1
|
Qian Y, Liu C, Zeng X, Li LC. RNAa: Mechanisms, therapeutic potential, and clinical progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102494. [PMID: 40125270 PMCID: PMC11930103 DOI: 10.1016/j.omtn.2025.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
RNA activation (RNAa), a gene regulatory mechanism mediated by small activating RNAs (saRNAs) and microRNAs (miRNAs), has significant implications for therapeutic applications. Unlike small interfering RNA (siRNA), which is known for gene silencing in RNA interference (RNAi), synthetic saRNAs can stably upregulate target gene expression at the transcriptional level through the assembly of the RNA-induced transcriptional activation (RITA) complex. Moreover, the dual functionality of endogenous miRNAs in RNAa (hereafter referred to as mi-RNAa) reveals their complex role in cellular processes and disease pathology. Emerging studies suggest saRNAs' potential as a novel therapeutic modality for diseases such as metabolic disorders, hearing loss, tumors, and Alzheimer's. Notably, MTL-CEBPA, the first saRNA drug candidate, shows promise in hepatocellular carcinoma treatment, while RAG-01 is being explored for non-muscle-invasive bladder cancer, highlighting clinical advancements in RNAa. This review synthesizes our current understanding of the mechanisms of RNAa and highlights recent advancements in the study of mi-RNAa and the therapeutic development of saRNAs.
Collapse
Affiliation(s)
- Yukang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Cody Liu
- Univeristy of California, Davis, Davis, CA 95616, USA
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
- Ractigen Therapeutics, Nantong, Jiangsu 226400, China
| |
Collapse
|
2
|
Li S, Zhong J, Ma Y, Yue C, Lv W, Ye G, Tian X, Li X, Huang Y, Du L. Influences of chain length and conformation of guanidinylated linear synthetic polypeptides on nuclear delivery of siRNA with potential application in transcriptional gene silencing. Int J Biol Macromol 2025; 308:142743. [PMID: 40180092 DOI: 10.1016/j.ijbiomac.2025.142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Transcriptional gene silencing (TGS) mediated by siRNA holds promise for long-term silencing efficacy, determined by effective nuclear delivery of siRNA. However, non-viral vectors for this purpose are limited. In this work, we synthesized guanidinylated linear synthetic polypeptides (GLSPs) to explore how chain length and conformation impact siRNA delivery, especially nuclear entry. Results show that helical conformations, particularly right-handed ones, enhance siRNA loading and silencing efficiency compared to unordered structures. Increasing chain length also improves these aspects. The endocytic pathways of carrier/siRNA nanocomplexes (NCs) are mainly determined by conformation, regardless of length. Notably, some NCs derived from right-handed helices can enter cells via direct membrane penetration, like bioactivity of cell penetrating peptides (CPPs). When the peptide chain of GLSPs is long enough, all vectors can rapidly deliver siRNA to the nucleus, similar to bioactivity of nuclear localization signal peptides (NLSPs). Interestingly, helicity of the vectors aids endosomal escape of NCs. Moreover, delivering siRNA to the nucleus via GLSPs induces TGS associated with DNA promoter methylation or histone deacetylation. This study clarifies the structure-activity relationship of GLSPs in siRNA delivery, providing new insights for designing non-viral carriers for TGS.
Collapse
Affiliation(s)
- Suifei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Junyang Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yunxiao Ma
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengfeng Yue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenxia Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumei Tian
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lingran Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Ren L, Danser AHJ. Small Interfering RNA Therapy for the Management and Prevention of Hypertension. Curr Hypertens Rep 2025; 27:5. [PMID: 39808369 PMCID: PMC11732957 DOI: 10.1007/s11906-025-01325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen. RECENT FINDINGS Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control. Animal data support that its effects on blood pressure and end-organ damage are fully comparable to those of classical RAS blockers, and phase I and II clinical trials confirm its antihypertensive effectiveness and long-term action. Although its side effect profile is placebo-like, its long-term effects also pose a threat in patients who require immediate restoration of RAS activity, like in shock. Here tools are being developed, called REVERSIR, that allow immediate annihilation of the siRNA effect in the liver. One subcutaneous injection of angiotensinogen siRNA lowers blood pressure for 6 months without severe side effects. The decrease in angiotensinogen and blood pressure can be reversed with a drug called REVERSIR if needed.
Collapse
Affiliation(s)
- Liwei Ren
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
6
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
7
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
8
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
10
|
Shi Y, Huang R, Zhang Y, Feng Q, Pan X, Wang L. RNA Interference Induces BRCA1 Gene Methylation and Increases the Radiosensitivity of Breast Cancer Cells. Cancer Biother Radiopharm 2024; 39:406-424. [PMID: 35180362 DOI: 10.1089/cbr.2021.0346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To investigate the relationship between breast cancer susceptibility gene-1 (BRCA1) gene methylation and the radiosensitivity of breast cancer. Materials and Methods: The authors studied three breast cancer cell lines: MDA-MB-435, MDA-MB-231, and MCF-7 cells. They constructed five short hairpin RNAs (shRNAs) and five small interfering RNAs to target selected promoter loci and initiate sequence-specific methylation in breast cancer cells. Pyrosequencing was used to analyze the state of DNA methylation. Quantitative real-time polymerase chain reaction was used to detect BRCA1 mRNA expression and RNA-directed DNA methylation (RdDM)-related gene expression. Western blotting was performed to analyze BRCA1 protein expression. Colony formation assays and γ-histone H2A foci formation assays were conducted to assess the surviving fraction (SF) and double-strand break (DSB) repair ability of cells after irradiation. Results: The authors constructed five strains of lentivirus vectors and five plasmid vectors targeting BRCA1 promoter region. In MDA-MB-435 cells, lentivirus-mediated RNA interference targeting Site 1 of BRCA1 increased the methylation levels of BRCA1 and reduced BRCA1 mRNA and protein expression. The SF and the ability to repair DNA DSBs were reduced in the combined LV-BRCA1RNAi-Site 1 infection and irradiation group. Conclusions: The authors' findings suggest that the shRNA suppressed the expression levels of the BRCA1 gene and reduced the SF and DNA repair ability of cells after irradiation through RdDM. In summary, the radiosensitivity of breast cancer cells may correlate with BRCA1 methylation. Advances in Knowledge: The authors first utilized a lentivirus-based shRNA-mediated specific-sequence DNA methylation of the BRCA1 gene mediated by RdDM.
