human blood. However, Mrp exhibit a high degree of sequence diversity, clustering into four evolutionarily distinct groups. It is currently unknown whether this diversity affects the host-pathogen interactions mediated by Mrp. In this study, nine Mrp sequences from the four major evolutionary groups were selected to examine the effect of sequence diversity on protein-protein interactions with Fg. Negative staining transmission electron microscopy confirmed that Mrp are fibrillar proteins measuring between 45.4 and 47.3 nm in length, and mass photometry confirmed the ability of Mrp to form dimers. Surface plasmon resonance was used to evaluate the affinity of each Mrp for Fg. All Mrp studied bound to Fg via Fragment D (FgD) with nanomolar affinity. Previous studies have linked the acquisition of plasminogen (Plg) by GAS Fg-binding M proteins to tissue destruction and excessive stimulation of the human inflammatory response during infection. Our findings show that Mrp provide an alternative mechanism for Plg recruitment, as Plg binding by Mrp was significantly enhanced following pre-incubation with Fg. These data suggest that Mrp play an important role in GAS host-pathogen interactions. However, further studies are necessary to investigate the relevance of these findings in vivo.
Collapse
Affiliation(s)
- Emma‐Jayne Proctor
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Hannah R. Frost
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Bhanu Mantri
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Sandeep Satapathy
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
- The Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Gwenaëlle Botquin
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Jody Gorman
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - David M. P. De Oliveira
- The Institute for Molecular Biosciences, Centre for Superbug SolutionsThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jason McArthur
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Mark R. Davies
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - Gökhan Tolun
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
- The ARC Training Centre for Cryo‐electron Microscopy of Membrane Proteins, University of WollongongWollongongNSWAustralia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Pierre Smeesters
- Molecular Bacteriology Laboratory, European Plotkins Institute for Vaccinology (EPIV)Université Libre de BruxellesBrusselsBelgium
| | - Martina Sanderson‐Smith
- Molecular Horizons Research Institute and School of ScienceUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
3
|
Vu HM, Moran TE, Liang Z, Bao YJ, Carles PG, Keane JC, Cerney MG, Dahnke CN, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group a Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination. Microbiol Spectr 2025; 13:e0260724. [PMID: 39804237 PMCID: PMC11792473 DOI: 10.1128/spectrum.02607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 02/05/2025] Open
Abstract
Group A Streptococcus (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape. A major unresolved question regards the temporal dynamics of how GAS enmeshed in a fibrin clot can access plasminogen for clot dissolution and eventual dissemination. Here, we reveal through live imaging studies that GAS trapped inside a fibrin clot can remain viable in a latent state, until access to plasminogen activates fibrinolysis and dissemination. RNA-sequencing (RNA-seq) analysis shows marked changes in the wild-type (WT)-GAS transcriptome from the time bacteria were enmeshed inside the clot (4 h) to when dissemination was initiated (8 h). To gain a more fully realized model of how GAS trapped in fibrin clots can disseminate in the blood system, we utilized a novel 3D endothelial microfluidic device to demonstrate that GAS is fully capable of fibrinolysis in an endothelial environment, revealing a major underappreciated route by which GAS may cause more invasive outcomes. Our findings reveal for the first time that GAS can engage a latent, growth-suspended phase whereby physical structures such as fibrin clots that immobilize an invading pathogen allow bacteria to remain viable until sufficient access to plasminogen allows it to initiate fibrinolysis and escape into surrounding blood system and tissues. IMPORTANCE Group A Streptococcus (GAS) is a human-specific bacterial pathogen that causes infections ranging in severity from mild to severe infections that can often be fatal. To protect the host, the innate immune system creates fibrin clots to trap bacteria and prevent deeper spread. GAS produces several factors that can initiate the dissolution of these fibrin clots to spread to deeper tissues, but we lack specific understanding of the timing of these events. Our studies demonstrate for the first time that GAS can delay their escape from fibrin clots to gain access to deeper tissues during infection, suggesting a key strategy that GAS utilize to cause more invasive disease.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paulina G. Carles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica C. Keane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madelyn G. Cerney
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Caitlyn N. Dahnke
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Readnour BM, Tjia-Fleck S, McCann NR, Ayinuola YA, Castellino FJ. High-resolution cryo-EM analysis of a Streptococcus pyogenes M-protein/human plasminogen complex. Structure 2024; 32:2231-2243.e4. [PMID: 39500317 DOI: 10.1016/j.str.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 12/08/2024]
Abstract
The importance of human plasminogen (hPg)/plasmin (hPm)/cell receptor complexes in invasiveness of cells has been amply established. The objective of this investigation was to determine a high-resolution structure of a major Group A Streptococcus (GAS) bacterial receptor (PAM) for hPg/hPm when bound on a cell surface to its major ligand, hPg. As a model cell surface with endogenous PAM, we employed engineered PAM-expressing lentivirus (LV) particles. We show that the ectodomain of a PAM-type M-Protein (M-Prt), in complex with hPg, is folded through distinct intra- and inter-domain interactions to a more compact form on the cell surface, thus establishing a new paradigm for membrane-bound M-Prt/ligand structures. These studies provide a framework for addressing the need for treatments of GAS disease by providing a molecular platform to solve structures of virulence-determining membrane proteins.
Collapse
Affiliation(s)
- Bradley M Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathan R McCann
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
5
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Tang D, Khakzad H, Hjortswang E, Malmström L, Ekström S, Happonen L, Malmström J. Streptolysin O accelerates the conversion of plasminogen to plasmin. Nat Commun 2024; 15:10212. [PMID: 39587097 PMCID: PMC11589678 DOI: 10.1038/s41467-024-54173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that can exploit the plasminogen-plasmin fibrinolysis system to dismantle blood clots and facilitate its spread and survival within the human host. In this study, we use affinity-enrichment mass spectrometry to decipher the host-pathogen protein-protein interaction between plasminogen and streptolysin O, a key cytolytic toxin produced by GAS. This interaction accelerates the conversion of plasminogen to plasmin by both the host tissue-type plasminogen activator and streptokinase, a bacterial plasminogen activator secreted by GAS. Integrative structural mass spectrometry analysis shows that the interaction induces local conformational shifts in plasminogen. These changes lead to the formation of a stabilised intermediate plasminogen-streptolysin O complex that becomes significantly more susceptible to proteolytic processing by plasminogen activators. Our findings reveal a conserved and moonlighting pathomechanistic function for streptolysin O that extends beyond its well-characterised cytolytic activity.
