1
|
Saridaki Z, Fountzilas E, Alexopoulos A, Karachaliou N. Inherited rare epidermal growth factor receptor mutation and somatic mutations in patients with non-small cell lung cancer: a case report. BMC Med Genomics 2025; 18:51. [PMID: 40087585 PMCID: PMC11909994 DOI: 10.1186/s12920-025-02113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Recent advances in molecular oncology have increasingly illuminated the role of germline EGFR mutations in non-small cell lung cancer (NSCLC). This case report presents the presence of a unique familial occurrence of EGFR mutations in patients with NSCLC. CASE DESCRIPTION A mother and son, both never-smokers of Caucasian ethnicity, were diagnosed with advanced metastatic lung adenocarcinoma. In one patient, tumor molecular analysis by next generation sequencing (NGS) identified two EGFR mutations: the activating mutation c.2573T > G; p.Leu858Arg (p.L858R) in exon 21 of the EGFR gene, and the somatic non-pathogenic mutation c.2612 C > A; p.Ala871Glu (p.A871E) in exon 21 of the EGFR gene. The second patient also harbored the same two EGFR mutations. The patient underwent genetic testing which revealed the germline origin of the A871E mutation. Whether the presence of this mutations was associated with increased predisposition to cancer has yet to be determined. Our case report highlights the need for further exploration of the role of germline mutations, including the A871E mutation, in tumorigenesis and its implications for treatment response and inheritance patterns. CONCLUSIONS The investigation and comprehension of the significance of each individual EGFR mutation hold the promise for potential in cancer prevention or early diagnosis within family cohorts and understanding the mechanisms of tumorigenesis in sporadic cases.
Collapse
Affiliation(s)
- Zacharenia Saridaki
- First Oncology Department, Metropolitan Hospital, Piraeus, Greece.
- Asklepios Oncology Department, Heraklion, Crete, 71303, Greece.
| | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Clinic, Thessaloniki, Greece
- European University Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
2
|
Zhang J, He P, Wang W, Wang Y, Yang H, Hu Z, Song Y, Chang J, Yu B. Structure-Based Design of New LSD1/EGFR L858R/T790M Dual Inhibitors for Treating EGFR Mutant NSCLC Cancers. J Med Chem 2025; 68:5954-5972. [PMID: 40015914 DOI: 10.1021/acs.jmedchem.5c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Epigenetic changes, such as LSD1 dysregulation, contribute to acquired resistance in EGFR mutant NSCLCs and reduce the effectiveness of current therapeutics. To address the challenges, we herein reported the structure-based design of new LSD1/EGFR dual inhibitors, of which ZJY-54 represents the shortlisted lead compound with high potency, selectivity, and unique dual modes of action (namely irreversibly binding to EGFR but reversibly binding to LSD1). ZJY-54 effectively inhibited growth in both parent- and TKI-resistant NSCLC cells. In H1975 cells, ZJY-54 induced accumulation of H3K4me2 and H3K9me2, as well as inhibited phosphorylation of EGFR signaling. ZJY-54 showed favorable PK profiles and effectively inhibited tumor growth in the H1975 xenograft model. ZJY-54 represents the best-in-class LSD1/EGFR dual inhibitor and warrants further preclinical development for treating NSCLCs. These findings highlight the therapeutic potential of LSD1/EGFR dual inhibitors in drug-resistant cancers where EGFR and LSD1 were dysregulated.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxin Hu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Wang F, Wei X, Yang M, Lu C, Yang X, Deng J, Chen Z, Zhou Q. A Novel DNA Repair-Gene Model to Predict Responses to Immunotherapy and Prognosis in Patients With EGFR-Mutant Non-Small Cell Lung Cancer. Thorac Cancer 2025; 16:e70025. [PMID: 39994841 PMCID: PMC11850292 DOI: 10.1111/1759-7714.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The epidermal growth factor receptor mutant (EGFRm) non-small cell lung cancer (NSCLC) has a unique "cold" immune profile. DNA damage repair (DDR) genes are closely related to tumorigenesis and the effectiveness of immunotherapy in many tumors. However, the role and mechanism of DDR in the genesis and progression of EGFRm NSCLC remain unclear. METHODS This study included 101 EGFRm NSCLC samples from The Cancer Genome Atlas (TCGA) dataset and a GSE31210 dataset (external set) from the GEO database. Cluster analysis was used to identify different subtypes of EGFRm NSCLC based on the expression of DDR genes. Univariate and LASSO regression analysis was used to develop a DDR-based predictive model. The prognostic significance of this model was assessed using Cox regression, Kaplan-Meier, and receiver operating characteristic (ROC) curve analyses. Bioinformatics analysis was performed to investigate the clinicopathological characteristics and immune profiles associated with this model. In vitro experiment was performed to testify the role of DDR genes in EGFRm NSCLC. RESULTS We identified two subtypes of EGFRm NSCLC: DDR-activated and DDR-suppressed. The DDR-activated subtype showed more aggressive clinical behavior and poorer prognosis and was more responsive to immunotherapy. A prognostic model for EGFRm NSCLC was constructed using four DDR genes: CAPS, FAM83A, IGLV8-61, and SLC7A5. The derived risk score could serve as an independent prognostic indicator. High- and low-risk patients exhibited distinct clinicopathological characteristics, immune profiles, and responses to immunotherapy. The T-cell inflammation and Tumor Immune Dysfunction and Exclusion (TIDE) scores differed between the high- and low-risk subgroups, with both showing enhanced effectiveness of immunotherapy in the low-risk subgroup. Targeted therapy such as BI.2536, an inhibitor of polo-like kinase 1, could be effective for patients with high-risk EGFRm NSCLC. Meanwhile, in vitro detection approved the role of DDR genes in EGFRm NSCLC response. CONCLUSION This study demonstrated a diversity of DDR genes in EGFRm NSCLC and developed a predictive model using these genes. This model could assist in identifying potential candidates for immunotherapy and in assessing personalized treatment and prognosis of patients with EGFRm NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Xue‐Wu Wei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Ming‐Yi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Xiao‐Rong Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Jia‐Yi Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Zhi‐Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Ma L, Zhang J, Dai Z, Liao P, Guan J, Luo Z. Top 100 most-cited articles on apoptosis of non-small cell lung cancer over the past two decades: a bibliometrics analysis. Front Immunol 2025; 15:1512349. [PMID: 39872524 PMCID: PMC11770037 DOI: 10.3389/fimmu.2024.1512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Background Recently there has been an increasing number of studies have explored apoptosis mechanisms in lung cancer (LC). However, no researchers have conducted a bibliometric analysis of the most cited articles in this field. Objective To examine the top 100 most influential and cited publications on apoptosis in non-small cell lung cancer (NSCLC) from 2004 to 2023, summarizing research trends and key focus areas. Methods This study utilized the Web of Science Core Database (WOSCC) to research NSCLC apoptosis from 2004 to 2023, using keyword selection and manual screening for article searches. Bibliometrix package of R software 4.3.1 was used to generate distribution statistics for the top ten institutions, journals and authors. Citespace6.2. R6 was used to create the visualization maps for keyword co-occurrence and clustering. VOSviewer1.6.19 was used to conduct cluster analysis of publishing countries (regions), with data exported to SCImago Graphica for geographic visualization and cooperation analysis. VOSviewer1.6.19 was used to produced co-citation maps of institutions, journals, authors, and references. Results From 2004 to 2023, 13316 articles were retrieved, and the top 100 most cited were chosen. These were authored by 934 individuals from 269 institutions across 18 countries and appeared in 45 journals. Citations ranged from 150 to 1,389, with a median of 209.5. The most influential articles appeared in 2005 and 2007 (n=13). The leading countries (regions), institutions, journals and authors were identified as the United States (n=60), Harvard University (n=64), CANCER RESEARCH (n=15), SUN M and YANG JS (n=6). The top five keywords were "expression", "activation", "apoptosis", "pathway" and "gefitinib". This study indicates that enhancing apoptosis through circular RNA regulation and targeting the Nrf2 signaling pathway could become a key research focus in recent years. Conclusion Apoptosis has been the subject of extensive research over many years, particularly in relation to its role in the pathogenesis, diagnosis, and treatment of NSCLC. This study aims to identify highly influential articles and forecast emerging research trends, thereby offering insights into novel therapeutic targets and strategies to overcome drug resistance. The findings are intended to serve as a valuable reference for scholars engaged in this field of study.
Collapse
Affiliation(s)
- Leshi Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi Dai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Liao
- Department of Oncology, Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Jieshan Guan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, Shenshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, China
| | - Zhijie Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Mirikar D, Banerjee N, Prabhash K, Kaushal RK, Naronha V, Pramesh CS, Karimundackal G, Joshi A, Rane S, Basak R. Comparative analysis of EGFR mutations in circulating tumor DNA and primary tumor tissues from lung cancer patients using BEAMing PCR. Sci Rep 2025; 15:1252. [PMID: 39775010 PMCID: PMC11707337 DOI: 10.1038/s41598-025-85160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
In this study, we measured human epidermal growth factor receptor (EGFR) mutations in both tissue and circulating tumor DNA (ctDNA) by using beads, emulsions, amplifications and magnetic polymerase chain reaction (BEAMing PCR). Noninvasive mutation detection by assessing circulating tumor DNA (ctDNA) offers many advantages over tumor biopsy. One hundred non-small cell lung cancer (NSCLC) patients were enrolled, and both preoperative plasma samples and formalin-fixed and paraffin-embedded (FFPE) samples were collected for the study. The EGFR mutation status was determined by BEAMing PCR in ctDNA. Real-time quantitative PCR (qPCR) data were collected from our hospital database (EMR-qPCR, Electronic Medical Records) for comparative analysis. Additionally, qPCR was also performed on FFPE tissues using a Diatech EGFR qPCR kit. The concordance rates were 98.8%, 98.9% and 95.5% for exons 19, 20 and 21, respectively, when the BEAMing data were compared with the EMR-qPCR data. Additionally, when the BEAMing and Diatech qPCR data were compared, 90%, 100%, 96% and 98% of the genes were obtained for exons 19, 20, 21 (L858R) and 21 (L861Q), respectively. For both comparisons, Cohen's kappa agreement was significant. The advantage of BEAMing is its ability to identify mutated DNA sequences in cancer cells in the background of normal cell DNA contamination. This could be useful for disease monitoring and progression.
Collapse
Affiliation(s)
- Duhita Mirikar
- Translational Research Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- University of North Carolina, Charlotte, USA
| | - Nandini Banerjee
- Translational Research Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Bionpharma, Inc, 400 Alexander Park Dr Suite 2 4b, Princeton, NJ, 08540, USA
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - Vanita Naronha
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - C S Pramesh
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - George Karimundackal
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - Amit Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - Swapnil Rane
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| | - Ranjan Basak
- Translational Research Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Navi Mumbai, India.