Collapse
Affiliation(s)
- Yuebin Shi
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Huang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Xinyan Pan
- Department of Pathology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, Yunnan, China
| | - Li Wang
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
11
|
Mukhopadhyay T, Ghosh A, Datta A. Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook. ACS PHYSICAL CHEMISTRY AU 2024; 4:97-121. [PMID: 38560753 PMCID: PMC10979489 DOI: 10.1021/acsphyschemau.3c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 04/04/2024]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have been anticipated to demonstrate enormous potential in bionanomedicine. Unfortunately, the majority of 2D materials induce nanotoxicity via disruption of the structure of biomolecules. Consequently, there has been an urge to synthesize and identify biocompatible 2D materials. Before the cytotoxicity of 2D nanomaterials is experimentally tested, computational studies can rapidly screen them. Additionally, computational analyses can provide invaluable insights into molecular-level interactions. Recently, various "in silico" techniques have identified these interactions and helped to develop a comprehensive understanding of nanotoxicity of 2D materials. In this article, we discuss the key recent advances in the application of computational methods for the screening of 2D materials for their nanotoxicity toward two important categories of abundant biomolecules, namely, nucleic acids and proteins. We believe the present article would help to develop newer computational protocols for the identification of novel biocompatible materials, thereby paving the way for next-generation biomedical and therapeutic applications based on 2D materials.
Collapse
Affiliation(s)
- Titas
Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
12
|
Lanier OL, D’Andrea AP, Shodeinde A, Peppas NA. siRNA Delivery from Cationic Nanocarriers Prepared by Diffusion-assisted Loading in the Presence and Absence of Electrostatic Interactions. J Appl Polym Sci 2024; 141:e55029. [PMID: 38962028 PMCID: PMC11219015 DOI: 10.1002/app.55029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/25/2023] [Indexed: 07/05/2024]
Abstract
In this study, we use modified cationic nanocarriers as vehicles for the intracellular delivery of therapeutic siRNA. After developing nanocarrier formulations with appropriate pKa, size, swellability, and cytocompatibility, we investigated the importance of siRNA loading methods by studying the impact of the pH and time over which siRNA is loaded into the nanocarriers. We concentrate on diffusion-based loading in the presence and absence of electrostatic interactions. siRNA release kinetics were studied using samples prepared from nanocarriers loaded by both mechanisms. In addition, siRNA delivery was evaluated for two formulations. While previous studies were conducted with samples prepared by siRNA loading at low pH values, this research provides evidence that loading conditions of siRNA affect the release behavior. This study concludes that this concept could prove advantageous for eliciting prolonged intracellular release of nucleic acids and negatively charged molecules, effectively decreasing dose frequency and contributing to more effective therapies and improved patient outcomes. In addition, our findings could be leveraged for enhanced control over siRNA release kinetics, providing novel methods for the continued optimization of cationic nanoparticles in a wide array of RNA interference-based applications.
Collapse
Affiliation(s)
- Olivia L. Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
| | - Abielle P. D’Andrea
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
| | - Aaliyah Shodeinde
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Johnson K, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott J, Brekken R, Peng L, Karagkounis G, Corey D. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res 2024; 52:1930-1952. [PMID: 38109320 PMCID: PMC10899759 DOI: 10.1093/nar/gkad1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yi Han
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Tao Wang
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235, USA
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| |
Collapse
|
14
|
Sala L, Kumar M, Prajapat M, Chandrasekhar S, Cosby RL, La Rocca G, Macfarlan TS, Awasthi P, Chari R, Kruhlak M, Vidigal JA. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat Struct Mol Biol 2023; 30:1985-1995. [PMID: 37985687 DOI: 10.1038/s41594-023-01151-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Argonaute 2 (AGO2) is a cytoplasmic component of the miRNA pathway, with essential roles in development and disease. Yet little is known about its regulation in vivo. Here we show that in quiescent mouse splenocytes, AGO2 localizes almost exclusively to the nucleus. AGO2 subcellular localization is modulated by the Pi3K-AKT-mTOR pathway, a well-established regulator of quiescence. Signaling through this pathway in proliferating cells promotes AGO2 cytoplasmic accumulation, at least in part by stimulating the expression of TNRC6, an essential AGO2 binding partner in the miRNA pathway. In quiescent cells in which mTOR signaling is low, AGO2 accumulates in the nucleus, where it binds to young mobile transposons co-transcriptionally to repress their expression via its catalytic domain. Our data point to an essential but previously unrecognized nuclear role for AGO2 during quiescence as part of a genome-defense system against young mobile elements and provide evidence of RNA interference in the soma of mammals.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Manish Kumar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Mahendra Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Rachel L Cosby
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
- The National Institute for General Medical Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Michael Kruhlak
- CCR Confocal Microscopy Core Facility, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Calandrelli R, Wen X, Charles Richard JL, Luo Z, Nguyen TC, Chen CJ, Qi Z, Xue S, Chen W, Yan Z, Wu W, Zaleta-Rivera K, Hu R, Yu M, Wang Y, Li W, Ma J, Ren B, Zhong S. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat Commun 2023; 14:6519. [PMID: 37845234 PMCID: PMC10579264 DOI: 10.1038/s41467-023-42274-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
The interphase genome is dynamically organized in the nucleus and decorated with chromatin-associated RNA (caRNA). It remains unclear whether the genome architecture modulates the spatial distribution of caRNA and vice versa. Here, we generate a resource of genome-wide RNA-DNA and DNA-DNA contact maps in human cells. These maps reveal the chromosomal domains demarcated by locally transcribed RNA, hereafter termed RNA-defined chromosomal domains. Further, the spreading of caRNA is constrained by the boundaries of topologically associating domains (TADs), demonstrating the role of the 3D genome structure in modulating the spatial distribution of RNA. Conversely, stopping transcription or acute depletion of RNA induces thousands of chromatin loops genome-wide. Activation or suppression of the transcription of specific genes suppresses or creates chromatin loops straddling these genes. Deletion of a specific caRNA-producing genomic sequence promotes chromatin loops that straddle the interchromosomal target sequences of this caRNA. These data suggest a feedback loop where the 3D genome modulates the spatial distribution of RNA, which in turn affects the dynamic 3D genome organization.