Collapse
Affiliation(s)
- Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simon Ekström
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Girardis M, David S, Ferrer R, Helms J, Juffermans NP, Martin-Loeches I, Povoa P, Russell L, Shankar-Hari M, Iba T, Coloretti I, Parchim N, Nielsen ND. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensive Care Med 2024; 50:1580-1592. [PMID: 39222142 DOI: 10.1007/s00134-024-07586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the immune system, coagulation, and endothelium is critical in regulating the host response to infection. However, in sepsis and other critical illnesses, a dysregulated immune response can lead to excessive alterations in these mechanisms, resulting in coagulopathy, endothelial dysfunction, and multi-organ dysfunction. This review aims to provide a comprehensive analysis of the pathophysiological mechanisms that govern the complex interplay between immune dysfunction, endothelial dysfunction, and coagulation in sepsis. It emphasises clinical significance, evaluation methods, and potential therapeutic interventions. Understanding these mechanisms is essential for developing effective treatments that can modulate the immune response, mitigate thrombosis, restore endothelial function, and ultimately improve patient survival.
Collapse
Affiliation(s)
- Massimo Girardis
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy.
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julie Helms
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Strasbourg, France
| | - Nicole P Juffermans
- Department of Intensive Care and Translational Laboratory of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James' Hospital, Dublin, D08 NHY1, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, 08180, Barcelona, Spain
| | - Pedro Povoa
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Lene Russell
- Copenhagen University Hospital Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Manu Shankar-Hari
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Irene Coloretti
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy
| | - Nicholas Parchim
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| | - Nathan D Nielsen
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| |
Collapse
|
8
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
9
|
Carlsson F, Råberg L. The germ theory revisited: A noncentric view on infection outcome. Proc Natl Acad Sci U S A 2024; 121:e2319605121. [PMID: 38578984 PMCID: PMC11047106 DOI: 10.1073/pnas.2319605121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
The germ theory states that pathogenic microorganisms are responsible for causing infectious diseases. The theory is inherently microbe-centric and does not account for variability in disease severity among individuals and asymptomatic carriership-two phenomena indicating an important role for host variability in infection outcome. The basic tenet of the germ theory was recently challenged, and a radically host-centric paradigm referred to as the "full-blown host theory" was proposed. According to this view, the pathogen is reduced to a passive environmental trigger, and the development of disease is instead due to pre-existing immunodeficiencies of the host. Here, we consider the factors that determine disease severity using established knowledge concerning evolutionary biology, microbial pathogenesis, and host-pathogen interactions. We note that the available data support a noncentric view that recognizes key roles for both the causative microbe and the host in dictating infection outcome.
Collapse
Affiliation(s)
| | - Lars Råberg
- Department of Biology, Lund University, Lund223 62, Sweden
| |
Collapse
|
10
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
11
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
12
|
Toledo AG, Bratanis E, Velásquez E, Chowdhury S, Olofsson B, Sorrentino JT, Karlsson C, Lewis NE, Esko JD, Collin M, Shannon O, Malmström J. Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections. Nat Commun 2023; 14:6693. [PMID: 37872209 PMCID: PMC10593946 DOI: 10.1038/s41467-023-42572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Group A streptococcus (GAS) is a major bacterial pathogen responsible for both local and systemic infections in humans. The molecular mechanisms that contribute to disease heterogeneity remain poorly understood. Here we show that the transition from a local to a systemic GAS infection is paralleled by pathogen-driven alterations in IgG homeostasis. Using animal models and a combination of sensitive proteomics and glycoproteomics readouts, we documented the progressive accumulation of IgG cleavage products in plasma, due to extensive enzymatic degradation triggered by GAS infection in vivo. The level of IgG degradation was modulated by the route of pathogen inoculation, and mechanistically linked to the combined activities of the bacterial protease IdeS and the endoglycosidase EndoS, upregulated during infection. Importantly, we show that these virulence factors can alter the structure and function of exogenous therapeutic IgG in vivo. These results shed light on the role of bacterial virulence factors in shaping GAS pathogenesis, and potentially blunting the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erika Velásquez
- IPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Berit Olofsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Satala D, Bednarek A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Recruitment and Activation of Plasminogen by Bacteria-The Involvement in Chronic Infection Development. Int J Mol Sci 2023; 24:10436. [PMID: 37445613 DOI: 10.3390/ijms241310436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The development of infections caused by pathogenic bacteria is largely related to the specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a significant role of hijacking of host proteolytic cascades by pathogens during invasion should not be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness at secondary infection sites after initial penetration through tissue barriers. In this review, the mechanisms of bacterial impact on host plasminogen-the precursor of the important plasma serine proteinase, plasmin-are characterized, principally focusing on cell surface exposition of various proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is also described, providing a remarkable example of a dual use of this host system in the development of chronic diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Ayinuola YA, Donahue DL, Charles J, Liang Z, Castellino FJ, Ploplis VA. Generation and characterization of a plasminogen-binding group A streptococcal M-protein/streptokinase-sensitive mouse line. J Thromb Haemost 2023; 21:1630-1635. [PMID: 36914052 DOI: 10.1016/j.jtha.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Streptococcus pyogenes (GAS) is a human bacterial pathogen that generates various mild to severe diseases. Worldwide, there are approximately 700 million cases of GAS infections per year. In some strains of GAS, the surface-resident M-protein, plasminogen-binding group A streptococcal M-protein (PAM), binds directly to human host plasminogen (hPg), where it is activated to plasmin through a mechanism involving a Pg/bacterial streptokinase (SK) complex as well as endogenous activators. Binding to Pg and its activation are dictated by selected sequences within the human host Pg protein, making it difficult to generate animal models to study this pathogen. OBJECTIVES To develop a murine model for studying GAS infection by minimally modifying mouse Pg to enhance the affinity to bacterial PAM and sensitivity to GAS-derived SK. METHODS We used a targeting vector that contained a mouse albumin-promoter and mouse/human hybrid plasminogen cDNA targeted to the Rosa26 locus. Characterization of the mouse strain consisted of both gross and histological techniques and determination of the effects of the modified Pg protein through surface plasmon resonance measurements, Pg activation analyses, and mouse survival post-GAS infection. RESULTS We generated a mouse line expressing a chimeric Pg protein consisting of 2 amino acid substitutions in the heavy chain of Pg and a complete replacement of the mouse Pg light chain with the human Pg light chain. CONCLUSION This protein demonstrated an enhanced affinity for bacterial PAM and sensitivity to activation by the Pg-SK complex, making the murine host susceptible to the pathogenic effects of GAS.