- Department of Pathology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| |
Collapse
|
6
|
Chou CL, Jayatissa NU, Kichula ET, Ou SM, Limbutara K, Knepper MA. Phosphoproteomic response to epidermal growth factor in native rat inner medullary collecting duct. Am J Physiol Renal Physiol 2025; 328:F29-F47. [PMID: 39508840 PMCID: PMC11918369 DOI: 10.1152/ajprenal.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Epidermal growth factor (EGF) has important effects in the renal collecting duct to regulate salt and water transport. To identify elements of EGF-mediated signaling in the rat renal inner medullary collecting duct (IMCD), we carried out phosphoproteomic analysis. Biochemically isolated rat IMCD suspensions were treated with 1 µM of EGF or vehicle for 30 min. We performed comprehensive quantitative phosphoproteomics using tandem mass tag (TMT)-labeling of tryptic peptides followed by protein mass spectrometry. We present a data resource reporting all detected phosphorylation sites and their changes in response to EGF. For a total of 29,881 unique phosphorylation sites, 135 sites were increased and 119 sites were decreased based on stringent statistical analysis. The data are provided to users at https://esbl.nhlbi.nih.gov/Databases/EGF-phospho/. The analysis demonstrated that EGF signals through canonical EGF pathways in the renal IMCD. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which EGF-regulated phosphoproteins are over-represented in native rat IMCD cells confirmed mapping to RAF-MEK-extracellular signal-regulated kinase (ERK) signaling but also pointed to a role for EGF in the regulation of protein translation. A large number of phosphoproteins regulated by EGF contained PDZ domains that are key elements of epithelial polarity determination. We also provide a collecting duct EGF-network map as a user-accessible web resource at https://esbl.nhlbi.nih.gov/Databases/EGF-network/. Overall, the phosphoproteomic data presented provide a useful resource for experimental design and modeling of signaling in the renal collecting duct.NEW & NOTEWORTHY EGF negatively regulates transepithelial water and salt transport across the kidney collecting duct. This study identified phosphoproteins affected by EGF stimulation in normal rat collecting ducts, providing insights into global cell signaling mechanisms. Bioinformatic analyses highlighted enhanced canonical ERK signaling alongside a diminished activity in the PI3K-Akt pathway, which is crucial for cell proliferation and survival. This EGF response differs somewhat from prior studies where both pathways were prominently activated.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Nipun U Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elena T Kichula
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shuo-Ming Ou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Ota Y, Gao T, Fujisawa M, Sumardika IW, Sakaguchi M, Toyooka S, Yoshimura T, Matsukawa A. Expression of SPRED2 in the lung adenocarcinoma. Pathol Res Pract 2025; 265:155721. [PMID: 39580880 DOI: 10.1016/j.prp.2024.155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
SPRED2 (Sprouty-related, EVH1 domain-containing protein 2), a negative regulator of the ERK1/2 pathway, is downregulated in several cancers; however, the significance of SPRED2 expression in lung adenocarcinoma (LUAD) remains unclear. Here, we investigated the pathological expression of SPRED2 and its relationship with ERK1/2 activation (ERK1/2 phosphorylation), Ki67 index and clinicopathological features in 77 LUAD tissues from clinical patients. Immunohistochemically, SPRED2 expression was decreased in invasive adenocarcinoma (IA) compared to adenocarcinoma in situ (AIS). There was a negative correlation between SPRED2 expression and pERK1/2 levels and a positive correlation between SPRED2 expression and Ki67 index. In the database analysis, the survival probability was higher in patients with higher SPRED2 expression than in those with lower expression. In vitro, SPRED2 deletion increased cell proliferation, migration and invasion of three LUAD cell lines (A549:KRAS mutation, H1993:METamplification, and HCC4006:EGFR mutation), whereas SPRED2 overexpression decreased these responses. Thus, SPRED2 appears to be a regulator of LUAD progression and a potential target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yoko Ota
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| |
Collapse
|
8
|
Ahmad I, Patel HM. Repurposing Non-Nucleosidic Reverse Transcriptase Inhibitors (NNRTIs) to Overcome EGFR T790M-Mediated Acquired Resistance in Non-Small Cell Lung Cancer. J Cell Biochem 2025; 126:e30653. [PMID: 39300843 DOI: 10.1002/jcb.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
This study investigates the repurposing potential of non-nucleosidic reverse transcriptase inhibitors (NNRTIs), specifically Rilpivirine and Etravirine, as L858R/T790M tyrosine kinase inhibitors for addressing acquired resistance in non-small cell lung cancer (NSCLC). Using in silico molecular docking, Rilpivirine demonstrated a docking score of -7.534 kcal/mol, comparable to established epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) like Osimertinib and WZ4002. Molecular dynamics (MD) simulations over 200 ns revealed the stability of the Rilpivirine-EGFR complex, with RMSD values ranging from 2.5 to 3.5 Å. The in vitro antiproliferative assays showed that Rilpivirine had an IC50 value of 2.3 µM against H1975 cells, while WZ4002 had an IC50 of 0.291 µM, indicating moderate efficacy. Enzymatic assays revealed that Rilpivirine inhibited the double mutant epidermal growth factor receptor tyrosine kinase (EGFR TK) with an IC50 value of 54.22 nM and spared the wild-type EGFR TK with an IC50 of 22.52 nM. These findings suggest Rilpivirine's potential as a therapeutic agent for NSCLC with EGFR L858R/T790M mutations.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
9
|
Zhang YB, Hao W, Bian X, Yu J, Zhou L, Lee H. Target-Induced On-Protein Clustering of Metal Peptide Enables Low Overpotential Water Splitting for Early Detection of Non-Small-Cell Lung Cancer. ACS Sens 2024; 9:6861-6868. [PMID: 39563506 DOI: 10.1021/acssensors.4c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This study presents a novel method for the early detection of non-small-cell lung cancer (NSCLC) by employing target-induced on-protein clustering of metal-peptide complexes to facilitate low overpotential water splitting. The approach utilizes a designed peptide molecular probe composed of an EGFR-targeting motif and a copper-chelating tetrapeptide. Upon interaction with the epidermal growth factor receptor (EGFR) and divalent copper ions, the peptide probe forms a stable complex that undergoes on-protein clustering. This clustering significantly amplifies the electrochemical signal through enhanced dityrosine cross-linking and subsequent water splitting, achieving low overpotential for detection. The method was validated using clinical tissue samples and demonstrated improved sensitivity and specificity compared with traditional detection methods. This technique holds promise for earlier and more accurate diagnosis of NSCLC, leveraging the unique properties of metal-peptide interactions and electrochemical signal amplification.
Collapse
Affiliation(s)
- Yi Bao Zhang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road of Lixia, Jinan 250014, China
| | - Weiming Hao
- Department of Biosciences, Jinan University, Guangzhou 510013, China
| | - Xiatong Bian
- Department of Biosciences, Jinan University, Guangzhou 510013, China
| | - Jingzhi Yu
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Lei Zhou
- Department of Biosciences, Jinan University, Guangzhou 510013, China
| | - Hao Lee
- Department of Biosciences, Jinan University, Guangzhou 510013, China
| |
Collapse
|
10
|
Liu J, Wei L, Miao Q, Zhan S, Chen P, Liu W, Cao L, Wang D, Liu H, Yin J, Song Y, Ye M, Lv T. MDM2 drives resistance to Osimertinib by contextually disrupting FBW7-mediated destruction of MCL-1 protein in EGFR mutant NSCLC. J Exp Clin Cancer Res 2024; 43:302. [PMID: 39543744 PMCID: PMC11566350 DOI: 10.1186/s13046-024-03220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Overcoming resistance to Osimertinib in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) is clinically challenging because the underlying mechanisms are not fully understood. The murine double minute 2 (MDM2) has been extensively described as a tumor promotor in various malignancies, mainly through a negative regulatory machinery on the p53 tumor suppressor. However, the significance of MDM2 on the sensitivity to Osimertinib has not been described. METHODS Osimertinib resistant cells were generated by standard dose escalation strategy and individual resistant clones were isolated for MDM2 testing. The MDM2 and its mutant constructs (ΔPBD, ΔRING, C464A) were introduced into PC-9, HCC827 and H1975 cells and evaluated for the sensitivity to Osimertinib by MTT assay, colony formation, EdU assay and TUNEL assay. MDM2 expression in resistant cells was manipulated by pharmacological and molecular approaches, respectively. Proteins that were implicated in PI3K/Akt, MAPK/Erk and apoptosis signaling were measured by Western blot analysis. Candidate proteins that interacted with MDM2 were captured by immunoprecipitation and probed with indicated antibodies. RESULTS In comparison with parental PC-9 cells, the PC-9 OR resistant cells expressed high level of MDM2. Ectopic expression of MDM2 in PC-9, HCC827 and H1975 sensitive cells generated an Osimertinib resistant phenotype, regardless of p53 status. MDM2 promoted resistance to Osimertinib through a PI3K/Akt and MAPK/Erk-independent machinery, in contrast, MDM2 selectively stabilized MCL-1 protein to arrest Osimertinib-induced cancer cell apoptosis. Mechanistically, MDM2 acted as a E3 ligase to ubiquitinate FBW7, a well-established E3 ligase for MCL-1, at Lys412 residue, which resulted in FBW7 destruction and MCL-1 stabilization. Targeting MDM2 to augment MCL-1 protein breakdown overcame resistance to Osimertinib in vitro and in vivo. Finally, the clinical relevance of MDM2-FBW7-MCL-1 regulatory axis was validated in mouse xenograft tumor model and in NSCLC specimen. CONCLUSION Overexpression of MDM2 is a novel resistant mechanism to Osimertinib in EGFR mutant NSCLC. MDM2 utilizes its E3 ligase activity to provoke FBW7 destruction and sequentially leads to MCL-1 stabilization. Cancer cells with aberrant MDM2 state are refractory to apoptosis induction and elicit a resistant phenotype to Osimertinib. Therefore, targeting MDM2 would be a feasible approach to overcome resistance to Osimertinib in EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingyun Wei
- Department of Thoracic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Miao
- The guidance center for Military Psychology of PLA, The 960th Hospital of Joint Logistics Support Force of PLA, Jinan, China
| | - Sutong Zhan
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Peilin Chen
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Wei Liu
- Liaoning Kanghui Biotechnology Co., Ltd, Shenyang, 110 167, China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, CA 94404, China
| | - Dong Wang
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China.