Collapse
Affiliation(s)
- Riccardo Calandrelli
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Xingzhao Wen
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | | | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Chien-Ju Chen
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Zhijie Qi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shuanghong Xue
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Weizhong Chen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhangming Yan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Weixin Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kathia Zaleta-Rivera
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Sheng Zhong
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
He X, Cai L, Tang H, Chen W, Hu W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim Biophys Acta Gen Subj 2023; 1867:130386. [PMID: 37230420 DOI: 10.1016/j.bbagen.2023.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ionizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications. SCOPE OF REVIEW We summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection. MAJOR CONCLUSIONS Epigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified. GENERAL SIGNIFICANCE A better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weibo Chen
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
Johnson KC, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott JM, Brekken RA, Peng L, Karagkounis G, Corey DR. Nuclear Localization of Argonaute is affected by Cell Density and May Relieve Repression by microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548119. [PMID: 37461596 PMCID: PMC10350042 DOI: 10.1101/2023.07.07.548119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Audrius Kilikevicius
- current address, Eli Lilly, Lilly Cambridge Innovation Center, Cambridge, MA 02142
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yi Han
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Tao Wang
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| |
Collapse
|
18
|
Saeb S, Wallet C, Rohr O, Schwartz C, Loustau T. Targeting and eradicating latent CNS reservoirs of HIV-1: original strategies and new models. Biochem Pharmacol 2023:115679. [PMID: 37399950 DOI: 10.1016/j.bcp.2023.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Nowadays, combination antiretroviral therapy (cART) is the standard treatment for all people with human immunodeficiency virus (HIV-1). Although cART is effective in treating productive infection, it does not eliminate latent reservoirs of the virus. This leads to lifelong treatment associated with the occurrence of side effects and the development of drug-resistant HIV-1. Suppression of viral latency is therefore the major hurdle to HIV-1 eradication. Multiple mechanisms exist to regulate viral gene expression and drive the transcriptional and post-transcriptional establishment of latency. Epigenetic processes are amongst the most studied mechanisms influencing both productive and latent infection states. The central nervous system (CNS) represents a key anatomical sanctuary for HIV and is the focal point of considerable research efforts. However, limited and difficult access to CNS compartments makes understanding the HIV-1 infection state in latent brain cells such as microglial cells, astrocytes, and perivascular macrophages challenging. This review examines the latest advances on epigenetic transformations involved in CNS viral latency and targeting of brain reservoirs. Evidence from clinical studies as well as in vivo and in vitro models of HIV-1 persistence in the CNS will be discussed, with a special focus on recent 3D in vitro models such as human brain organoids. Finally, the review will address therapeutic considerations for targeting latent CNS reservoirs.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Allied Medicine, Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran; Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- Strasbourg University, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
19
|
Johnson KC, Corey DR. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA (NEW YORK, N.Y.) 2023; 29:415-422. [PMID: 36657971 PMCID: PMC10019369 DOI: 10.1261/rna.079500.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
RNA interference is almost always associated with post-transcriptional silencing in the cytoplasm. MicroRNAs (miRNAs) and critical RNAi protein factors like argonaute (AGO) and trinucleotide repeat binding containing 6 protein (TNRC6), however, are also found in cell nuclei, suggesting that nuclear miRNAs may be targets for gene regulation. Designed small duplex RNAs (dsRNAs) can modulate nuclear processes such as transcription and splicing, suggesting that they can also provide leads for therapeutic discovery. The goal of this Perspective is to provide the background on nuclear RNAi necessary to guide discussions on whether nuclear RNAi can play a role in therapeutic development programs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
20
|
He J, Wu W. A glimpse of research cores and frontiers on the relationship between long noncoding RNAs (lncRNAs) and colorectal cancer (CRC) using the VOSviewer tool. Scand J Gastroenterol 2023; 58:254-263. [PMID: 36121831 DOI: 10.1080/00365521.2022.2124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
As lncRNAs are essential participants in colorectal carcinogenesis. This study aimed to use the VOSviewer tool to access the research cores and frontiers on the relationship between lncRNAs and CRC. Our findings showed that the mechanism of lncRNA in the occurrence and development of CRC was the core theme of the field. (1) Immunotherapy and immune microenvironment of CRC and lncRNAs, (2) CRC and lncRNAs in exosomes and (3) CRC and lncRNA-targeted therapy might represent three research frontiers. A comprehensive understanding of their existing mechanisms and the search for new regulatory paradigms are the core topics of future research. This knowledge will also help us select appropriate targeting methods and select appropriate preclinical models to promote clinical translation and ultimately achieve precise treatment of CRC.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, PR China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| |
Collapse
|
21
|
Small Interfering RNAs Targeting a Chromatin-Associated RNA Induce Its Transcriptional Silencing in Human Cells. Mol Cell Biol 2022; 42:e0027122. [PMID: 36445136 PMCID: PMC9753735 DOI: 10.1128/mcb.00271-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Transcriptional gene silencing by small interfering RNAs (siRNAs) has been widely described in various species, including plants and yeast. In mammals, its extent remains somewhat debated. Previous studies showed that siRNAs targeting gene promoters could induce the silencing of the targeted promoter, although the involvement of off-target mechanisms was also suggested. Here, by using nascent RNA capture and RNA polymerase II chromatin immunoprecipitation, we show that siRNAs targeting a chromatin-associated noncoding RNA induced its transcriptional silencing. Deletion of the sequence targeted by one of these siRNAs on the two alleles by genome editing further showed that this silencing was due to base-pairing of the siRNA to the target. Moreover, by using cells with heterozygous deletion of the target sequence, we showed that only the wild-type allele, but not the deleted allele, was silenced by the siRNA, indicating that transcriptional silencing occurred only in cis. Finally, we demonstrated that both Ago1 and Ago2 are involved in this transcriptional silencing. Altogether, our data demonstrate that siRNAs targeting a chromatin-associated RNA at a distance from its promoter induce its transcriptional silencing. Our results thus extend the possible repertoire of endogenous or exogenous interfering RNAs.