Collapse
Affiliation(s)
- Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jermilia Charles
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
16
|
Hammers DE, Donahue DL, Tucker Z, Ashfeld BL, Ploplis VA, Castellino FJ, Lee SW. Streptolysin S targets the sodium-bicarbonate cotransporter NBCn1 to induce inflammation and cytotoxicity in human keratinocytes during Group A Streptococcal infection. Front Cell Infect Microbiol 2022; 12:1002230. [PMID: 36389147 PMCID: PMC9663810 DOI: 10.3389/fcimb.2022.1002230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Group A <i>Streptococcus</i> (GAS, <i>Streptococcus pyogenes</i>) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence <i>in vivo</i>. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.
Collapse
Affiliation(s)
- Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary D. Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Shaun W. Lee,
| |
Collapse
|
17
|
Expression of the Group A Streptococcus Fibrinogen-Binding Protein Mrp Is Negatively Regulated by the Small Regulatory RNA FasX. J Bacteriol 2022; 204:e0025122. [PMID: 36286516 PMCID: PMC9664951 DOI: 10.1128/jb.00251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small regulatory RNAs (sRNAs) represent a major class of regulatory molecule that promotes the ability of the group A
Streptococcus
(GAS) and other pathogens to regulate virulence factor expression. Despite FasX being the best-described sRNA in GAS, there remains much to be learned.
Collapse
|
18
|
Temba GS, Vadaq N, Wan J, Kullaya V, Huskens D, Pecht T, Jaeger M, Boahen CK, Matzaraki V, Broeders W, Joosten LAB, Faradz SMH, Kibiki G, Middeldorp S, Cavalieri D, Lionetti P, de Groot PG, Schultze JL, Netea MG, Kumar V, de Laat B, Mmbaga BT, van der Ven AJ, Roest M, de Mast Q. Differences in thrombin and plasmin generation potential between East African and Western European adults: The role of genetic and non-genetic factors. J Thromb Haemost 2022; 20:1089-1105. [PMID: 35102686 PMCID: PMC9305795 DOI: 10.1111/jth.15657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Geographic variability in coagulation across populations and their determinants are poorly understood. OBJECTIVE To compare thrombin (TG) and plasmin (PG) generation parameters between healthy Tanzanian and Dutch individuals, and to study associations with inflammation and different genetic, host and environmental factors. METHODS TG and PG parameters were measured in 313 Tanzanians of African descent living in Tanzania and 392 Dutch of European descent living in the Netherlands and related to results of a dietary questionnaire, circulating inflammatory markers, genotyping, and plasma metabolomics. RESULTS Tanzanians exhibited an enhanced TG and PG capacity, compared to Dutch participants. A higher proportion of Tanzanians had a TG value in the upper quartile with a PG value in the lower/middle quartile, suggesting a relative pro-coagulant state. Tanzanians also displayed an increased normalized thrombomodulin sensitivity ratio, suggesting reduced sensitivity to protein C. In Tanzanians, PG parameters (lag time and TTP) were associated with seasonality and food-derived plasma metabolites. The Tanzanians had higher concentrations of pro-inflammatory cytokines, which correlated strongly with TG and PG parameters. There was limited overlap in genetic variation associated with TG and PG parameters between the two cohorts. Pathway analysis of genetic variants in the Tanzanian cohort revealed multiple immune pathways that were enriched with TG and PG traits, confirming the importance of co-regulation between coagulation and inflammation. CONCLUSIONS Tanzanians have an enhanced TG and PG potential compared to Dutch individuals, which may relate to differences in inflammation, genetics and diet. These observations highlight the importance of better understanding of the geographic variability in coagulation across populations.