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, #305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
11
|
Wen Y, Yi F, Zhang J, Wang Y, Zhao C, Zhao B, Wang J. Uncovering the protective mechanism of baicalin in treatment of fatty liver based on network pharmacology and cell model of NAFLD. Int Immunopharmacol 2024; 141:112954. [PMID: 39153306 DOI: 10.1016/j.intimp.2024.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Excessive nonesterified fatty acids (NEFA) impair cellular metabolism and will induce fatty liver formation in dairy cows during the periparturient. Baicalin, an active flavonoid, has great potential efficacy in alleviating lipid accumulation and ameliorating the development of fatty liver disease. Nevertheless, its mechanism remains unclear. Here, the potential mechanism of baicalin on system levels was explored using network pharmacology and in vitro experiments. Firstly, the target of baicalin and fatty liver disease was predicted, and then the protein-protein interaction (PPI) network was constructed. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) (q-value) pathway enrichment is performed through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. Finally, the results of the network analysis of the in vitro treatment of bovine hepatocytes by NEFA were confirmed. The results showed that 33 relevant targets of baicalin in the treatment of liver fatty were predicted by network pharmacology, and the top 20 relevant pathways were extracted by KEGG database. Baicalin treatment can reduce triglyceride (TAG) content and lipid droplet accumulation in NEFA-treated bovine hepatocytes, and the mechanism is related to inhibiting lipid synthesis and promoting lipid oxidation. The alleviating effect of baicalin on fatty liver may be related to the up-regulation of solute vector family member 4 (SLC2A4), Down-regulated AKT serine/threonine kinase 1 (AKT1), Peroxisome proliferator-activated receptor gamma (PPARG), Epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), Interleukin 6 (IL-6) were associated. These results suggested that baicalin may modulate key inflammatory markers, and lipogenesis processes to prevent fatty liver development in dairy cows.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Sharma R, Sharma S, Shriwas P, Mehta L, Vu AH, Mouw JK, Koo J, Huang C, Matsuk VY, Tucker-Burden C, Joseph G, Behera M, Sun SY, Roy MA, Gilbert-Ross M, Leal T, Marcus AI, Shanmugam M. Intra-tumoral YAP and TAZ heterogeneity drives collective NSCLC invasion that is targeted by SUMOylation inhibitor TAK-981. iScience 2024; 27:111133. [PMID: 39524367 PMCID: PMC11544388 DOI: 10.1016/j.isci.2024.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) collective invasion is supported by cooperativity of proliferative (follower) and invasive (leader) cells. H1299-isolated follower cells exhibit higher Yes-associated protein (YAP) expression, while leader cells were found to express elevated transcriptional coactivator with PDZ-binding motif (TAZ/WWTR1) expression. Suppressing TAZ (not YAP) in leader cells reduced invasion. TAZ-regulated leader cell invasion is associated with activation of the EGFR-PI3K-AKT axis. NSCLC patient samples also demonstrated heterogeneity in YAP and TAZ expression. YAP and TAZ regulate proliferation of follower and leader cells. Our results highlight the need to inhibit both YAP and TAZ to effectively target their regulation of collective invasion. We identify that the SUMOylation inhibitor TAK-981 reduces YAP and TAZ expression, decreasing tumor burden and metastasis in a murine NSCLC model. Our study reveals an intra-tumoral division of labor, driven by differential YAP and TAZ expression, which can be effectively targeted with TAK-981 for NSCLC therapy.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shagun Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pratik Shriwas
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Labdhi Mehta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - An H. Vu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Junghui Koo
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunzi Huang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Veronika Y. Matsuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Gregory Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Melissa A. Roy
- Division of Pathology, Emory National Primate Research Center, Atlanta, GA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Belli O, Karava K, Farouni R, Platt RJ. Multimodal scanning of genetic variants with base and prime editing. Nat Biotechnol 2024:10.1038/s41587-024-02439-1. [PMID: 39533106 DOI: 10.1038/s41587-024-02439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Mutational scanning connects genetic variants to phenotype, enabling the interrogation of protein functions, interactions and variant pathogenicity. However, current methodologies cannot efficiently engineer customizable sets of diverse genetic variants in endogenous loci across cellular contexts in high throughput. Here, we combine cytosine and adenine base editors and a prime editor to assess the pathogenicity of a broad spectrum of variants in the epithelial growth factor receptor gene (EGFR). Using pooled base editing and prime editing guide RNA libraries, we install tens of thousands of variants spanning the full coding sequence of EGFR in multiple cell lines and assess the role of these variants in tumorigenesis and resistance to tyrosine kinase inhibitors. Our EGFR variant scan identifies important hits, supporting the robustness of the approach and revealing underappreciated routes to EGFR activation and drug response. We anticipate that multimodal precision mutational scanning can be applied broadly to characterize genetic variation in any genetic element of interest at high and single-nucleotide resolution.
Collapse
Affiliation(s)
- Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kyriaki Karava
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Rick Farouni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
- NCCR Molecular Systems Engineering, Basel, Switzerland.
| |
Collapse
|
14
|
Zhao H, Beyett TS, Jiang J, Rana JK, Schaeffner IK, Santana J, Jänne PA, Eck MJ. Biochemical analysis of EGFR exon20 insertion variants insASV and insSVD and their inhibitor sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2417144121. [PMID: 39471218 PMCID: PMC11551396 DOI: 10.1073/pnas.2417144121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Somatic mutations in the epidermal growth factor receptor (EGFR) are a major cause of non-small cell lung cancer. Among these structurally diverse alterations, exon 20 insertions represent a unique subset that rarely respond to EGFR tyrosine kinase inhibitors (TKIs). Therefore, there is a significant need to develop inhibitors that are active against this class of activating mutations. Here, we conducted biochemical analysis of the two most frequent exon 20 insertion variants, V769_D770insASV (insASV) and D770_N771insSVD (insSVD) to better understand their drug sensitivity and resistance. From kinetic studies, we found that EGFR insASV and insSVD are similarly active, but have lower Km, ATP values compared to the L858R variant, which contributes to their lack of sensitivity to 1st-3rd generation EGFR TKIs. Biochemical, structural, and cellular studies of a diverse panel of EGFR inhibitors revealed that the more recently developed compounds BAY-568, TAS6417, and TAK-788 inhibit EGFR insASV and insSVD in a mutant-selective manner, with BAY-568 being the most potent and selective versus wild-type (WT) EGFR. Cocrystal structures with WT EGFR reveal the binding modes of each of these inhibitors and of poziotinib, a potent but not mutantselective inhibitor, and together they define interactions shared by the mutant-selective agents. Collectively, our results show that these exon20 insertion variants are not inherently inhibitor resistant, rather they differ in their drug sensitivity from WT EGFR. However, they are similar to each other, indicating that a single inhibitor should be effective for several of the diverse exon 20 insertion variants.
Collapse
Affiliation(s)
- Hanchen Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Jie Jiang
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Jaimin K. Rana
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Jhasmer Santana
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
15
|
Wang J, Wang Y, Zhang S, Qu Y, Zhang R, Wang X, Sheng J, Sun P. Inhibitory effect of 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone against NSCLC with L858R/T790M/C797S mutant EGFR. Sci Rep 2024; 14:26549. [PMID: 39489821 PMCID: PMC11532358 DOI: 10.1038/s41598-024-78146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-activating mutations are critical factors in the development of EGFR-driven non-small-cell lung cancer (NSCLC), and molecular targeted therapies have focused on inhibiting these mutations. EGFR tyrosine kinase inhibitors (TKIs) have remarkable inhibitory effects on NSCLC with EGFR mutations. However, acquired resistance limits the clinical application of EGFR-TKIs, highlighting the need for discovery of novel therapeutic strategies. 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone is a natural product derived from Garcinia xanthochymus, has shown potential anti-tumor activity, but the underlying mechanism needs further elucidation. In this study, we developed Ba/F3 and NIH/3T3 cells harboring EGFR L858R/T790M/C797S mutation, and then found that 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone exerted inhibitory effects against cells with EGFR L858R/T790M/C797S mutation. Additionally, 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone exhibited potent anti-tumor activity against cells harboring the triple-mutant EGFR by promoting apoptosis and inducing changes in cell cycle distribution. Furthermore, 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone was found to significantly reduce tumor growth via suppressing the phosphorylation of EGFR in tumor tissues. These effects are associated with binding of 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone to EGFR resulting in the suppression of extracellular signal-regulated kinase (Erk) phosphorylation. In conclusion, our results suggest that 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone may be a potential novel candidate for further investigation and treatment of NSCLC with the triple-mutant EGFR.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuna Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuanggou Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yana Qu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruohan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| | - Peiyuan Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
16
|
Adegboyega FN, Anifowose LO, Hammad SF, Ghazy MA. Repurposing Antiviral Drugs as Potential Anti-EGFR Agents in NSCLC: A Structure-Based Screening and Molecular Dynamics Analysis. Chem Biodivers 2024; 21:e202400898. [PMID: 39078025 DOI: 10.1002/cbdv.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
One of the problems resulting from recurrent hyperactivated or mutant epidermal growth factor receptors (EGFR) in non-small cell lung cancer (NSCLC) is therapeutic resistance. Consequently, this leads to increased expression of oncogenic proteins and reduces the efficacy of EGFR tyrosine kinase inhibitors (TKIs). This study assessed antiviral drug efficacy as potential anti-EGFR agents for NSCLC. We used structure-based virtual screening to evaluate 66 antiviral drugs thoroughly. The top 6 antiviral drugs exhibiting impressive binding energies (i. e. surpassing a threshold of -8.5 kcal mol-1) were identified. Subsequent bioactivity analysis and ADMET profiling were performed to select the most promising candidates, followed by a molecular dynamic simulation. Among the selected antiviral regimens, dolutegravir demonstrated the highest docking score (-9.8 kcal mol-1), followed by rilpivirine and ensitrelvir, surpassing other candidates and our reference EGFR TKI. Further molecular dynamics simulations revealed promising dynamic interactions of dolutegravir, ensitrelvir, and rilpivirine with the EGFR target as compared with afatinib. Our findings highlight the repositioning potential of antiviral drugs for anti-EGFR drug discovery, supported by their robust docking scores, ADMET profiles, dynamic interactions, and binding free energies. The results open up new avenues for advanced NSCLC therapy. Further in vitro investigations are warranted to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Fikayo N Adegboyega
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Lateef O Anifowose
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Sherif F Hammad
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed A Ghazy
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Li L, Liu C, Wang R, Yang X, Wei X, Chu C, Zhang G, Liu C, Cui W, Xu H, Wang K, An L, Li X. A novel role for WZ3146 in the inhibition of cell proliferation via ERK and AKT pathway in the rare EGFR G719X mutant cells. Sci Rep 2024; 14:22895. [PMID: 39358400 PMCID: PMC11447065 DOI: 10.1038/s41598-024-73293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) gene are common driver oncogenes in non-small cell lung cancer (NSCLC). Studies have shown that afatinib is beneficial for NSCLC patients with rare EGFR mutations. However, the effectiveness of tyrosine kinase inhibitors (TKIs) against the G719X (G719A, G719C and G719S) mutation has not been fully established. Herein, using the CRISPR method, the EGFR G719X mutant cell lines were constructed to assess the sensitivity of the rare mutation G719X in NSCLC. WZ3146, a novel mutation-selective EGFR inhibitor, was conducted transcriptome sequencing and in vitro experiments. The results showed that WZ3146 induced cytotoxic effects, inhibited growth vitality and proliferation via ERK and AKT pathway in the EGFR G719X mutant cells. Our findings suggest that WZ3146 may be a promising treatment option for NSCLC patients with the EGFR exon 18 substitution mutation G719X.