Collapse
|
22
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
23
|
Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc Natl Acad Sci U S A 2022; 119:e2213373119. [PMID: 36256822 PMCID: PMC9618076 DOI: 10.1073/pnas.2213373119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high level of reactive oxygen species (ROS) in the rheumatoid arthritis (RA) microenvironment (RAM) and its persistent inflammatory nature can promote damage to joints, bones, and the synovium. Targeting strategies that integrate effective RAM regulation with imaging-based monitoring could lead to improvements in the diagnosis and treatment of RA. Here, we report the combined use of small interfering RNAs (siRNAsT/I) and Prussian blue nanoparticles (PBNPs) to silence the expression of proinflammatory cytokines TNF-α/IL-6 and scavenge the ROS associated with RAM. To enhance the in vitro and in vivo biological stability, biocompatibility, and targeting capability of the siRNAsT/I and PBNPs, macrophage membrane vesicles were used to prepare biomimetic nanoparticles, M@P-siRNAsT/I. The resulting constructs were found to suppress tumor necrosis factor-α/interleukin-6 expression and overcome the hypoxic nature of RAM, thus alleviating RA-induced joint damage in a mouse model. The M@P-siRNAsT/I of this study could be monitored via near-infrared photoacoustic (PA) imaging. Moreover, multispectral PA imaging without the need for labeling permitted the real-time evaluation of M@P-siRNAsT/I as a putative RA treatment. Clinical microcomputed tomography and histological analysis confirmed the effectiveness of the treatment. We thus suggest that macrophage-biomimetic M@P-siRNAsT/I and their analogs assisted by PA imaging could provide a new strategy for RA diagnosis, treatment, and monitoring.
Collapse
|
24
|
Gama MDVF, Moraes CS, Gomes B, Diaz-Albiter HM, Mesquita RD, Seabra-Junior E, Azambuja P, Garcia EDS, Genta FA. Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Front Physiol 2022; 13:861620. [PMID: 36262251 PMCID: PMC9574080 DOI: 10.3389/fphys.2022.861620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14–20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.
Collapse
Affiliation(s)
| | | | - Bruno Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hector Manuel Diaz-Albiter
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- El Colegio de la Frontera Sur, ECOSUR, Campeche, Mexico
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloy Seabra-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Universidade Federal Fluminense, UFF, Rio de Janeiro, Brazil
| | - Eloi de Souza Garcia
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ,
| |
Collapse
|
25
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|
26
|
Thorne NJ, Tumbarello DA. The relationship of alpha-synuclein to mitochondrial dynamics and quality control. Front Mol Neurosci 2022; 15:947191. [PMID: 36090250 PMCID: PMC9462662 DOI: 10.3389/fnmol.2022.947191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Maintenance of mitochondrial health is essential for neuronal survival and relies upon dynamic changes in the mitochondrial network and effective mitochondrial quality control mechanisms including the mitochondrial-derived vesicle pathway and mitophagy. Mitochondrial dysfunction has been implicated in driving the pathology of several neurodegenerative diseases, including Parkinson’s disease (PD) where dopaminergic neurons in the substantia nigra are selectively degenerated. In addition, many genes with PD-associated mutations have defined functions in organelle quality control, indicating that dysregulation in mitochondrial quality control may represent a key element of pathology. The most well-characterized aspect of PD pathology relates to alpha-synuclein; an aggregation-prone protein that forms intracellular Lewy-body inclusions. Details of how alpha-synuclein exerts its toxicity in PD is not completely known, however, dysfunctional mitochondria have been observed in both PD patients and models of alpha-synuclein pathology. Accordingly, an association between alpha-synuclein and mitochondrial function has been established. This relates to alpha-synuclein’s role in mitochondrial transport, dynamics, and quality control. Despite these relationships, there is limited research defining the direct mechanisms linking alpha-synuclein to mitochondrial dynamics and quality control. In this review, we will discuss the current literature addressing this association and provide insight into the proposed mechanisms promoting these functional relationships. We will also consider some of the alternative mechanisms linking alpha-synuclein with mitochondrial dynamics and speculate what the relationship between alpha-synuclein and mitochondria might mean both physiologically and in relation to PD.