Collapse
Affiliation(s)
- Godfrey S. Temba
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
- Department of Medical Biochemistry and Molecular BiologyKilimanjaro Christian Medical University College (KCMUCo)MoshiTanzania
| | - Nadira Vadaq
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
- Center for Tropical and Infectious Diseases (CENTRID)Faculty of MedicineDr. Kariadi HospitalDiponegoro UniversitySemarangIndonesia
| | - Jun Wan
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Vesla Kullaya
- Department of Medical Biochemistry and Molecular BiologyKilimanjaro Christian Medical University College (KCMUCo)MoshiTanzania
- Kilimanjaro Clinical Research InstituteKilimanjaro Christian Medical CenterMoshiTanzania
| | - Dana Huskens
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Tal Pecht
- Department for Genomics and ImmunoregulationLife & Medical Sciences (LIMES) InstituteUniversity of BonnBonnGermany
- Systems MedicineGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Martin Jaeger
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Collins K. Boahen
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Vasiliki Matzaraki
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Wieteke Broeders
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Sultana M. H. Faradz
- Division of Human GeneticsCenter for Biomedical Research (CEBIOR)Faculty of MedicineDiponegoro University/Diponegoro National HospitalSemarangIndonesia
| | - Gibson Kibiki
- Kilimanjaro Clinical Research InstituteKilimanjaro Christian Medical CenterMoshiTanzania
| | - Saskia Middeldorp
- Department of Internal MedicineRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | | | - Paolo Lionetti
- Departement NEUROFARBAMeyer Children's HospitalUniversity of Florence – Gastroenterology and Nutrition UnitFlorenceItaly
| | - Philip G. de Groot
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Joachim L. Schultze
- Department for Genomics and ImmunoregulationLife & Medical Sciences (LIMES) InstituteUniversity of BonnBonnGermany
- Systems MedicineGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and University of BonnBonnGermany
| | - Mihai G. Netea
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
- Department for Immunology and MetabolismLife & Medical Sciences (LIMES) InstituteUniversity of BonnBonnGermany
| | - Vinod Kumar
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
- Department of GeneticsUniversity Medical Centre GroningenUniversity of GroningenGroningenthe Netherlands
| | - Bas de Laat
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research InstituteKilimanjaro Christian Medical CenterMoshiTanzania
- Department of PaediatricsKilimanjaro Christian Medical University College (KCMUCo)MoshiTanzania
| | - Andre J. van der Ven
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| | - Mark Roest
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Quirijn de Mast
- Department of Internal MedicineRadboudumc Center for Infectious DiseasesRadboud Institute of Health Science (RIHS)Radboud university medical centerNijmegenthe Netherlands
| |
Collapse
|
19
|
Buckley SJ, Harvey RJ. Lessons Learnt From Using the Machine Learning Random Forest Algorithm to Predict Virulence in Streptococcus pyogenes. Front Cell Infect Microbiol 2022; 11:809560. [PMID: 35004362 PMCID: PMC8739889 DOI: 10.3389/fcimb.2021.809560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus is a globally significant human pathogen. The extensive variability of the GAS genome, virulence phenotypes and clinical outcomes, render it an excellent candidate for the application of genotype-phenotype association studies in the era of whole-genome sequencing. We have catalogued the distribution and diversity of the transcription regulators of GAS, and employed phylogenetics, concordance metrics and machine learning (ML) to test for associations. In this review, we communicate the lessons learnt in the context of the recent bacteria genotype-phenotype association studies of others that have utilised both genome-wide association studies (GWAS) and ML. We envisage a promising future for the application GWAS in bacteria genotype-phenotype association studies and foresee the increasing use of ML. However, progress in this field is hindered by several outstanding bottlenecks. These include the shortcomings that are observed when GWAS techniques that have been fine-tuned on human genomes, are applied to bacterial genomes. Furthermore, there is a deficit of easy-to-use end-to-end workflows, and a lag in the collection of detailed phenotype and clinical genomic metadata. We propose a novel quality control protocol for the collection of high-quality GAS virulence phenotype coupled to clinical outcome data. Finally, we incorporate this protocol into a workflow for testing genotype-phenotype associations using ML and ‘linked’ patient-microbe genome sets that better represent the infection event.
Collapse
Affiliation(s)
- Sean J Buckley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
20
|
Ravins M, Ambalavanan P, Biswas D, Tan RYM, Lim KXZ, Kaufman Y, Anand A, Sharma A, Hanski E. Murine Soft Tissue Infection Model to Study Group A Streptococcus (GAS) Pathogenesis in Necrotizing Fasciitis. Methods Mol Biol 2022; 2427:185-200. [PMID: 35619035 DOI: 10.1007/978-1-0716-1971-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Group A streptococcus (GAS) necrotizing fasciitis (NF) causes high morbidity and mortality despite prompt intravenous administration of antibiotics, surgical soft-tissue debridement, and supportive treatment in the intensive care unit. Since there is no effective vaccine against GAS infections, a comprehensive understanding of NF pathogenesis is required to design more efficient treatments. To increase our understanding of NF pathogenesis, we need a reliable animal model that mirrors, at least in part, the infectious process in humans. This chapter describes a reliable murine model of human NF that mimics the histopathology observed in humans, namely the destruction of soft tissue, a paucity of infiltrating neutrophils, and the presence of many gram-positive cocci at the center of the infection.
Collapse
Affiliation(s)
- Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Poornima Ambalavanan
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Debabrata Biswas
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Rachel Ying Min Tan
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Kimberly Xuan Zhen Lim
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Vu HM, Hammers DE, Liang Z, Nguyen GL, Benz ME, Moran TE, Higashi DL, Park CJ, Ayinuola YA, Donahue DL, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front Cardiovasc Med 2021; 8:667554. [PMID: 34179133 PMCID: PMC8230121 DOI: 10.3389/fcvm.2021.667554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Gabrielle L. Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Mary E. Benz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Dustin L. Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Claudia J. Park
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
25
|
Abstract
Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. To date, therapeutic targeting of the fibrinolytic system has been for 2 purposes: to promote plasmin generation for thromboembolic conditions or to stop plasmin to reduce bleeding. However, plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for >40 years, the antifibrinolytic agent tranexamic acid has been administered for its serendipitously discovered skin-whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades, including complement. In addition, plasminogen, via binding to one of its dozen cell surface receptors, can modulate cell behavior and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. Although many of these more recent findings have been derived from in vitro or animal studies, the use of antifibrinolytic agents to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its hemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that antifibrinolytic agents may have antiviral benefits. Here, we review the broadening role of the plasminogen-activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and hemostasis.
Collapse
|
26
|
Hastings S, Myles PS, Medcalf RL. Plasmin, Immunity, and Surgical Site Infection. J Clin Med 2021; 10:2070. [PMID: 34065949 PMCID: PMC8150767 DOI: 10.3390/jcm10102070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
SSI are a universal economic burden and increase individual patient morbidity and mortality. While antibiotic prophylaxis is the primary preventative intervention, these agents are not themselves benign and may be less effective in the context of emerging antibiotic resistant organisms. Exploration of novel therapies as an adjunct to antimicrobials is warranted. Plasmin and the plasminogen activating system has a complex role in immune function. The immunothrombotic role of plasmin is densely interwoven with the coagulation system and has a multitude of effects on the immune system constituents, which may not always be beneficial. Tranexamic acid is an antifibrinolytic agent which inhibits the conversion of plasminogen to plasmin. Clinical trials have demonstrated a reduction in surgical site infection in TXA exposed patients, however the mechanism and magnitude of this benefit is incompletely understood. This effect may be through the reduction of local wound haematoma, decreased allogenic blood transfusion or a direct immunomodulatory effect. Large scale randomised clinical trial are currently being undertaken to better explain this association. Importantly, TXA is a safe and widely available pharmacological agent which may have a role in the reduction of SSI.