Collapse
Affiliation(s)
- Lanxin Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
- Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chenyang Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Rui Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiaolin Yang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiangkai Wei
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Chunhong Chu
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Guoliang Zhang
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Chenxue Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Huixia Xu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Ke Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Lei An
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China.
| | - Xiaodong Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
18
|
Wirth D, Özdemir E, Hristova K. Probing phosphorylation events in biological membranes: The transducer function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184362. [PMID: 38885782 PMCID: PMC11365757 DOI: 10.1016/j.bbamem.2024.184362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The extracellular environment is sensed by receptors in the plasma membrane. Some of these receptors initiate cytoplasmic signaling cascades involving phosphorylation: the addition of a phosphate group to a specific amino acid, such as tyrosine, in a protein. Receptor Tyrosine Kinases (RTKs) are one large class of membrane receptors that can directly initiate signaling cascades through their intracellular kinase domains, which both catalyze tyrosine phosphorylation and get phosphorylated. In the first step of signaling, the ligands stabilize phosphorylation-competent RTK dimers and oligomers, which leads to the phosphorylation of specific tyrosine residues in the activation loop of the kinases. Here we discuss quantitative measurements of tyrosine phosphorylation efficiencies for RTKs, described by the "transducer function". The transducer function links the phosphorylation (the response) and the binding of the activating ligand to the receptor (the stimulus). We overview a methodology that allows such measurements in direct response to ligand binding. We discuss experiments which demonstrate that EGF is a partial agonist, and that two tyrosines in the intracellular domain of EGFR, Y1068 and Y1173, are differentially phosphorylated in the EGF-bound EGFR dimers.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
19
|
Cheng Y, Chen B, Fang Q, Zang G, Yao J. Analysis of tumor abnormal protein expression and epidermal growth factor receptor mutation status in non-small cell lung cancer. Discov Oncol 2024; 15:274. [PMID: 38980474 PMCID: PMC11233477 DOI: 10.1007/s12672-024-01094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The level of tumor abnormal protein (TAP) level has a significant impact on tumor growth, recurrence, and metastasis. Previous studies have highlighted the influence of the mutations in exons 19 and 21 of the epidermal growth factor receptor (EGFR), particularly the sensitivity displayed by tumor cells to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. Our study is centered on exploring the clinical relevance of TAP and EGFR mutations in patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS In this study, tissue samples were collected from a total of 176 patients diagnosed with non-small cell lung cancer (NSCLC). Real-time PCR technology was utilized to detect mutations within exons 19 and 21 of the epidermal growth factor receptor (EGFR) gene in these samples. This approach enables precise identification of EGFR mutations associated with NSCLC. Furthermore, the study investigated the impact of various tumor markers, including tumor abnormal protein (TAP) and carcinoembryonic antigen (CEA), on EGFR mutation status. Established assays were employed to evaluate TAP and CEA levels, aiming to ascertain their potential correlation with EGFR mutation in NSCLC patients. RESULTS EGFR exhibited mutation rates of 23.86% and 12.50% in exons 19 and 21, respectively. EGFR mutations were more prevalent in younger women (< 60 years old) and in cases with pleural invasion, vessel invasion, CEA > 6.5 ng/mL, and TAP > 228 µm2 for both genders. Increased TAP levels independently predicted EGFR mutations (P = 0.001 for males; P = 0.000 for females). An area under the curve (AUC) of 0.833 indecated EGFR mutation prediction with sensitivity and specificity of 79.7% and 87.0%, respectively. For females, the sensitivity increased to 89.7% and specificity increased to 93.8%. CONCLUSIONS TAP effectively predicts EGFR mutations in NSCLC patients with moderate accuracy, particularly benefiting diagnosis in females with high sensitivity and specificity. Integrating TAP assessment into EGFR mutation testing can significantly enhance diagnostic precision, especially in female NSCLC cases.
Collapse
Affiliation(s)
- Yuanjun Cheng
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, No. 3 Baiya Road, Guichi District, Chizhou, 247000, China
| | - Bin Chen
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, No. 3 Baiya Road, Guichi District, Chizhou, 247000, China
| | - Qianru Fang
- Department of Obstetrics, People's Hospital of Chizhou, Chizhou, 247000, China
| | - Guohui Zang
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, No. 3 Baiya Road, Guichi District, Chizhou, 247000, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, No. 3 Baiya Road, Guichi District, Chizhou, 247000, China.
| |
Collapse
|
20
|
Hu B, Wiesehofer M, de Miguel FJ, Liu Z, Chan LH, Choi J, Melnick MA, Estape AA, Walther Z, Zhao D, Lopez-Giraldez F, Wurtz A, Cai G, Fan R, Gettinger S, Xiao A, Yan Q, Homer R, Nguyen DX, Politi K. ASCL1 Drives Tolerance to Osimertinib in EGFR Mutant Lung Cancer in Permissive Cellular Contexts. Cancer Res 2024; 84:1303-1319. [PMID: 38359163 PMCID: PMC11142404 DOI: 10.1158/0008-5472.can-23-0438] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.
Collapse
Affiliation(s)
- Bomiao Hu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | | | | | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Lok-Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Present address: Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Anna Arnal Estape
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Dejian Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Anna Wurtz
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Guoping Cai
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Rong Fan
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut
| | - Scott Gettinger
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Andrew Xiao
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Don X. Nguyen
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| |
Collapse
|
21
|
Pal S, Kabeer SW, Tikoo K. L-Methionine accentuates anti-tumor action of Gefitinib in Gefitinib-resistant lung adenocarcinoma: Role of EGFR/ERK/AKT signaling and histone H3K36me2 alteration. Toxicol Appl Pharmacol 2024; 485:116907. [PMID: 38521369 DOI: 10.1016/j.taap.2024.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Adenocarcinoma, the predominant subtype of non-small cell lung cancer (NSCLC), poses a significant clinical challenge due to its prevalence and aggressive nature. Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor is often susceptible to development of resistance despite being the preferred treatment option for NSCLC. In this study, we investigated the potential of L-Methionine in enhancing the cytotoxicity of Gefitinib and preventing resistance development. In vitro experiment employing the H1975 cell line demonstrated a notable enhancement in cytotoxic efficacy when L-Methionine (10 mM) was combined with Gefitinib, as indicated by a substantial reduction in IC50 values (155.854 ± 1.87 μM vs 45.83 ± 4.83 μM). Complementary in vivo investigations in a lung cancer model corroborated these findings. Co-administration of L-Methionine (100 mg/kg and 400 mg/kg) with Gefitinib (15 mg/kg) for 21 days exhibited marked improvements in therapeutic efficacy, which was observed by macroscopic and histopathological assessments. Mechanistic insights revealed that the enhanced cytotoxicity of the combination stemmed from the inhibition of the EGFR, modulating the downstream cascade of ERK/AKT and AMPK pathways. Concurrently inhibition of p-AMPK-α by the combination also disrupted metabolic homeostasis, leading to the increased production of reactive oxygen species (ROS). Notably, L-Methionine, functioning as a methyl group donor, elevated the expression of H3K36me2 (an activation mark), while reducing the p-ERK activity. Our study provides the first evidence supporting L-Methionine supplementation as a novel strategy to enhance Gefitinib chemosensitivity against pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Swagata Pal
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160 062, Punjab, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160 062, Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160 062, Punjab, India.
| |
Collapse
|
22
|
Katsumata S, Shimokawa M, Hamada A, Haratake N, Nomura K, Fujino K, Yoshikawa M, Suzawa K, Shien K, Suda K, Ohara S, Fukuda S, Kinoshita F, Hayasaka K, Notsuda H, Takamori S, Muto S, Takanashi Y, Mizuno K, Kawase A, Hayakawa T, Sekihara K, Toda M, Matsuo S, Takegahara K, Hashimoto M, Nakahashi K, Endo M, Ozawa H, Fujikawa R, Tomioka Y, Namba K, Matsubara T, Suzuki J, Watanabe H, Takada K, Hoshino H, Kaiho T, Toyoda T, Kouki Y, Shiono S, Soh J, Ohde Y. Impact of central nervous system metastasis after complete resection of lung adenocarcinomas harboring common EGFR mutation - A real-world database study in Japan: The CReGYT-01 EGFR study. Eur J Cancer 2024; 201:113951. [PMID: 38417299 DOI: 10.1016/j.ejca.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES To clarify the impact of central nervous system (CNS) metastasis on performance status (PS) at relapse, on subsequent treatment(s), and on survival of patients with lung adenocarcinoma harboring common epidermal growth factor receptor (EGFR) mutation. METHODS We conducted the multicenter real-world database study for patients with radical resections for lung adenocarcinomas between 2015 and 2018 at 21 centers in Japan. EGFR mutational status was examined at each center. RESULTS Of 4181 patients enrolled, 1431 underwent complete anatomical resection for lung adenocarcinoma harboring common EGFR mutations. Three-hundred-and-twenty patients experienced disease relapse, and 78 (24%) had CNS metastasis. CNS metastasis was significantly more frequent in patients with conventional adjuvant chemotherapy than those without (30% vs. 20%, P = 0.036). Adjuvant chemotherapy did not significantly improve relapse-free survival at any pathological stage (adjusted hazard ratio for stage IA2-3, IB, and II-III was 1.363, 1.287, and 1.004, respectively). CNS metastasis did not affect PS at relapse. Subsequent treatment, mainly consisting of EGFR-tyrosine kinase inhibitors (TKIs), could be equally given in patients with or without CNS metastasis (96% vs. 94%). Overall survival after relapse was equivalent between patients with and without CNS metastasis. CONCLUSION The efficacy of conventional adjuvant chemotherapy may be limited in patients with lung adenocarcinoma harboring EGFR mutations. CNS metastasis is likely to be found in practice before deterioration in PS, and may have little negative impact on compliance with subsequent EGFR-TKIs and survival after relapse. In this era of adjuvant TKI therapy, further prospective observational studies are desirable to elucidate the optimal management of CNS metastasis.