Collapse
|
27
|
Abstract
Small RNAs are ubiquitous regulators of gene expression that participate in nearly all aspects of physiology in a wide range of organisms. There are many different classes of eukaryotic small RNAs that play regulatory roles at every level of gene expression, including transcription, RNA stability, and translation. While eukaryotic small RNAs display diverse functions across and within classes, they are generally grouped functionally based on the machinery required for their biogenesis, the effector proteins they associate with, and their molecular characteristics. The development of techniques to clone and sequence small RNAs has been critical for their identification, yet the ligation-dependent addition of RNA adapters and the use of reverse transcriptase to generate cDNA in traditional library preparation protocols can be unsuitable to detect certain small RNA subtypes. In particular, 3' or 5' chemical modifications that are characteristic of specific types of small RNAs can impede the ligation-dependent addition of RNA adapters, while internal RNA modifications can interfere with accurate reverse transcription. The inability to clone certain small RNA subtypes with traditional protocols results in an inaccurate assessment of small RNA abundance and diversity, where some RNAs appear over-represented and others are not detected. This overview aims to guide users on how to design small RNA cloning workflows in eukaryotes to more accurately capture specific small RNAs of interest. Hence, we discuss the molecular biology underlying the identification and quantitation of small RNAs, explore the limitations of commonly used protocols, and detail the alternative approaches that can be used to enrich specific small RNA classes. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Olivia J Crocker
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Wang J, Li D, Yang J, Chang L, Zhang R, Li J. CRISPR/Cas9-mediated epigenetic editing tool: An optimized strategy for targeting de novo DNA methylation with stable status via homology directed repair pathway. Biochimie 2022; 202:190-205. [DOI: 10.1016/j.biochi.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
29
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
30
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
31
|
Yan Y, Zhang G, Wu C, Ren Q, Liu X, Huang F, Cao Y, Ye W. Structural Exploration of Polycationic Nanoparticles for siRNA Delivery. ACS Biomater Sci Eng 2022; 8:1964-1974. [PMID: 35380797 DOI: 10.1021/acsbiomaterials.2c00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a promising approach to the treatment of genetic diseases by the specific knockdown of target genes. Functional polymers are potential vehicles for the effective delivery of vulnerable small interfering RNA (siRNA), which is required for the broad application of RNAi-based therapeutics. The development of methods for the facile modulation of chemical structures of polymeric carriers and an elucidation of detailed delivery mechanisms remain important areas of research. In this paper, we synthesized a series of methacrylate-based polymers with controllable structures and narrow distributions by atom transfer radical polymerization using various combinations of cationic monomers (2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, and 2-dibutylaminoethyl methacrylate) and hydrophobic monomers (2-butyl methacrylate (BMA), cyclohexyl methacrylate, and 2-ethylhexyl methacrylate). These polymers exhibited varying hydrophobicities, charge densities, and pKa values, enabling the discovery of effective carriers for siRNA by in vitro delivery assays. For the polymers with BMA segments, 50% of cationic segments were beneficial to the formation of siRNA nanoparticles (NPs) and the in vitro delivery of siRNA. The optimal ratio varied for different combinations of cationic and hydrophobic segments. In particular, 20k PMB 0.5, PME 0.5, and PEB 1.0 showed >75% luciferase knockdown. Efficacious delivery was dependent on high siRNA binding, the small size of NPs, and balanced hydrophobicity and charge density. Cellular uptake and endosomal escape experiments indicated that carboxybetaine modification of 20k PMB 0.5 did not remarkably affect the internalization of corresponding NPs after incubation for 6 h but significantly reduced the endosomal escape of NPs, which leads to the notable decrease in delivery efficacy of polymers. These results provide insights into the mechanism of polymer-based siRNA delivery and may inspire the development of novel polymeric carriers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
32
|
Abstract
Omics-based technologies, which have developed rapidly over the last few decades, have generated increasing evidence demonstrating pervasive divergent transcription from RNA polymerase II (Pol II) promoters of eukaryotic genome, and indeed have raised considerable discussion as to their potential physiopathological function. Unlike many other long non-coding RNAs (lncRNAs), promoter antisense RNAs (PAS RNAs) were initially considered to be merely passive transcription by-products of active promoters. However, recent studies have begun to reveal their critical importance in a broad spectrum of biological processes. In this Review, I summarize recent technological advances that enable accurate detection of PAS RNA and discuss the mechanisms of PAS RNA biogenesis emphasizing the functional importance of its structure enabling the diverse functions of PAS RNA in transcription and chromatin regulation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Laitinen P, Väänänen MA, Kolari IL, Mäkinen PI, Kaikkonen MU, Weinberg MS, Morris KV, Korhonen P, Malm T, Ylä-Herttuala S, Roberts TC, Turunen MP, Turunen TA. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS One 2022; 17:e0265948. [PMID: 35358280 PMCID: PMC8975276 DOI: 10.1371/journal.pone.0265948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are well characterized in their role in silencing gene expression by targeting 3´-UTR of mRNAs in cytoplasm. However, recent studies have shown that miRNAs have a role in the regulation of genes in the nucleus, where they are abundantly located. We show here that in mouse endothelial cell line (C166), nuclear microRNA miR-466c participates in the regulation of vascular endothelial growth factor a (Vegfa) gene expression in hypoxia. Upregulation of Vegfa expression in response to hypoxia was significantly compromised after removal of miR-466c with CRISPR-Cas9 genomic deletion. We identified a promoter-associated long non-coding RNA on mouse Vegfa promoter and show that miR-466c directly binds to this transcript to modulate Vegfa expression. Collectively, these observations suggest that miR-466c regulates Vegfa gene transcription in the nucleus by targeting the promoter, and expands on our understanding of the role of miRNAs well beyond their canonical role.
Collapse
Affiliation(s)
- Pia Laitinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ida-Liisa Kolari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri I. Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marc S. Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwaterstrand, Witwaterstrand, South Africa
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope–Beckman Research Institute at the City of Hope, Duarte, California, United States of America
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Queensland, Australia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Thomas C. Roberts
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MDUK Oxford Neuromuscular Centre, Oxford, United Kingdom
| | - Mikko P. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
- * E-mail:
| | - Tiia A. Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- RNatives Oy, Kuopio, Finland
| |
Collapse
|
34
|
Johnsson P, Ziegenhain C, Hartmanis L, Hendriks GJ, Hagemann-Jensen M, Reinius B, Sandberg R. Transcriptional kinetics and molecular functions of long noncoding RNAs. Nat Genet 2022; 54:306-317. [PMID: 35241826 PMCID: PMC8920890 DOI: 10.1038/s41588-022-01014-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have experimentally confirmed functions, yet little is known about their transcriptional dynamics and it is challenging to determine their regulatory effects. Here, we used allele-sensitive single-cell RNA sequencing to demonstrate that, compared to messenger RNAs, lncRNAs have twice as long duration between two transcriptional bursts. Additionally, we observed increased cell-to-cell variability in lncRNA expression due to lower frequency bursting producing larger numbers of RNA molecules. Exploiting heterogeneity in asynchronously growing cells, we identified and experimentally validated lncRNAs with cell state-specific functions involved in cell cycle progression and apoptosis. Finally, we identified cis-functioning lncRNAs and showed that knockdown of these lncRNAs modulated the nearby protein-coding gene’s transcriptional burst frequency or size. In summary, we identified distinct transcriptional regulation of lncRNAs and demonstrated a role for lncRNAs in the regulation of mRNA transcriptional bursting. Allele-sensitive single-cell RNA sequencing analysis of long noncoding RNA (lncRNA) transcriptional kinetics shows that their lower expression compared to mRNA is due to lower burst frequencies and highlights cell-state-specific functions for several lncRNAs.