Collapse
Affiliation(s)
- Stuart Hastings
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne, VIC 3004, Australia;
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Paul S. Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne, VIC 3004, Australia;
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia;
| |
Collapse
|
27
|
Medcalf RL, Keragala CB. Fibrinolysis: A Primordial System Linked to the Immune Response. Int J Mol Sci 2021; 22:3406. [PMID: 33810275 PMCID: PMC8037105 DOI: 10.3390/ijms22073406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/07/2023] Open
Abstract
The fibrinolytic system provides an essential means to remove fibrin deposits and blood clots. The actual protease responsible for this is plasmin, formed from its precursor, plasminogen. Fibrin is heralded as it most renowned substrate but for many years plasmin has been known to cleave many other substrates, and to also activate other proteolytic systems. Recent clinical studies have shown that the promotion of plasmin can lead to an immunosuppressed phenotype, in part via its ability to modulate cytokine expression. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allows plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, a multitude of pathogens can also express their own plasminogen activators, or contain surface proteins that provide binding sites host plasminogen. Plasmin formed under these circumstances also empowers these pathogens to modulate host immune defense mechanisms. Phylogenetic studies have revealed that the plasminogen activating system predates the appearance of fibrin, indicating that plasmin did not evolve as a fibrinolytic protease but perhaps has its roots as an immune modifying protease. While its fibrin removing capacity became apparent in lower vertebrates these primitive under-appreciated immune modifying functions still remain and are now becoming more recognised.
Collapse
Affiliation(s)
- Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis Laboratory, Australian Centre for Blood Diseases, Central Clinical School Melbourne, Monash University, Melbourne, VIC 3004, Australia;
| | | |
Collapse
|
28
|
The molecular basis of immune-based platelet disorders. Clin Sci (Lond) 2021; 134:2807-2822. [PMID: 33140828 DOI: 10.1042/cs20191101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Platelets have a predominant role in haemostasis, the maintenance of blood volume and emerging roles as innate immune cells, in wound healing and in inflammatory responses. Platelets express receptors that are important for platelet adhesion, aggregation, participation in inflammatory responses, and for triggering degranulation and enhancing thrombin generation. They carry a cargo of granules bearing enzymes, adhesion molecules, growth factors and cytokines, and have the ability to generate reactive oxygen species. The platelet is at the frontline of a host of cellular responses to invading pathogens, injury, and infection. Perhaps because of this intrinsic responsibility of a platelet to rapidly respond to thrombotic, pathological and immunological factors as part of their infantry role; platelets are susceptible to targeted attack by the adaptive immune system. Such attacks are often transitory but result in aberrant platelet activation as well as significant loss of platelet numbers and platelet function, paradoxically leading to elevated risks of both thrombosis and bleeding. Here, we discuss the main molecular events underlying immune-based platelet disorders with specific focus on events occurring at the platelet surface leading to activation and clearance.
Collapse
|
29
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
30
|
Biswas D, Ambalavanan P, Ravins M, Anand A, Sharma A, Lim KXZ, Tan RYM, Lim HY, Sol A, Bachrach G, Angeli V, Hanski E. LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection. Cell Rep 2021; 34:108766. [PMID: 33657368 DOI: 10.1016/j.celrep.2021.108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Group A Streptococcus (GAS) causes diverse human diseases, including life-threatening soft-tissue infections. It is accepted that the human antimicrobial peptide LL-37 protects the host by killing GAS. Here, we show that GAS extracellular protease ScpC N-terminally cleaves LL-37 into two fragments of 8 and 29 amino acids, preserving its bactericidal activity. At sub-bactericidal concentrations, the cleavage inhibits LL-37-mediated neutrophil chemotaxis, shortens neutrophil lifespan, and eliminates P2X7 and EGF receptors' activation. Mutations at the LL-37 cleavage site protect the peptide from ScpC-mediated splitting, maintaining all its functions. The mouse LL-37 ortholog CRAMP is neither cleaved by ScpC nor does it activate P2X7 or EGF receptors. Treating wild-type or CRAMP-null mice with sub-bactericidal concentrations of the non-cleavable LL-37 analogs promotes GAS clearance that is abolished by the administration of either P2X7 or EGF receptor antagonists. We demonstrate that LL-37-mediated activation of host receptors is critical for defense against GAS soft-tissue infections.
Collapse
Affiliation(s)
- Debabrata Biswas
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| | - Poornima Ambalavanan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Kimberly Xuan Zhen Lim
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Rachel Ying Min Tan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Asaf Sol
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Veronique Angeli
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Emanuel Hanski
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
31
|
Loh JMS, Rivera-Hernandez T, McGregor R, Khemlani AHJ, Tay ML, Cork AJ, M Raynes J, Moreland NJ, Walker MJ, Proft T. A multivalent T-antigen-based vaccine for Group A Streptococcus. Sci Rep 2021; 11:4353. [PMID: 33623073 PMCID: PMC7902606 DOI: 10.1038/s41598-021-83673-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Pili of Group A Streptococcus (GAS) are surface-exposed structures involved in adhesion and colonisation of the host during infection. The major protein component of the GAS pilus is the T-antigen, which multimerises to form the pilus shaft. There are currently no licenced vaccines against GAS infections and the T-antigen represents an attractive target for vaccination. We have generated a multivalent vaccine called TeeVax1, a recombinant protein that consists of a fusion of six T-antigen domains. Vaccination with TeeVax1 produces opsonophagocytic antibodies in rabbits and confers protective efficacy in mice against invasive disease. Two further recombinant proteins, TeeVax2 and TeeVax3 were constructed to cover 12 additional T-antigens. Combining TeeVax1–3 produced a robust antibody response in rabbits that was cross-reactive to a full panel of 21 T-antigens, expected to provide over 95% vaccine coverage. These results demonstrate the potential for a T-antigen-based vaccine to prevent GAS infections.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Reuben McGregor
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adrina Hema J Khemlani
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jeremy M Raynes
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
32
|
Abstract
M and M-like proteins are major virulence factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes. These proteins confer resistance against innate and adaptive immune responses by recruiting specific human proteins to the streptococcal surface. Nonimmune recruitment of immunoglobulins G (IgG) and A (IgA) through their fragment crystallizable (Fc) domains by M and M-like proteins was described almost 40 years ago, but its impact on virulence remains unresolved. These interactions have been suggested to be consequential under immune conditions at mucosal surfaces and in secretions but not in plasma, while other evidence suggests importance in evading phagocytic killing in nonimmune blood. Recently, an indirect effect of Fc-binding through ligand-induced stabilization of an M-like protein was shown to increase virulence. Nonimmune recruitment has also been seen to contribute to tissue damage in animal models of autoimmune diseases triggered by S. pyogenes infection. The damage was treatable by targeting Fc-binding. This and other potential therapeutic applications warrant renewed attention to Fc-binding by M and M-like proteins.