Collapse
Affiliation(s)
- Shinya Katsumata
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mao Yoshikawa
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Ken Suzawa
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shota Fukuda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kazuki Hayasaka
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Thoracic and Breast Surgery, Oita University Faculty of Medicine, Oita, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kiyomichi Mizuno
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takamitsu Hayakawa
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Keigo Sekihara
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Michihito Toda
- Departments of General Thoracic Surgery, Kansai Rosai Hospital, Japan Organization of Occupational Health and Safety, Hyogo, Japan
| | - Somei Matsuo
- Department of Cardiovascular Surgery, Nihonkai General Hospital, Sakata, Japan
| | - Kyoshiro Takegahara
- Department of Thoracic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaki Hashimoto
- Department of Thoracic Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kenta Nakahashi
- Department of Thoracic Surgery, Yamagata Prefectural Central Hospital, Japan
| | - Makoto Endo
- Department of Thoracic Surgery, Yamagata Prefectural Central Hospital, Japan
| | - Hiroki Ozawa
- Department of Thoracic Surgery, Shimada General Medical Center, Shizuoka, Japan
| | - Ryo Fujikawa
- Department of Thoracic Surgery, Shimada General Medical Center, Shizuoka, Japan
| | - Yasuaki Tomioka
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Kei Namba
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Taichi Matsubara
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Jun Suzuki
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hikaru Watanabe
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Hironobu Hoshino
- Department of Surgery, National Hospital Organization, Okinawa National Hospital, Okinawa, Japan
| | - Taisuke Kaiho
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahide Toyoda
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunobu Kouki
- Center for Clinical Research, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Satoshi Shiono
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
23
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Rosell R, González-Cao M. Chemotherapy in EGFR-mutated NSCLC: optimizing combinations with TKIs and amivantamab. Nat Rev Clin Oncol 2024; 21:169-170. [PMID: 38057404 DOI: 10.1038/s41571-023-00843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
- IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | |
Collapse
|
25
|
Friedlaender A, Perol M, Banna GL, Parikh K, Addeo A. Oncogenic alterations in advanced NSCLC: a molecular super-highway. Biomark Res 2024; 12:24. [PMID: 38347643 PMCID: PMC10863183 DOI: 10.1186/s40364-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer ranks among the most common cancers world-wide and is the first cancer-related cause of death. The classification of lung cancer has evolved tremendously over the past two decades. Today, non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, comprises a multitude of molecular oncogenic subsets that change both the prognosis and management of disease.Since the first targeted oncogenic alteration identified in 2004, with the epidermal growth factor receptor (EGFR), there has been unprecedented progress in identifying and targeting new molecular alterations. Almost two decades of experience have allowed scientists to elucidate the biological function of oncogenic drivers and understand and often overcome the molecular basis of acquired resistance mechanisms. Today, targetable molecular alterations are identified in approximately 60% of lung adenocarcinoma patients in Western populations and 80% among Asian populations. Oncogenic drivers are largely enriched among non-smokers, east Asians, and younger patients, though each alteration has its own patient phenotype.The current landscape of druggable molecular targets includes EGFR, anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B (BRAF), ROS proto-oncogene 1 (ROS1), Kirstin rat sarcoma virus (KRAS), human epidermal receptor 2 (HER2), c-MET proto-oncogene (MET), neurotrophic receptor tyrosine kinase (NTRK), rearranged during transfection (RET), neuregulin 1 (NRG1). In addition to these known targets, others including Phosphoinositide 3-kinases (PI3K) and fibroblast growth factor receptor (FGFR) have garnered significant attention and are the subject of numerous ongoing trials.In this era of personalized, precision medicine, it is of paramount importance to identify known or potential oncogenic drivers in each patient. The development of targeted therapy is mirrored by diagnostic progress. Next generation sequencing offers high-throughput, speed and breadth to identify molecular alterations in entire genomes or targeted regions of DNA or RNA. It is the basis for the identification of the majority of current druggable alterations and offers a unique window into novel alterations, and de novo and acquired resistance mechanisms.In this review, we discuss the diagnostic approach in advanced NSCLC, focusing on current oncogenic driver alterations, through their pathophysiology, management, and future perspectives. We also explore the shortcomings and hurdles encountered in this rapidly evolving field.
Collapse
Affiliation(s)
- Alex Friedlaender
- Clinique Générale Beaulieu, Geneva, Switzerland
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland.
| |
Collapse
|
26
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
27
|
Aoki M, Miyata R, Kamimura G, Harada Takeda A, Suetsugu T, Mizuno K, Ueda K. Effect of Tegafur-Uracil in Resected Stage IB Lung Adenocarcinoma According to Presence or Absence of Epidermal Growth Factor Receptor Gene Mutation: A Retrospective Cohort Study. Ann Thorac Cardiovasc Surg 2024; 30:23-00134. [PMID: 38105006 PMCID: PMC10902659 DOI: 10.5761/atcs.oa.23-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 12/19/2023] Open
Abstract
PURPOSE Tegafur-uracil (UFT) is the standard postoperative adjuvant therapy for stage IB lung adenocarcinoma (LUAD) in Japan. This study aimed to determine whether UFT is effective in stage IB LUAD with and without epidermal growth factor receptor (EGFR) mutations. METHODS This retrospective study included 169 patients with stage IB LUAD who underwent complete resection at our department between 2010 and 2021. We investigated the clinicopathological and prognostic impact of EGFR mutations as well as the postoperative use of UFT. RESULTS EGFR mutation-positive cases tended to show a higher cumulative recurrence rate than EGFR mutation-negative cases (p = 0.081), while overall survival was comparable between the groups (p = 0.238). In the entire cohort, UFT administration was not an independent prognostic factor in the multivariate regression analysis (p = 0.112). According to a stratification analysis, UFT administration was independently associated with favorable overall survival (p = 0.031) in EGFR mutation-negative cases, while it was not associated with recurrence-free survival (p = 0.991) or overall survival (p = 0.398) in EGFR mutation-positive cases. CONCLUSION UFT administration can improve the prognosis of EGFR mutation-negative LUAD but not EGFR mutation-positive LUAD. Thus, clinical trials of adjuvant-targeted therapy for EGFR mutation-positive stage IB LUAD should also be conducted in Japan.
Collapse
Affiliation(s)
- Masaya Aoki
- Department of General Thoracic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Ryo Miyata
- Department of General Thoracic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Go Kamimura
- Department of General Thoracic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Aya Harada Takeda
- Department of General Thoracic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Kazuhiro Ueda
- Department of General Thoracic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima, Japan
| |
Collapse
|
28
|
Huang HN, Hung PF, Chen YP, Lee CH. Leucine Zipper Downregulated in Cancer-1 Interacts with Clathrin Adaptors to Control Epidermal Growth Factor Receptor (EGFR) Internalization and Gefitinib Response in EGFR-Mutated Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:1374. [PMID: 38338651 PMCID: PMC10855387 DOI: 10.3390/ijms25031374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) is a common driver of non-small cell lung cancer (NSCLC). Clathrin-mediated internalization (CMI) sustains EGFR signaling. AXL is associated with resistance to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutated (EGFRM) NSCLC. We investigated the effects of Leucine zipper downregulated in cancer-1 (LDOC1) on EGFR CMI and NSCLC treatment. Coimmunoprecipitation, double immunofluorescence staining, confocal microscopy analysis, cell surface labelling assays, and immunohistochemistry studies were conducted. We revealed that LDOC1 interacts with clathrin adaptors through binding motifs. LDOC1 depletion promotes internalization and plasma membrane recycling of EGFR in EGFRM NSCLC PC9 and HCC827 cells. Membranous and cytoplasmic EGFR decreased and increased, respectively, in LDOC1 (-) NSCLC tumors. LDOC1 depletion enhanced and sustained activation of EGFR, AXL, and HER2 and enhanced activation of HER3 in PC9 and HCC827 cells. Sensitivity to first-generation EGFR-TKIs (gefitinib and erlotinib) was significantly reduced in LDOC1-depleted PC9 and HCC827 cells. Moreover, LDOC1 downregulation was significantly associated (p < 0.001) with poor overall survival in patients with EGFRM NSCLC receiving gefitinib (n = 100). In conclusion, LDOC1 may regulate the efficacy of first-generation EGFR-TKIs by participating in the CMI of EGFR. Accordingly, LDOC1 may function as a prognostic biomarker for EGFRM NSCLC.
Collapse
Affiliation(s)
- Hsien-Neng Huang
- Department of Pathology, National Taiwan University Hospital Hsin-Chu Branch, No. 25, Ln. 442, Section 1, Jingguo Road, North Dist., Hsinchu 300195, Taiwan;
- Department and Graduate Institute of Pathology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Taipei 100225, Taiwan
| | - Pin-Feng Hung
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| | - Yai-Ping Chen
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan 350401, Taiwan; (P.-F.H.); (Y.-P.C.)
| |
Collapse
|
29
|
Hanafi AR, Hanif MA, Pangaribuan MTG, Ariawan WP, Sutandyo N, Kurniawati SA, Setiawan L, Cahyanti D, Rayhani F, Imelda P. Genomic features of lung cancer patients in Indonesia's national cancer center. BMC Pulm Med 2024; 24:43. [PMID: 38245692 PMCID: PMC10799463 DOI: 10.1186/s12890-024-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
INTRODUCTION Advances in molecular biology bring advantages to lung cancer management. Moreover, high-throughput molecular tests are currently useful for revealing genetic variations among lung cancer patients. We investigated the genomics profile of the lung cancer patients at the National Cancer Centre of Indonesia. METHODS A retrospective study enrolled 627 tissue biopsy samples using real time polymerase chain reaction (RT-PCR) and 80 circulating tumour DNA (ctDNA) liquid biopsy samples using next-generation sequencing (NGS) from lung cancer patients admitted to the Dharmais Cancer Hospital from January 2018 to December 2022. Data were obtained from medical records. Data statistically analysed with p < 0.05 is considered significant. RESULT The EGFR test results revealed by RT-PCR were wild type (51.5%), single variant (38.8%), double variant (8.3%), and triple variant (1.4%), with 18.66% L85R, 18.22% Ex19del, and 11.08% L861Q variant. Liquid biopsy ctDNA using NGS showed only 2.5% EGFR wild type, 62.5% single variant and 35% co-variant, with EGFR/TP53 and EGFR/PIK3CA as the highest. CONCLUSION EGFR variants are the most found in our centre. Liquid biopsy with ctDNA using NGS examination could detect broad variants and co-variants that will influence the treatment planning.