Collapse
Affiliation(s)
- Per Johnsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gert-Jan Hendriks
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
La Rocca G, Cavalieri V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes (Basel) 2022; 13:414. [PMID: 35327968 PMCID: PMC8954937 DOI: 10.3390/genes13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
36
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
37
|
Dey S, Misra A, Selvi Bharathavikru R. Long Non-coding RNAs, Lnc (ing) RNA Metabolism to Cancer Biology. Subcell Biochem 2022; 100:175-199. [PMID: 36301495 DOI: 10.1007/978-3-031-07634-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The eukaryotic genome is represented by a vast proportion of non-coding regions, which in recent years have been attributed to have important functional roles in gene regulation through a myriad of processes, ranging from proper localization, correct folding and, most importantly, spatial and temporally regulated expression of genes. One of the major contributing factors in these processes is ribonucleic acid (RNA) metabolism, which comprises the RNA-nucleoprotein (RNP) complexes that interact with and instruct the genome to function. Long non-coding RNAs are an integral component of several RNPs, and herein we provide an overview of the understanding of the long non-coding RNAs, their characteristics, their function and their balancing act as dual modulators in cancer manifestation and progression.
Collapse
Affiliation(s)
- Sourav Dey
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - Arushi Misra
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - R Selvi Bharathavikru
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India.
| |
Collapse
|
38
|
Wen P, Xie Y, Wang L. The Role of microRNA in Pathogenesis, Diagnosis, Different Variants, Treatment and Prognosis of Mycosis Fungoides. Front Oncol 2021; 11:752817. [PMID: 34966672 PMCID: PMC8710607 DOI: 10.3389/fonc.2021.752817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), accounting for approximately 50% of all CTCLs. Although various molecular changes in MF have been described in existing studies, no obvious disease-specific changes have been found thus far. microRNAs (miRs) are short, noncoding RNA molecules that play roles in the post-transcriptional regulation of oncogenes and tumor suppressor genes in various diseases. Recently, there has been rapidly expanding experimental evidence for the role of miRs in the progression, early diagnosis, prognosis prediction for MF. Efforts to improve early diagnosis and develop personalized therapy options have become more important in recent years. Here, we provide an overview and update of recent advances regarding miRs associated with MF. Furthermore, we provide insights into future opportunities for miR-based therapies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Cheuquemán C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res 2021; 54:41. [PMID: 34930477 PMCID: PMC8686607 DOI: 10.1186/s40659-021-00364-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs (ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the seminiferous tubule, despite the transcriptional inactivation in the last stages of spermatogenesis. Sperm maturation during the caput-to-cauda transit on the epididymis involves changes in chromatin organization and the soma-to-germ line transference of ncRNAs that are essential to obtain a functional sperm for fertilization and embryo development. Here, the male environment (diseases, drugs, mental stress) is crucial to modulate these epigenetic factors throughout sperm maturation, affecting the corresponding offspring. Paternal transgenerational inheritance has been directly related to sperm epigenetic changes, most of them associated with variations in the ncRNA content and chromatin marks. Our aim is to give an overview about how epigenetics, focused on ncRNAs and chromatin, is pivotal to understand spermatogenesis and sperm maturation, and how the male environment impacts the sperm epigenome modulating the offspring gene expression pattern.
Collapse
Affiliation(s)
- Carolina Cheuquemán
- Núcleo de Ciencias Biológicas, Dirección de Núcleos Transversales, Facultad de estudios Interdisciplinarios, Universidad Mayor, Temuco, Chile
| | - Rodrigo Maldonado
- Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
40
|
Zhao X, Yang Y, Yin M. MHRWR: Prediction of lncRNA-Disease Associations Based on Multiple Heterogeneous Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2577-2585. [PMID: 32086216 DOI: 10.1109/tcbb.2020.2974732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last few years, accumulating evidences had demonstrated that long non-coding RNAs (lncRNAs) participated in the regulation of target gene expression and played an important role in biological processes and human disease development. Thus, prediction of the associations between lncRNAs and disease had become a hot research in the fields of human sophisticated diseases. Most of these methods considered the information of two networks (lncRNA, disease) while neglected other networks. In this study, we designed a multi-layer network by integrating the similarity networks of lncRNAs, diseases and genes, and the known association networks of lncRNA-disease, lncRNAs-gene, and disease-gene, and then we developed a model called MHRWR for predicting the lncRNA-disease potential associations based on random walk with restart. The performance of MHRWR was evaluated by experimentally verified lncRNA-disease associations based on leave-one-out cross validation. MHRWR obtained a reliable AUC value of 0.91344, which significantly outperformed some previous methods. To further validate the reproducibility of performance, we used the model of MHRWR to verify related lncRNAs of colon cancer, colorectal cancer and lung adenocarcinoma in the case studies. The codes of MHRWR is available on: https://github.com/yangyq505/MHRWR.