Collapse
Affiliation(s)
- Jori O. Mills
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| |
Collapse
|
33
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
34
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
35
|
Siemens N, Snäll J, Svensson M, Norrby-Teglund A. Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1294:127-150. [PMID: 33079367 DOI: 10.1007/978-3-030-57616-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| | - Johanna Snäll
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
36
|
Ayinuola YA, Brito-Robinson T, Ayinuola O, Beck JE, Cruz-Topete D, Lee SW, Ploplis VA, Castellino FJ. Streptococcus co-opts a conformational lock in human plasminogen to facilitate streptokinase cleavage and bacterial virulence. J Biol Chem 2021; 296:100099. [PMID: 33208461 PMCID: PMC7948469 DOI: 10.1074/jbc.ra120.016262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/06/2022] Open
Abstract
Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.
Collapse
Affiliation(s)
- Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Teresa Brito-Robinson
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Olawole Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julia E Beck
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Diana Cruz-Topete
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
37
|
Bouck EG, Denorme F, Holle LA, Middelton EA, Blair A, de Laat B, Schiffman JD, Yost CC, Rondina MT, Wolberg AS, Campbell RA. COVID-19 and Sepsis Are Associated With Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arterioscler Thromb Vasc Biol 2021; 41:401-414. [PMID: 33196292 PMCID: PMC7942774 DOI: 10.1161/atvbaha.120.315338] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is associated with derangement in biomarkers of coagulation and endothelial function and has been likened to the coagulopathy of sepsis. However, clinical laboratory metrics suggest key differences in these pathologies. We sought to determine whether plasma coagulation and fibrinolytic potential in patients with COVID-19 differ compared with healthy donors and critically ill patients with sepsis. Approach and Results: We performed comparative studies on plasmas from a single-center, cross-sectional observational study of 99 hospitalized patients (46 with COVID-19 and 53 with sepsis) and 18 healthy donors. We measured biomarkers of endogenous coagulation and fibrinolytic activity by immunoassays, thrombin, and plasmin generation potential by fluorescence and fibrin formation and lysis by turbidity. Compared with healthy donors, patients with COVID-19 or sepsis both had elevated fibrinogen, d-dimer, soluble TM (thrombomodulin), and plasmin-antiplasmin complexes. Patients with COVID-19 had increased thrombin generation potential despite prophylactic anticoagulation, whereas patients with sepsis did not. Plasma from patients with COVID-19 also had increased endogenous plasmin potential, whereas patients with sepsis showed delayed plasmin generation. The collective perturbations in plasma thrombin and plasmin generation permitted enhanced fibrin formation in both COVID-19 and sepsis. Unexpectedly, the lag times to thrombin, plasmin, and fibrin formation were prolonged with increased disease severity in COVID-19, suggesting a loss of coagulation-initiating mechanisms accompanies severe COVID-19. CONCLUSIONS Both COVID-19 and sepsis are associated with endogenous activation of coagulation and fibrinolysis, but these diseases differently impact plasma procoagulant and fibrinolytic potential. Dysregulation of procoagulant and fibrinolytic pathways may uniquely contribute to the pathophysiology of COVID-19 and sepsis.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
| | - Lori A. Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Antoinette Blair
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands
| | - Joshua D. Schiffman
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112
- PEEL Therapeutics, Inc., Salt Lake City, UT 84112
| | | | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department of Internal Medicine & Pathology, University of Utah, Salt Lake City, Utah
- George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, Utah, 84148
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah
- Department of Internal Medicine & Pathology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
Hirose Y, Yamaguchi M, Takemoto N, Miyoshi-Akiyama T, Sumitomo T, Nakata M, Ikebe T, Hanada T, Yamaguchi T, Kawahara R, Okuno R, Otsuka H, Matsumoto Y, Terashima Y, Kazawa Y, Nakanishi N, Uchida K, Akiyama Y, Iwabuchi K, Nakagawa C, Yamamoto K, Nizet V, Kawabata S. Genetic Characterization of Streptococcus pyogenes emm89 Strains Isolated in Japan From 2011 to 2019. INFECTIOUS MICROBES & DISEASES 2020; 2:160-166. [PMID: 38630060 PMCID: PMC7769053 DOI: 10.1097/im9.0000000000000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 04/19/2024]
Abstract
Invasive infection caused by Streptococcus pyogenes emm89 strains has been increasing in several countries linked to a recently emergent clade of emm89 strains, designated clade 3. In Japan, the features of emm89 S. pyogenes strains, such as clade classification, remains unknown. In this study, we collected emm89 strains isolated from both streptococcal toxic shock syndrome (STSS) (89 STSS isolates) and noninvasive infections (72 non-STSS isolates) in Japan from 2011 to 2019, and conducted whole-genome sequencing and comparative analysis, which resulted in classification of a large majority into clade 3 regardless of disease severity. In addition, invasive disease-associated factors were found among emm89 strains, including mutations of control of virulence sensor, and absence of the hylP1 gene encoding hyaluronidase. These findings provide new insights into genetic features of emm89 strains.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Norihiko Takemoto
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Hanada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka City, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology, Osaka Institute of Public Health, Osaka City, Osaka, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hitoshi Otsuka
- Department of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment Yamaguchi City, Yamaguchi, Japan
| | - Yuko Matsumoto
- Microbiological Testing and Research Division, Yokohama City Institute of Public Health, Yokohama, Kanagawa, Japan
| | - Yuji Terashima
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima City, Fukushima, Japan
| | - Yu Kazawa
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima City, Fukushima, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Kaoru Uchida
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Yumi Akiyama
- Infectious Disease Research Division, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Kaori Iwabuchi