Collapse
Affiliation(s)
- Arif Riswahyudi Hanafi
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia.
| | - Muhammad Alfin Hanif
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Mariska T G Pangaribuan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Wily Pandu Ariawan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Noorwati Sutandyo
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Sri Agustini Kurniawati
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Lyana Setiawan
- Department of Clinical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Dian Cahyanti
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Farilaila Rayhani
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Priscillia Imelda
- Cancer Research Team, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| |
Collapse
|
30
|
Han T, Liu Y, Zhou J, Guo J, Xing Y, Xie J, Bai Y, Wu J, Hu D. Development of an invasion score based on metastasis-related pathway activity profiles for identifying invasive molecular subtypes of lung adenocarcinoma. Sci Rep 2024; 14:1692. [PMID: 38243040 PMCID: PMC10799059 DOI: 10.1038/s41598-024-51681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The invasive capacity of lung adenocarcinoma (LUAD) is an important factor influencing patients' metastatic status and survival outcomes. However, there is still a lack of suitable biomarkers to evaluate tumor invasiveness. LUAD molecular subtypes were identified by unsupervised consistent clustering of LUAD. The differences in prognosis, tumor microenvironment (TME), and mutation were assessed among different subtypes. After that, the invasion-related gene score (IRGS) was constructed by genetic differential analysis, WGCNA analysis, and LASSO analysis, then we evaluated the relationship between IRGS and invasive characteristics, TME, and prognosis. The predictive ability of the IRGS was verified by in vitro experiments. Next, the "oncoPredict" R package and CMap were used to assess the potential value of IRGS in drug therapy. The results showed that LUAD was clustered into two molecular subtypes. And the C1 subtype exhibited a worse prognosis, higher stemness enrichment activity, less immune infiltration, and higher mutation frequency. Subsequently, IRGS developed based on molecular subtypes demonstrated a strong association with malignant characteristics such as invasive features, higher stemness scores, less immune infiltration, and worse survival. In vitro experiments showed that the higher IRGS LUAD cell had a stronger invasive capacity than the lower IRGS LUAD cell. Predictive analysis based on the "oncoPredict" R package showed that the high IRGS group was more sensitive to docetaxel, erlotinib, paclitaxel, and gefitinib. Among them, in vitro experiments verified the greater killing effect of paclitaxel on high IRGS cell lines. In addition, CMap showed that purvalanol-a, angiogenesis-inhibitor, and masitinib have potential therapeutic effects in the high IRGS group. In summary we identified and analyzed the molecular subtypes associated with the invasiveness of LUAD and developed IRGS that can efficiently predict the prognosis and invasive ability of the tumor. IRGS may be able to facilitate the precision treatment of LUAD to some extent.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jun Xie
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
31
|
Khan M, Naeem M, Chaudary SA, Ahmed A, Ahmed A. Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives. Curr Stem Cell Res Ther 2024; 19:1312-1320. [PMID: 37818567 DOI: 10.2174/011574888x247548230921063514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 10/12/2023]
Abstract
Cancer stem cells (CSCs) play an essential role in tumour progression and metastasis. Stem cell ability of self-renewal enables it to persist over time, thereby contributing to cancer relapse or recurrence and also resistance to current therapies. Therefore, targeting CSCs emerged as a promising strategy of cancer treatment. CSCs exhibit differentiation, self-renewal, and plasticity, they contribute to formation of malignant tumours, also favors, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Coventional cancer treatments predominantly target cancer cells that are not CSCs, CSCs frequently survive, eventually leading to relapse. This article focuses on the development of novel therapeutic strategies that combine conventional treatments and CSC inhibitors to eradicate cancer cells and CSCs, for the better and permanent treatment. However, the diversity of CSCs is a significant obstacle in the development of CSC-targeted therapies, necessitating extensive research for a better understanding and exploration of therapeutic approaches. Future development of CSC-targeted therapies will rely heavily on overcoming this obstacle.
Collapse
Affiliation(s)
- Mudassir Khan
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Mashal Naeem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Affan Ahmed
- Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Aftab Ahmed
- School of Biological Sciences, Punjab University, Lahore, Pakistan
| |
Collapse
|
32
|
Kaya HE, Naidoo KJ. CytoCopasi: a chemical systems biology target and drug discovery visual data analytics platform. Bioinformatics 2023; 39:btad745. [PMID: 38070155 PMCID: PMC10963058 DOI: 10.1093/bioinformatics/btad745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
MOTIVATION Target discovery and drug evaluation for diseases with complex mechanisms call for a streamlined chemical systems analysis platform. Currently available tools lack the emphasis on reaction kinetics, access to relevant databases, and algorithms to visualize perturbations on a chemical scale providing quantitative details as well streamlined visual data analytics functionality. RESULTS CytoCopasi, a Maven-based application for Cytoscape that combines the chemical systems analysis features of COPASI with the visualization and database access tools of Cytoscape and its plugin applications has been developed. The diverse functionality of CytoCopasi through ab initio model construction, model construction via pathway and parameter databases KEGG and BRENDA is presented. The comparative systems biology visualization analysis toolset is illustrated through a drug competence study on the cancerous RAF/MEK/ERK pathway. AVAILABILITY AND IMPLEMENTATION The COPASI files, simulation data, native libraries, and the manual are available on https://github.com/scientificomputing/CytoCopasi.
Collapse
Affiliation(s)
- Hikmet Emre Kaya
- Department of Chemistry, Scientific Computing Research Unit, PD Hahn Building, University of Cape Town, Rondebosch 7701, South Africa
| | - Kevin J Naidoo
- Department of Chemistry, Scientific Computing Research Unit, PD Hahn Building, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
33
|
Deepak P, Kumar P, Pandey P, Arya DK, Jaiswal S, Kumar A, Sonkar AB, Ali D, Alarifi S, Ramar M, Rajinikanth PS. Pentapeptide cRGDfK-Surface Engineered Nanostructured Lipid Carriers as an Efficient Tool for Targeted Delivery of Tyrosine Kinase Inhibitor for Battling Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7021-7046. [PMID: 38046236 PMCID: PMC10693281 DOI: 10.2147/ijn.s438307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Background Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvβ3 integrin receptor overexpressed on hepatocarcinoma cells. Results GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.
Collapse
Affiliation(s)
- Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
- S.D College of Pharmacy and Vocational Studies, Muzaffarnagar, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Connecticut, Storrs, CT, 02903, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
El-Khawaga OY, Al-Azzawy MF, ElSaid AM, Refaat S, El-Dawa AN. Detection of EGFR gene polymorphisms in non-small cell lung cancer Egyptian patients: a case-control study. Genes Environ 2023; 45:32. [PMID: 38008767 PMCID: PMC10680232 DOI: 10.1186/s41021-023-00289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Non-Small Cell Lung Cancer displays several genetic mutations including epidermal growth factor receptor. This study's objective was to determine if the EGFR exon19 rs121913438 and exon21 rs121434568 variations play a role in NSCLC susceptibility. METHODS Case-control research was done at the Mansoura university oncology center including 124 NSCLC patients, and 124 healthy volunteers. blood was used to obtain genomic DNA. ARMS-PCR was used to genotype single-nucleotide polymorphisms. RESULTS Molecular study for EGFR exon 19 del. showed NSCLC cases were significantly associated with a higher proportion of heterozygous WD, WD + DD dominant genotypes, and mutant D allele, (p < 0.05 for each), with a risk to develop NSCLC. also, NSCLC cases were significantly associated with a higher proportion of heterozygous TG, TG + GG dominant genotype, G mutant allele, (p < 0.05 for each), with a risk to develop LC (OR > 1 for each). regarding the two EGFR mutations, TTF1 staining was significantly associated with WD + DD genotypes for EGFR exon 19 del But not EGFR exon 21. No substantial differences were found among all studied cases with CK7 or napsin A Tumor cytochemistry. CONCLUSIONS The WD heterozygous genotype and D allele in exon 19 del. mutation as well as the TG heterozygous and G allele in exon 21 substitution mutation in EGFR gene are strongly associated with the development of advanced-NSCLC in the Egyptians.
Collapse
Affiliation(s)
- Omali Y El-Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed F Al-Azzawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Afaf M ElSaid
- Genetic unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Sherif Refaat
- Lecturer of Medical Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aliaa N El-Dawa
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
35
|
Wirth D, Özdemir E, Hristova K. Quantification of ligand and mutation-induced bias in EGFR phosphorylation in direct response to ligand binding. Nat Commun 2023; 14:7579. [PMID: 37989743 PMCID: PMC10663608 DOI: 10.1038/s41467-023-42926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
36
|
Aljuffali IA, Anwer MK, Ahmed MM, Alalaiwe A, Aldawsari MF, Fatima F, Jamil S. Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells. Pharmaceuticals (Basel) 2023; 16:1549. [PMID: 38004415 PMCID: PMC10674849 DOI: 10.3390/ph16111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification-evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid surfactant) and Kolliphore® 188 (water-soluble surfactant). Four formulae were developed by varying the weight of the lipoid™ 90H (100-250 mg), and the GFT-loaded SLN (F4) formulation was optimized in terms of particle size (472 ± 7.5 nm), PDI (0.249), ZP (-15.2 ± 2.3), and EE (83.18 ± 4.7%). The optimized formulation was further subjected for in vitro release, stability studies, and MTT assay against MCF-7 cell lines. GFT from SLNs exhibited sustained release of the drug for 48 h, and release kinetics followed the Korsmeyer-Peppas model, which indicates the mechanism of drug release by swelling and/or erosion from a lipid matrix. When pure GFT and GFT-SLNs were exposed to MCF-7 cells, the activities of p53 (3.4 and 3.7 times), caspase-3 (5.61 and 7.7 times), and caspase-9 (1.48 and 1.69 times) were enhanced, respectively, over those in control cells. The results suggest that GFT-loaded SLNs (F4) may represent a promising therapeutic alternative for breast cancer.
Collapse
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.M.A.); (A.A.); (M.F.A.); (F.F.)
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil 44001, Iraq;
| |
Collapse
|
37
|
Seo Y, Seo M, Kim J. Effects of cilengitide derivatives on TGF-β1-induced epithelial-to-mesenchymal transition and invasion in gefitinib-resistant non-small cell lung cancer cells. Front Pharmacol 2023; 14:1277199. [PMID: 37927598 PMCID: PMC10622769 DOI: 10.3389/fphar.2023.1277199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Long-term administration of tyrosine kinase inhibitors (TKIs) used for the treatment of non-small cell lung cancer (NSCLC) induces TKI resistance in cells. The appearance of resistant cells requires the combined administration of another therapeutic agent and may cause side effects in the gastrointestinal and central nervous system. In previous studies, we found that derivatives of cilengitide, a cyclic Arg-Gly-Asp (RGD) peptide, exert NSCLC apoptotic and anti-epithelial-mesenchymal transition (EMT) effects. In particular, cRGDwV and cRGDyV, which are cyclic peptides containing aromatic amino acids, were found to inhibit NSCLC cell growth, TGF-β1-induced EMT, and invasion. In this study, we confirmed the effects of cRGDwV and cRGDyV on proliferation, TGF-β1-induced EMT marker expression, migration, and invasion in gefitinib-resistant NSCLC A549 (A549GR) cells. In A549GR cells, cRGDwV and cRGDyV showed inhibitory effects on the expression of mesenchymal marker expression, migration, and invasion. These results indicate that cyclic RGD peptides containing aromatic amino acids can be used to inhibit mesenchymal marker expression as well as migration and invasion in gefitinib-resistant cells.