Collapse
|
41
|
Petry B, Moreira GCM, Copola AGL, de Souza MM, da Veiga FC, Jorge EC, de Oliveira Peixoto J, Ledur MC, Koltes JE, Coutinho LL. SAP30 Gene Is a Probable Regulator of Muscle Hypertrophy in Chickens. Front Genet 2021; 12:709937. [PMID: 34646299 PMCID: PMC8502938 DOI: 10.3389/fgene.2021.709937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Animals with muscle hypertrophy phenotype are targeted by the broiler industry to increase the meat production and the quality of the final product. Studies characterizing the molecular machinery involved with these processes, such as quantitative trait loci studies, have been carried out identifying several candidate genes related to this trait; however, validation studies of these candidate genes in cell culture is scarce. The aim of this study was to evaluate SAP30 as a candidate gene for muscle development and to validate its function in cell culture in vitro. The SAP30 gene was downregulated in C2C12 muscle cell culture using siRNA technology to evaluate its impact on morphometric traits and gene expression by RNA-seq analysis. Modulation of SAP30 expression increased C2C12 myotube area, indicating a role in muscle hypertrophy. RNA-seq analysis identified several upregulated genes annotated in muscle development in treated cells (SAP30-knockdown), corroborating the role of SAP30 gene in muscle development regulation. Here, we provide experimental evidence of the involvement of SAP30 gene as a regulator of muscle cell hypertrophy.
Collapse
Affiliation(s)
- Bruna Petry
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Fernanda Cristina da Veiga
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - James E Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
42
|
Rodriguez FD. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Curr Pharm Des 2021; 27:3252-3272. [PMID: 33535943 PMCID: PMC8778698 DOI: 10.2174/1381612827666210203142539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND The impact of abusive alcohol consumption on human health is remarkable. According to the World Health Organization (WHO), approximately 3.3 million people die annually because of harmful alcohol consumption (the figure represents around 5.9% of global deaths). Alcohol Use Disorder (AUD) is a chronic disease where individuals exhibit compulsive alcohol drinking and present negative emotional states when they do not drink. In the most severe manifestations of AUD, the individuals lose control over intake despite a decided will to stop drinking. Given the multiple faces and the specific forms of this disease, the term AUD often appears in the plural (AUDs). Since only a few approved pharmacological treatments are available to treat AUD and they do not apply to all individuals or AUD forms, the search for compounds that may help to eliminate the burden of the disease and complement other therapeutical approaches is necessary. METHODS This work reviews recent research focused on the involvement of epigenetic mechanisms in the pathophysiology of AUD. Excessive drinking leads to chronic and compulsive consumption that eventually damages the organism. The central nervous system is a key target and is the focus of this study. The search for the genetic and epigenetic mechanisms behind the intricated dysregulation induced by ethanol will aid researchers in establishing new therapy approaches. CONCLUSION Recent findings in the field of epigenetics are essential and offer new windows for observation and research. The study of small molecules that inhibit key epienzymes involved in nucleosome architecture dynamics is necessary in order to prove their action and specificity in the laboratory and to test their effectivity and safety in clinical trials with selected patients bearing defined alterations caused by ethanol.
Collapse
Affiliation(s)
- F. David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca and Group GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
43
|
Aptamer-mediated transcriptional gene silencing of Fox p 3 inhibits regulatory T cells and potentiates antitumor response. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:143-151. [PMID: 34457999 PMCID: PMC8365334 DOI: 10.1016/j.omtn.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
The inhibition of immunosuppressive mechanisms may switch the balance between tolerance and surveillance, leading to an increase in antitumor activity. Regulatory T cells play an important role in the control of immunosuppression, exhibiting the unique property of inhibiting T cell proliferation. These cells migrate to tumor sites or may be generated at the tumor site itself from the conversion of lymphocytes exposed to tumor microenvironment signaling. Because of the high similarity between regulatory T cells and other lymphocytes, the available approaches to inhibit this population are nonspecific and may antagonize antitumor response. In this work we explore a new strategy for inhibition of regulatory T cells based on the use of a chimeric aptamer targeting a marker of immune activation harboring a small antisense RNA molecule for transcriptional gene silencing of Foxp3, which is essential for the control of the immunosuppressive phenotype. The silencing of Foxp3 inhibits the immunosuppressive phenotype of regulatory T cells and potentiates the effect of the GVAX antitumor vaccine in immunocompetent animals challenged with syngeneic tumors. This novel approach highlights an alternative method to antagonize regulatory T cell function to augment antitumor immune responses.
Collapse
|
44
|
Chu Y, Yokota S, Liu J, Kilikevicius A, Johnson KC, Corey DR. Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA (NEW YORK, N.Y.) 2021; 27:991-1003. [PMID: 34108230 PMCID: PMC8370746 DOI: 10.1261/rna.078707.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 05/03/2023]
Abstract
Mammalian RNA interference (RNAi) is often linked to the regulation of gene expression in the cytoplasm. Synthetic RNAs, however, can also act through the RNAi pathway to regulate transcription and splicing. While nuclear regulation by synthetic RNAs can be robust, a critical unanswered question is whether endogenous functions for nuclear RNAi exist in mammalian cells. Using enhanced crosslinking immunoprecipitation (eCLIP) in combination with RNA sequencing (RNA-seq) and multiple AGO knockout cell lines, we mapped AGO2 protein binding sites within nuclear RNA. The strongest AGO2 binding sites were mapped to micro RNAs (miRNAs). The most abundant miRNAs were distributed similarly between the cytoplasm and nucleus, providing no evidence for mechanisms that facilitate localization of miRNAs in one compartment versus the other. Beyond miRNAs, most statistically significant AGO2 binding was within introns. Splicing changes were confirmed by RT-PCR and recapitulated by synthetic miRNA mimics complementary to the sites of AGO2 binding. These data support the hypothesis that miRNAs can control gene splicing. While nuclear RNAi proteins have the potential to be natural regulatory mechanisms, careful study will be necessary to identify critical RNA drivers of normal physiology and disease.