- Department of Health Science, Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Iwate, Japan
| | - Chikara Nakagawa
- Division of Microbiology, Kyoto City Institute of Health and Environmental Sciences, Kyoto City, Kyoto, Japan
| | - Kazunari Yamamoto
- Niigata City Institute of Public Health and the Environment, Niigata City, Niigata, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
39
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
40
|
Chen SM, Zou Z, Guo SY, Hou WT, Qiu XR, Zhang Y, Song LJ, Hu XY, Jiang YY, Shen H, An MM. Preventing Candida albicans from subverting host plasminogen for invasive infection treatment. Emerg Microbes Infect 2020; 9:2417-2432. [PMID: 33115324 PMCID: PMC7646593 DOI: 10.1080/22221751.2020.1840927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Candida albicans is a common fungal pathogen in humans that colonizes the skin and mucosal surfaces of the majority healthy individuals. How C. albicans disseminates into the bloodstream and causes life-threatening systemic infections in immunocompromised patients remains unclear. Plasminogen system activation can degrade a variety of structural proteins in vivo and is involved in several homeostatic processes. Here, for the first time, we characterized that C. albicans could capture and “subvert” host plasminogen to invade host epithelial cell surface barriers through cell-wall localized Eno1 protein. We found that the “subverted” plasminogen system plays an important role in development of invasive infection caused by C. albicans in mice. Base on this finding, we discovered a mouse monoclonal antibody (mAb) 12D9 targeting C. albicans Eno1, with high affinity to the 254FYKDGKYDL262 motif in α-helices 6, β-sheet 6 (H6S6) loop and direct blocking activity for C. albicans capture host plasminogen. mAb 12D9 could prevent C. albicans from invading human epithelial and endothelial cells, and displayed antifungal activity and synergistic effect with anidulafungin or fluconazole in proof-of-concept in vivo studies, suggesting that blocking the function of cell surface Eno1 was effective for controlling invasive infection caused by Candida spp. In summary, our study provides the evidence of C. albicans invading host by “subverting” plasminogen system, suggesting a potential novel treatment strategy for invasive fungal infections.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shi-Yu Guo
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Tong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xi-Ran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li-Jun Song
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin-Yu Hu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hui Shen
- Department of Laboratory Diagnosis, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Mao-Mao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Togashi K, Suzuki S, Morita S, Ogasawara Y, Imamura Y, Shin Y. Excessively activated plasminogen in human plasma cleaves VWF multimers and reduces collagen-binding activity. J Biochem 2020; 168:355-363. [DOI: 10.1093/jb/mvaa053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
AbstractPlasmin (Pm) is a serine protease that can dissolve fibrin clots. Several possible functions of Pm in blood other than fibrinolysis have been proposed. To explore the effects of Pm on primary haemostasis, we evaluated the cleavage of von Willebrand factor multimers (VWFMs) in human plasma by streptokinase (SK)-activated plasminogen (Pg) and the binding ability of the digested VWFMs to collagen. SK-activated Pg and ADAMTS13 (a VWF-cleaving enzyme) in human plasma cleaved VWFMs in conformation-dependent manners through dialysis to the urea-containing buffer. However, VWFMs in human plasma under vortex-based shear stress were cleaved by SK-activated Pg but not by ADAMTS13. These results suggested that the VWFM-cleavage sites in human plasma are exposed to some extent by vortex-based shear stress for Pm but not for ADAMTS13. Additionally, we revealed that cleavage by SK-activated Pg reduced VWFMs’ binding ability to collagen, and VWFMs in human plasma were cleaved by Pm at several sites. These results suggest that SK-activated Pg degrades VWFMs, reduces their binding abilities to collagen and affects primary haemostasis. Because excessive Pg activation can degrade fibrinogen/fibrin, we propose that SK-activated Pg in blood may cause impaired primary and secondary haemostasis.
Collapse
Affiliation(s)
| | | | - Sae Morita
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 1920015
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasutada Imamura
- Graduate School of Engineering
- Department of Applied Chemistry, Faculty of Engineering
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 1920015
| | - Yongchol Shin
- Graduate School of Engineering
- Department of Applied Chemistry, Faculty of Engineering
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo 1920015
| |
Collapse
|
42
|
Liang Z, Carothers K, Holmes A, Donahue D, Lee SW, Castellino FJ, Ploplis VA. Stable genetic integration of a red fluorescent protein in a virulent Group A Streptococcus strain. Access Microbiol 2020; 1:e000062. [PMID: 32974562 PMCID: PMC7472541 DOI: 10.1099/acmi.0.000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022] Open
Abstract
There are several advantages, both in vitro and in vivo, in utilizing bacteria that express a fluorescent protein. Such a protein can be transiently incorporated into the bacteria or integrated within the bacterial genome. The most widely utilized fluorescent protein is green fluorescent protein (GFP), but limitations exist on its use. Additional fluorescent proteins have been designed that have many advantages over GFP and technologies for their incorporation into bacteria have been optimized. In the current study, we report the successful integration and expression of a stable fluorescent reporter, mCherry (red fluorescent protein, RFP), into the genome of a human pathogen, Group A Streptococcus pyogenes (GAS) isolate AP53(S-). RFP was targeted at the atg codon of the fcR pseudogene that is present in the mga regulon of AP53(S-). Transcription of critical bacterial genes was not functionally altered by the genomic integration of mCherry. Host virulence both in vitro (keratinocyte infection and cytotoxicity) and in vivo (skin infection) was maintained in AP53(S-)-RFP. Additionally, survival of mice infected with either AP53(S-) or AP53(S-)-RFP was similar, demonstrating that overall pathogenicity of the AP53(S-) strain was not altered by the expression of mCherry. These studies demonstrate the feasibility of integrating a fluorescent reporter into the bacterial genome of a naturally virulent isolate of Group A S. pyogenes for comparative experimental studies.