Collapse
Affiliation(s)
| | | | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Health Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
38
|
Thangudu S, Tsai CY, Lin WC, Su CH. Modified gefitinib conjugated Fe 3O 4 NPs for improved delivery of chemo drugs following an image-guided mechanistic study of inner vs. outer tumor uptake for the treatment of non-small cell lung cancer. Front Bioeng Biotechnol 2023; 11:1272492. [PMID: 37877039 PMCID: PMC10591449 DOI: 10.3389/fbioe.2023.1272492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Gefitinib (GEF) is an FDA-approved anti-cancer drug for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the efficacy of anticancer drugs is limited due to their non-specificity, lower accumulation at target sites, and systemic toxicity. Herein, we successfully synthesized a modified GEF (mGEF) drug and conjugated to Iron oxide nanoparticles (Fe3O4 NPs) for the treatment of NSCLC via magnetic resonance (MR) image-guided drug delivery. A traditional EDC coupling pathway uses mGEF to directly conjugate to Fe3O4 NPs to overcom the drug leakage issues. As a result, we found in vitro drug delivery on mGEF- Fe3O4 NPs exhibits excellent anticancer effects towards the PC9 cells selectively, with an estimated IC 50 value of 2.0 μM. Additionally, in vivo MRI and PET results demonstrate that the NPs could accumulate in tumor-specific regions with localized cell growth inhibition. Results also revealed that outer tumor region exhibiting a stronger contrast than the tinner tumor region which may due necrosis in inner tumor region. In vivo biodistribution further confirms Fe3O4 NPs are more biocompatible and are excreated after the treatment. Overall, we believe that this current strategy of drug modification combined with chemical conjugation on magnetic NPs will lead to improved cancer chemotherapy as well as understanding the tumor microenvironments for better therapeutic outcomes.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Anobile DP, Salaroglio IC, Tabbò F, La Vecchia S, Akman M, Napoli F, Bungaro M, Benso F, Aldieri E, Bironzo P, Kopecka J, Passiglia F, Righi L, Novello S, Scagliotti GV, Riganti C. Autocrine 17-β-Estradiol/Estrogen Receptor-α Loop Determines the Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3958-3973. [PMID: 37285115 DOI: 10.1158/1078-0432.ccr-22-3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE The response to immune checkpoint inhibitors (ICI) often differs between genders in non-small cell lung cancer (NSCLC), but metanalyses results are controversial, and no clear mechanisms are defined. We aim at clarifying the molecular circuitries explaining the differential gender-related response to anti-PD-1/anti-PD-L1 agents in NSCLC. EXPERIMENTAL DESIGN We prospectively analyzed a cohort of patients with NSCLC treated with ICI as a first-line approach, and we identified the molecular mechanisms determining the differential efficacy of ICI in 29 NSCLC cell lines of both genders, recapitulating patients' phenotype. We validated new immunotherapy strategies in mice bearing NSCLC patient-derived xenografts and human reconstituted immune system ("immune-PDXs"). RESULTS In patients, we found that estrogen receptor α (ERα) was a predictive factor of response to pembrolizumab, stronger than gender and PD-L1 levels, and was directly correlated with PD-L1 expression, particularly in female patients. ERα transcriptionally upregulated CD274/PD-L1 gene, more in females than in males. This axis was activated by 17-β-estradiol, autocrinely produced by intratumor aromatase, and by the EGFR-downstream effectors Akt and ERK1/2 that activated ERα. The efficacy of pembrolizumab in immune-PDXs was significantly improved by the aromatase inhibitor letrozole, which reduced PD-L1 and increased the percentage of antitumor CD8+T-lymphocytes, NK cells, and Vγ9Vδ2 T-lymphocytes, producing durable control and even tumor regression after continuous administration, with maximal benefit in 17-β-estradiol/ERα highfemale immune-xenografts. CONCLUSIONS Our work unveils that 17-β-estradiol/ERα status predicts the response to pembrolizumab in patients with NSCLC. Second, we propose aromatase inhibitors as new gender-tailored immune-adjuvants in NSCLC. See related commentary by Valencia et al., p. 3832.
Collapse
Affiliation(s)
| | | | - Fabrizio Tabbò
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | | | - Muhlis Akman
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Maristella Bungaro
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | | | - Paolo Bironzo
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesco Passiglia
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Giorgio V Scagliotti
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| |
Collapse
|
40
|
Li J, Wu X, Ji XB, He C, Xu S, Xu X. Biphasic function of GSK3β in gefitinib‑resistant NSCLC with or without EGFR mutations. Exp Ther Med 2023; 26:488. [PMID: 37745038 PMCID: PMC10515113 DOI: 10.3892/etm.2023.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 09/26/2023] Open
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, are effective in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, the mechanism underlying acquired resistance to EGFR-TKIs remains largely unknown. Therefore, the present study generated gefitinib-resistant PC-9 (PC-9G) cells, which were revealed to be more resistant to gefitinib-induced reductions in proliferation, migration and invasion, and increases in apoptosis, and had no detectable EGFR mutations compared with the control PC-9 cell line. In addition, the present study performed genome-wide transcriptomic analysis of differentially expressed genes between PC-9 and PC-9G cell lines. Cell proliferation, colony formation, invasion, migration and flow cytometry analyses were also performed. The genome-wide transcriptomic analysis revealed that glycogen synthase kinase 3β (GSK3β) was downregulated in PC-9G cells compared with that in PC-9 cells. Furthermore, GSK3β overexpression increased the proliferation, migration and invasion of PC-9 and H1975 gefitinib-resistant cells. Conversely, overexpression of GSK3β suppressed the proliferation, migration and invasion of PC-9G cells. Furthermore, AKT inhibition reduced the proliferation, migration and invasion, and induced the apoptosis of PC-9, PC-9G and H1975 cells, the effects of which were reversed following AKT activation; notably, the tumor suppressor function of GSK3β was inconsistent with the tumor promotor role of the AKT pathway in PC-9G cells without EGFR mutation. The present study may provide novel insights into the distinctive role of GSK3β in gefitinib-resistant NSCLC with or without EGFR mutations, suggesting that a more detailed investigation on GSK3β as a therapeutic target for gefitinib-resistant NSCLC may be warranted.
Collapse
Affiliation(s)
- Junzhe Li
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
| | - Xiayu Wu
- Department of Pathology, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
| | - Xiang-Bo Ji
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
| | - Changhao He
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
| | - Shijie Xu
- Medical Research Center, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Xianhua Xu
- Department of Pathology, Affiliated Cancer Hospital of Hainan Medical University, Haikou, Hainan 570312, P.R. China
| |
Collapse
|
41
|
Xu B, Zeng F, Deng J, Yao L, Liu S, Hou H, Huang Y, Zhu H, Wu S, Li Q, Zhan W, Qiu H, Wang H, Li Y, Yang X, Cao Z, Zhang Y, Zhou H. A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy. Bioact Mater 2023; 27:337-347. [PMID: 37122898 PMCID: PMC10140750 DOI: 10.1016/j.bioactmat.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The abnormal activation of epidermal growth factor receptor (EGFR) drives the development of non-small cell lung cancer (NSCLC). The EGFR-targeting tyrosine kinase inhibitor osimertinib is frequently used to clinically treat NSCLC and exhibits marked efficacy in patients with NSCLC who have an EGFR mutation. However, free osimertinib administration exhibits an inadequate response in vivo, with only ∼3% patients demonstrating a complete clinical response. Consequently, we designed a biomimetic nanoparticle (CMNP@Osi) comprising a polymeric nanoparticle core and tumor cell-derived membrane-coated shell that combines membrane-mediated homologous and molecular targeting for targeted drug delivery, thereby supporting a dual-target strategy for enhancing osimertinib efficacy. After intravenous injection, CMNP@Osi accumulates at tumor sites and displays enhanced uptake into cancer cells based on homologous targeting. Osimertinib is subsequently released into the cytoplasm, where it suppresses the phosphorylation of upstream EGFR and the downstream AKT signaling pathway and inhibits the proliferation of NSCLC cells. Thus, this dual-targeting strategy using a biomimetic nanocarrier can enhance molecular-targeted drug delivery and improve clinical efficacy.
Collapse
Affiliation(s)
- Bin Xu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Fanjun Zeng
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Jialong Deng
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- Shantou University Medical College, Shantou, 515063, PR China
| | - Shengbo Liu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Hengliang Hou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yucheng Huang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Hongyuan Zhu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
| | - Shaowei Wu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- Shantou University Medical College, Shantou, 515063, PR China
| | - Weijie Zhan
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Huili Wang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yundong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Ziyang Cao
- Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510006, PR China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- Corresponding author. Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510006, PR China.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Corresponding author.