Collapse
Affiliation(s)
- Yongjun Chu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Shinnichi Yokota
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Jing Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
45
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Jiang X, Fu J, Zhong J, Li X, Wang H, Zhong S, Wei Y, Zhao X, Chen X, Zhou Y, Du L, Ye G, Zhao J, Huang Y. Guanidinylated Cyclic Synthetic Polypeptides Can Effectively Deliver siRNA by Mimicking the Biofunctions of Both Cell-Penetrating Peptides and Nuclear Localization Signal Peptides. ACS Macro Lett 2021; 10:767-773. [PMID: 35549206 DOI: 10.1021/acsmacrolett.1c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preventing endosomal entrapment of gene/vector nanocomplexes (NCs) remains a challenge for highly effective siRNA delivery. To address this problem, guanidinylated cyclic synthetic polypeptides (GCSPs) were synthesized using an efficient and easy method. GCSPs can condense siRNAs into NCs with an encapsulation efficiency of approximately 90%, over twice the effectiveness of Lipofectamine2000 (Lipo2000). The NCs can also mediate luciferase knockdown in HeLa cells with a silencing efficiency of 80%, nearly 2- and 1.1-fold that of Lipo2000 and PEI, respectively. More importantly, the NCs can enter cells by mimicking the bioactivity of cell-penetrating peptides (CPPs). NCs can also exert a nuclear localized function similar to nuclear localization signal peptides (NLSPs). Both biofunctions are helpful for preventing the common endosomal entrapment of NCs and greatly enhance the efficiency of siRNA delivery.
Collapse
Affiliation(s)
- Xinlin Jiang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junyang Zhong
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Songjing Zhong
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinhui Wei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoya Zhao
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yi Zhou
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lingran Du
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing Zhao
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yugang Huang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
47
|
AGO2 localizes to cytokinetic protrusions in a p38-dependent manner and is needed for accurate cell division. Commun Biol 2021; 4:726. [PMID: 34117353 PMCID: PMC8196063 DOI: 10.1038/s42003-021-02130-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Argonaute 2 (AGO2) is an indispensable component of the RNA-induced silencing complex, operating at the translational or posttranscriptional level. It is compartmentalized into structures such as GW- and P-bodies, stress granules and adherens junctions as well as the midbody. Here we show using immunofluorescence, image and bioinformatic analysis and cytogenetics that AGO2 also resides in membrane protrusions such as open- and close-ended tubes. The latter are cytokinetic bridges where AGO2 colocalizes at the midbody arms with cytoskeletal components such as α-Τubulin and Aurora B, and various kinases. AGO2, phosphorylated on serine 387, is located together with Dicer at the midbody ring in a manner dependent on p38 MAPK activity. We further show that AGO2 is stress sensitive and important to ensure the proper chromosome segregation and cytokinetic fidelity. We suggest that AGO2 is part of a regulatory mechanism triggered by cytokinetic stress to generate the appropriate micro-environment for local transcript homeostasis. Pantazopoulou et al. find that AGO2 resides in open-ended tunneling nanotubes and close-ended cytokinetic bridges. At the latter location, AGO2 colocalizes with cell division components and the authors show that AGO2 depletion impairs cell division fidelity.
Collapse
|
48
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
49
|
Bin Alamer O, Jimenez AE, Azad TD. Single-suture craniosynostosis and the epigenome: current evidence and a review of epigenetic principles. Neurosurg Focus 2021; 50:E10. [PMID: 33794485 DOI: 10.3171/2021.1.focus201008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 11/06/2022]
Abstract
Craniosynostosis (CS) is a congenital disease that arises due to premature ossification of single or multiple sutures, which results in skull deformities. The surgical management of single-suture CS continues to evolve and is driven by a robust body of clinical research; however, the molecular underpinnings of CS remain poorly understood. Despite long-standing hypotheses regarding the interaction of genetic predisposition and environmental factors, formal investigation of the epigenetic underpinnings of CS has been limited. In an effort to catalyze further investigation into the epigenetic basis of CS, the authors review the fundamentals of epigenetics, discuss recent studies that shed light on this emerging field, and offer hypotheses regarding the role of epigenetic mechanisms in the development of single-suture CS.
Collapse
Affiliation(s)
- Othman Bin Alamer
- 1School of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
| | - Adrian E Jimenez
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Tej D Azad
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
50
|
Yang Q, Dong Y, Wang X, Lin Z, Yan M, Wang W, Dong A, Zhang J, Huang P, Wang C. pH-Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromol Biosci 2021; 21:e2100025. [PMID: 33769670 DOI: 10.1002/mabi.202100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2021] [Indexed: 12/13/2022]
Abstract
pH-sensitive polyelectrolytes provide enormous opportunity for siRNA delivery. Especially, their tertiary amine structures can not only bind genes but also act as pH-sensitive hydrophobic structure to control genes release. However, the influence of molecular structures on siRNA delivery still remains elusive, especially for the asymmetric alkyl substituents of the tertiary amine groups. Herein, a library of N-methyl-N-alkyl aminoethyl methacrylate monomers (MsAM) with asymmetric alkyl substituents on the tertiary amine group is synthesized and used to prepare a series of tri-block polycationic copolymers poly(aminoethyl methacrylate)-block-poly (N-methyl-N-alkyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMsMA-PEG). And the properties of these polycations and their self-assembled micelles are characterized, including molecular structure, proton buffering capacity, pH-sensitivity, size, and zeta potential. With the length increase of one alkyl substituent, the proton buffering capacity of both monomers and polycations is demonstrated to be narrowed down. The siRNA delivery efficiency and cytotoxicity of these micelles are also evaluated on HepG2 cells. In particular, poly(aminoethyl methacrylate)-block-poly(N-methyl-N-ethyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMEMA-PEG) elicited the best luciferase knockdown efficiency and low cytotoxicity. Besides, PAMA-PMEMA-PEG/siRRM2 also induced significant anti-tumor activity in vitro. These results indicated PAMA-PMEMA-PEG has potential for further use in the design of gene vehicles with the improved efficiency of siRNA delivery.
Collapse
Affiliation(s)
- Qinping Yang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanliang Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuanyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhihao Lin
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyu Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|