Collapse
Affiliation(s)
- Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Holmes
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deborah Donahue
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Fibrin(ogen) is a multifunctional clotting protein that not only has critical roles in hemostasis but is also important in inflammatory processes that control bacterial infection. As a provisional extracellular matrix protein, fibrin(ogen) functions as a physical barrier, a scaffold for immune cell migration, or as a spatially-defined cue to drive inflammatory cell activation. These mechanisms contribute to overall host antimicrobial defense against infection. However, numerous bacterial species have evolved mechanisms to manipulate host fibrin(ogen) to promote microbial virulence and survival. Staphylococcal species, in particular, express numerous virulence factors capable of engaging fibrin(ogen), promoting fibrin formation, and driving the dissolution of fibrin matrices. RECENT FINDINGS Recent studies have highlighted both new insights into the molecular mechanisms involved in fibrin(ogen)-mediated host defense and pathogen-driven virulence. Of particular interest is the role of fibrin(ogen) in forming host protective biofilms versus pathogen protective barriers and biofilms as well as the role of fibrin(ogen) in mediating direct host antimicrobial responses. SUMMARY Current data suggest that the role of fibrin(ogen) in staphylococcal infection is highly context-dependent and that better defining the precise cellular and molecular pathways activated will provide unique opportunities of therapeutic intervention to better treat Staphylococcal disease.
Collapse
|
44
|
Martini R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin Hemorheol Microcirc 2020; 75:27-34. [PMID: 32568186 PMCID: PMC7458519 DOI: 10.3233/ch-200895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The burden of pandemic COVID-19 is growing worldwide, as the continuous increases of contagion. Only 10–15% of the entire infected population has the necessity of intensive care unit (ICU) treatments. But, this relatively low rate of patients has absorbed almost the whole availability of ICU during few days, becoming at least in Italy, an emergency for the national health system. In COVID-19 ICU patients massive aggression of lung with severe pulmonary failure, as well as kidney and liver injuries, heart, brain, bowel and spleen damages with lymph nodes necrosis and even cutaneous manifestations have been observed. Moreover, increased levels of cytokines so-called “cytokines storm (CS), and overt intravascular disseminated coagulation have been also reported. The hypercoagulation and CS would speculate about a microvascular dysfunction. Unfortunately, no specific observations have been performed on microcirculatory dysfunction in COVID-19 patients. Hence the presumed pathophysiological pathways and models about a microvascular involvement can be gathered by sepsis models studies. But despite this lack of evidence, the COVID-19 has emphasized the compelling need for microcirculation monitoring at the bedside in ICU patients.
Collapse
Affiliation(s)
- Romeo Martini
- Unità Operativa di Angiologia, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| |
Collapse
|
45
|
Xu Z, Rivera-Hernandez T, Moyle PM. Development of an Enzyme-Mediated, Site-Specific Method to Conjugate Toll-Like Receptor 2 Agonists onto Protein Antigens: Toward a Broadly Protective, Four Component, Group A Streptococcal Self-Adjuvanting Lipoprotein-Fusion Combination Vaccine. ACS Infect Dis 2020; 6:1770-1782. [PMID: 32407620 DOI: 10.1021/acsinfecdis.0c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subunit vaccines composed of protein antigens covalently attached to Toll-like receptor (TLR) agonists elicit superior immune responses compared to mixtures of antigens and TLR agonists. Among different conjugation approaches, enzyme-mediated ligation is one of the few that provides an opportunity for the generation of homogeneous, molecularly defined products in which protein antigens are maintained with native structures, which is most critical to elicit protective immune responses upon vaccination. Four highly conserved protein antigens from Group A Streptococcus (GAS) have the potential to be safe and efficacious vaccine candidates. After a TLR2 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) was successfully attached onto each antigen using sortase A and techniques for their purification were developed, a combination vaccine containing interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), Group A Streptococcal C5a peptidase (SCPA), anchorless virulence factor arginine deiminase (ADI), and trigger factor (TF)-TLR2 conjugates was produced. This combination was assessed for immunity in mice and compared with mixtures of the four antigens with FSL-1 or alum. High titer antigen-specific IgG antibodies were detected from all vaccine groups, with antibodies elicited from FSL-1 conjugates around 10-fold higher compared to the FSL-1 mixture group. Furthermore, the FSL-1 conjugates afforded a more balanced TH1/TH2 immune response than the alum-adjuvanted group, suggesting that this combination vaccine represents a promising candidate for the prevention of GAS diseases. Thus, we established a conjugation platform that allows for the production of defined, site-specific antigen-adjuvant conjugates, which maintain the native three-dimensional structure of antigens and can be potentially applied to a variety of protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Cátedras CONACYT - Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, México
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
46
|
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev 2020; 100:1065-1075. [PMID: 32216698 PMCID: PMC7191627 DOI: 10.1152/physrev.00013.2020] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Sadis Matalon
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Michael A Matthay
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
47
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
48
|
Genome-Wide Screens Identify Group A Streptococcus Surface Proteins Promoting Female Genital Tract Colonization and Virulence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:862-873. [PMID: 32200972 DOI: 10.1016/j.ajpath.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.
Collapse
|
49
|
Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies. mBio 2020; 11:mBio.00122-20. [PMID: 32156809 PMCID: PMC7064752 DOI: 10.1128/mbio.00122-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens. Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.
Collapse
|
50
|
Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps. Sci Rep 2020; 10:3251. [PMID: 32094510 PMCID: PMC7039874 DOI: 10.1038/s41598-020-60306-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.
Collapse
|