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
- Shantou University Medical College, Shantou, 515063, PR China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
- Corresponding author. The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
42
|
Li YS, Jie GL, Wu YL. Novel systemic therapies in the management of tyrosine kinase inhibitor-pretreated patients with epidermal growth factor receptor-mutant non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231193726. [PMID: 37667782 PMCID: PMC10475243 DOI: 10.1177/17588359231193726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the standard first-line option for non-small-cell lung cancer (NSCLC) harboring active EGFR mutations. The overall survival of patients with advanced NSCLC has improved dramatically with the development of comprehensive genetic profiles and targeted therapies. However, resistance inevitably occurs, leading to disease progression after approximately 10-18 months of EGFR-TKI treatment. Platinum-based chemotherapy is the standard treatment for patients who have experienced disease progression while undergoing EGFR-TKI treatment, but its efficacy is limited. The management of extensively pretreated patients with EGFR-mutant NSCLC is becoming increasingly concerning. New agents have shown encouraging efficacy in clinical trials for this patient population, including fourth-generation EGFR-TKIs, EGFR-TKIs combined with counterpart targeted drugs, and novel agents such as antibody-drug conjugates. We review current efforts to manage extensively pretreated patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Yang-Si Li
- School of Medicine, South ChinaUniversity of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guang-Ling Jie
- School of Medicine, South ChinaUniversity of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
43
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
44
|
Alminderej F, Ghannay S, Omer Elsamani M, Alhawday F, Albadri AEAE, Elbehairi SEI, Alfaifi MY, Kadri A, Aouadi K. In Vitro and In Silico Evaluation of Antiproliferative Activity of New Isoxazolidine Derivatives Targeting EGFR: Design, Synthesis, Cell Cycle Analysis, and Apoptotic Inducers. Pharmaceuticals (Basel) 2023; 16:1025. [PMID: 37513936 PMCID: PMC10384175 DOI: 10.3390/ph16071025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
A series of novel enantiopure isoxazolidine derivatives were synthesized and evaluated for their anticancer activities against three human cancer cell lines such as human breast carcinoma (MCF-7), human lung adenocarcinoma (A-549), and human ovarian carcinoma (SKOV3) by employing MTT assay. The synthesized compounds were characterized by NMR and elemental analysis. Results revealed that all the synthesized compounds displayed significant inhibition towards the tested cell lines. Among them, 2g and 2f, which differ only by the presence of an ester group at the C-3 position and small EDG (methyl) at the C-5 position of the phenyl ring (2g), were the most active derivatives in attenuating the growth of the three cells in a dose-dependent manner. The IC50 for 2g were 17.7 ± 1 µM (MCF-7), 12.1 ± 1.1 µM (A-549), and 13.9 ± 0.7 µM (SKOV3), and for 2f were 9.7 ± 1.3µM (MCF-7), 9.7 ± 0.7µM (A-549), and 6.5 ± 0.9µM (SKOV3), respectively, which were comparable to the standard drug, doxorubicin. The enzymatic inhibition of 2f and 2g against EGFR afforded good inhibitory activity with IC50 of 0.298 ± 0.007 μM and 0.484 ± 0.01 µM, respectively, close to the positive control, Afatinib. Compound 2f arrested the cell cycle in the S phase in MCF-7 and SKOV3 cells, and in the G2/M phase in the A549 cell; however, 2g induced G0/G1 phase cell cycle arrest, and inhibited the progression of the three cancer cells, together with significant apoptotic effects. The docking study of compounds 2f and 2g into EGFR ATP-active site revealed that it fits nicely with good binding affinity. The pharmacokinetic and drug-likeness scores revealed notable lead-like properties. At 100 ns, the dynamic simulation investigation revealed high conformational stability in the EGFR binding cavity.
Collapse
Affiliation(s)
- Fahad Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Omer Elsamani
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Food Science and Technology, Faculty of Sciences, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Fahad Alhawday
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| |
Collapse
|
45
|
Lee TG, Kang HM, Kim SY, Kim HR, Kim CH. The combination of osimertinib with Raf inhibitor overcomes osimertinib resistance induced by KRAS amplification in EGFR-mutated lung cancer cells. Exp Cell Res 2023:113722. [PMID: 37442265 DOI: 10.1016/j.yexcr.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Osimertinib is a third-generation epidermal growth factor receptor (EGFR)1 tyrosine kinase inhibitor (TKI) approved for the treatment of EGFR-positive patients exhibiting a T790 M resistance mutation after treatment with an earlier generation of EGFR TKIs. However, resistance to osimertinib inevitably develops despite its efficacy, and the resistance mechanisms are complex and not fully understood. We established cell lines with acquired resistance to osimertinib from gefitinib- or erlotinib-resistant NSCLC cells using a dose-escalation method, and found that they had upregulated levels of phosphorylated ERK1/2. Targeted next-generation sequencing of 143 genes was performed, and interestingly, amplification of KRAS was observed in osimertinib-resistant cells. Transfection of siRNA against the KRAS gene notably reduced the activation of ERK1/2 and AKT and significantly enhanced the induction of apoptosis by osimertinib treatment in osimertinib-resistant cells. LY3009120, a RAF inhibitor, showed a significant synergistic effect with osimertinib on apoptotic cell death in osimertinib-resistant cells. Combined treatment with osimertinib and LY3009120 also demonstrated remarkable synergistic anti-tumor activity in mouse xenografts of these cells. This could be a potential new treatment option for KRAS amplification-induced osimertinib failure.
Collapse
Affiliation(s)
- Tae-Gul Lee
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Hye-Min Kang
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Seo Yun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Hye-Ryoun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Cheol Hyeon Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| |
Collapse
|
46
|
Liu B, Ding J, Liu Y, Wu J, Wu X, Chen Q, Li W. Elucidating the potential effects of point mutations on FGFR3 inhibitor resistance via combined molecular dynamics simulation and community network analysis. J Comput Aided Mol Des 2023; 37:325-338. [PMID: 37269435 DOI: 10.1007/s10822-023-00510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
FGFR3 kinase mutations are associated with a variety of malignancies, but FGFR3 mutant inhibitors have rarely been studied. Furthermore, the mechanism of pan-FGFR inhibitors resistance caused by kinase domain mutations is still unclear. In this study, we try to explain the mechanism of drug resistance to FGFR3 mutation through global analysis and local analysis based on molecular dynamics simulation, binding free energy analysis, umbrella sampling and community network analysis. The results showed that FGFR3 mutations caused a decrease in the affinity between drugs and FGFR3 kinase, which was consistent with the reported experimental results. Possible mechanisms are that mutations affect drug-protein affinity by altering the environment of residues near the hinge region where the protein binds to the drug, or by affecting the A-loop and interfering with the allosteric communication networks. In conclusion, we systematically elucidated the underlying mechanism of pan-FGFR inhibitor resistance caused by FGFR3 mutation based on molecular dynamics simulation strategy, which provided theoretical guidance for the development of FGFR3 mutant kinase inhibitors.
Collapse
Affiliation(s)
- Bo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Juntao Ding
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yugang Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianzhang Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Qian Chen
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
| | - Wulan Li
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
47
|
Singh R, Sledzieski S, Bryson B, Cowen L, Berger B. Contrastive learning in protein language space predicts interactions between drugs and protein targets. Proc Natl Acad Sci U S A 2023; 120:e2220778120. [PMID: 37289807 PMCID: PMC10268324 DOI: 10.1073/pnas.2220778120] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Sequence-based prediction of drug-target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computational techniques fail to simultaneously meet these goals, often sacrificing performance of one to achieve the others. We develop a deep learning model, ConPLex, successfully leveraging the advances in pretrained protein language models ("PLex") and employing a protein-anchored contrastive coembedding ("Con") to outperform state-of-the-art approaches. ConPLex achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy compounds. It makes predictions of binding based on the distance between learned representations, enabling predictions at the scale of massive compound libraries and the human proteome. Experimental testing of 19 kinase-drug interaction predictions validated 12 interactions, including four with subnanomolar affinity, plus a strongly binding EPHB1 inhibitor (KD = 1.3 nM). Furthermore, ConPLex embeddings are interpretable, which enables us to visualize the drug-target embedding space and use embeddings to characterize the function of human cell-surface proteins. We anticipate that ConPLex will facilitate efficient drug discovery by making highly sensitive in silico drug screening feasible at the genome scale. ConPLex is available open source at https://ConPLex.csail.mit.edu.
Collapse
Affiliation(s)
- Rohit Singh
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Samuel Sledzieski
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA02155
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
48
|
Ahmed M, Wuethrich A, Constantin N, Shanmugasundaram KB, Mainwaring P, Kulasinghe A, O'Leary C, O'Byrne K, Sina AAI, Carrascosa LG, Trau M. Liquid Biopsy Snapshots of Key Phosphoproteomic Pathways in Lung Cancer Patients for Diagnosis and Therapy Monitoring. Anal Chem 2023. [PMID: 37224231 DOI: 10.1021/acs.analchem.3c00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phosphorylation is a post-translational modification in proteins that changes protein conformation and activity for regulating signal transduction pathways. This mechanism is frequently impaired in lung cancer, resulting in permanently active constitutive phosphorylation to initiate tumor growth and/or reactivate pathways in response to therapy. We developed a multiplexed phosphoprotein analyzer chip (MPAC) that enables rapid (detection time: 5 min) and sensitive (LOD: 2 pg/μL) detection of protein phosphorylation and presents phosphoproteomic profiling of major phosphorylation pathways in lung cancer. We monitored phosphorylated receptors and downstream proteins involved in mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways in lung cancer cell line models and patient-derived extracellular vesicles (EV). Using kinase inhibitor drugs in cell line models, we found that the drug can inhibit the phosphorylation and/or activation of the kinase pathway. We then generated a phosphorylation heatmap by EV phosphoproteomic profiling of plasma samples isolated from 36 lung cancer patients and 8 noncancer individuals. The heatmap showed a clear difference between the noncancer and cancer samples and identify the specific proteins that are activated in the cancer samples. Our data also showed that MPAC could monitor immunotherapy responses by assessment of the phosphorylation states of the proteins, particularly for PD-L1. Finally, with a longitudinal study, we found that the phosphorylation levels of the proteins were indicative of a positive response to therapy. We believe that this study will lead to personalized treatment by providing a better understanding of the active and resistant pathways and will provide a tool for selecting combined and targeted therapies for precision medicine.
Collapse
Affiliation(s)
- Mostak Ahmed
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Nicolas Constantin
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Karthik Balaji Shanmugasundaram
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Paul Mainwaring
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Connor O'Leary
- Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Ken O'Byrne
- School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Laura G Carrascosa
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Matt Trau
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
49
|
Rosell R, Aguilar-Hernández A, González-Cao M. Insights into EGFR Mutations and Oncogenic KRAS Mutations in Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15092519. [PMID: 37173989 PMCID: PMC10177428 DOI: 10.3390/cancers15092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Genetic mutations can activate different sets of proto-oncogenes and tumor suppressors genes [...].
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, 08916 Badalona, Spain
- IOR, Hospital Quiron-Dexeus, 08028 Barcelona, Spain
| | | | | |
Collapse
|
50
|
Bi J, Wu Z, Zhang X, Zeng T, Dai W, Qiu N, Xu M, Qiao Y, Ke L, Zhao J, Cao X, Lin Q, Chen XL, Xie L, Ouyang Z, Guo J, Zheng L, Ma C, Guo S, Chen K, Mo W, Fu G, Zhao TJ, Wang HR. TMEM25 inhibits monomeric EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast cancer progression. Nat Commun 2023; 14:2342. [PMID: 37095176 PMCID: PMC10126118 DOI: 10.1038/s41467-023-38115-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.
Collapse
Affiliation(s)
- Jing Bi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhihui Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Wanjun Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Ningyuan Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Mingfeng Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yikai Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Lang Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xinyu Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xiao Lei Chen
- Cancer Research Center of Xiamen University, 361102, Xiamen, Fujian, China
- School of Medicine, Xiamen University, 361102, Fujian, China
| | - Liping Xie
- School of Medicine, Xiamen University, 361102, Fujian, China
| | - Zhong Ouyang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Jujiang Guo
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China
| | - Liangkai Zheng
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China
| | - Chao Ma
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Shiying Guo
- GemPharmatech Co., Ltd., 210000, Nanjing, Jiangsu, China
| | - Kangmei Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Guo Fu
- Cancer Research Center of Xiamen University, 361102, Xiamen, Fujian, China.
- School of Medicine, Xiamen University, 361102, Fujian, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China.
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China.
| |
Collapse
|