1
|
Kwiatkowski N, Liang T, Sha Z, Collier PN, Yang A, Sathappa M, Paul A, Su L, Zheng X, Aversa R, Li K, Mehovic R, Kolodzy C, Breitkopf SB, Chen D, Howarth CL, Yuan K, Jo H, Growney JD, Weiss M, Williams J. CDK2 heterobifunctional degraders co-degrade CDK2 and cyclin E resulting in efficacy in CCNE1-amplified and overexpressed cancers. Cell Chem Biol 2025; 32:556-569.e24. [PMID: 40250405 DOI: 10.1016/j.chembiol.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
CCNE1 amplification drives aberrant CDK2-cyclin E1 activity in cancer. Despite activity of CDK2 inhibitors, their therapeutic margins are limited by poor CDK selectivity. We developed a degrader with high selectivity for CDK2 over CDK1 that also unexpectedly led to cyclin E1 degradation and potent and complete suppression of RB phosphorylation at concentrations with low CDK2 occupancy and negligible CDK1 degradation. Co-depletion of CDK2 and cyclin E1 also resensitized palbociclib-adapted breast cancer cells to cell cycle blockade. Overall, the improved potency and selectivity of the degrader for CDK2 over small-molecule inhibitors drives antiproliferative activity with greater specificity for CCNE1amp cancer cells and RB dependency. Using an orally administered degrader, we demonstrate deep and sustained RB pathway suppression, which is needed to induce stasis in CCNE1amp tumors. These results highlight the potential of this modality to target CDK2 potently and selectivity in this biomarker-defined patient population with high unmet need.
Collapse
Affiliation(s)
- Nicholas Kwiatkowski
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Tong Liang
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Zhe Sha
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Philip N Collier
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Annan Yang
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Murugappan Sathappa
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Atanu Paul
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Lijing Su
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Xiaozhang Zheng
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Robert Aversa
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Kunhua Li
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Revonda Mehovic
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Christina Kolodzy
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Susanne B Breitkopf
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Dapeng Chen
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Charles L Howarth
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Karen Yuan
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Hakryul Jo
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Joseph D Growney
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Matthew Weiss
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA
| | - Juliet Williams
- Kymera Therapeutics, Inc., Biological Sciences, 500 North Beacon St. 4th Floor, Watertown, MA 02472, USA.
| |
Collapse
|
2
|
Chen Z, Dong L. Decoupling of Density-Dependent Migration/Proliferation Dichotomy on Surface Potential Gradient. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16468-16478. [PMID: 40036071 DOI: 10.1021/acsami.4c18787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The reciprocal connection between cell migration and proliferation relies on the intertwined contributions from substrate-associated and intercellular cues in the microenvironment. However, how cells perceive the substrates, make contact with their neighbors, and switch phenotypes under different trade-off conditions are still not fully understood. Here, we designed a distinct heterogeneous electric surface potential gradient of piezoelectric biomaterials to decouple the density-dependent migration/proliferation dichotomy. We found that the surface potential gradient accelerated both individual and collective cell migration but reduced proliferation through G0/G1 cell cycle arrest via the integrin/cytoskeleton signaling axis in low density. Interestingly, the initial cell density encodes the proliferative potential independent of the substrate feature. While in high density, the surface potential gradient ceased cell proliferation mainly via the E-cadherin/β-catenin signaling axis. Taken together, these results shed light on the underlying mechanism of the intertwined contributions of cell-material and cell-cell cross-links on migration and proliferation and also provide a new paradigm of materiobiology.
Collapse
Affiliation(s)
- Zejun Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingqing Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
3
|
Purkerson MM, Amend SR, Pienta KJ. Bystanders or active players: the role of extra centrosomes as signaling hubs. Cancer Metastasis Rev 2024; 44:1. [PMID: 39570514 PMCID: PMC11582193 DOI: 10.1007/s10555-024-10224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Centrosomes serve as microtubule-organizing organelles that function in spindle pole organization, cell cycle progression, and cilia formation. A non-canonical role of centrosomes that has gained traction in recent years is the ability to act as signal transduction centers. Centrosome amplification, which includes numerical and structural aberrations of centrosomes, is a candidate hallmark of cancer. The function of centrosomes as signaling centers in cancer cells with centrosome amplification is poorly understood. Establishing a model of how cancer cells utilize centrosomes as signaling platforms will help elucidate the role of extra centrosomes in cancer cell survival and tumorigenesis. Centrosomes act in a diverse array of cellular processes, including cell migration, cell cycle progression, and proteasomal degradation. Given that cancer cells with amplified centrosomes exhibit an increased number and larger area of these signaling platforms, extra centrosomes may be acting to promote tumor development by enhancing signaling kinetics in pathways that are essential for the formation and growth of cancer. In this review, we identify the processes centrosomes are involved in as signal transduction platforms and highlight ways in which cancer cells with centrosome amplification may be taking advantage of these mechanisms.
Collapse
Affiliation(s)
- Madison M Purkerson
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Wu M, Wang W, Mao X, Wu Y, Jin Y, Liu T, Lu Y, Dai H, Zeng S, Huang W, Wang Y, Yao X, Che J, Ying M, Dong X. Discovery of a potent CDKs/FLT3 PROTAC with enhanced differentiation and proliferation inhibition for AML. Eur J Med Chem 2024; 275:116539. [PMID: 38878515 DOI: 10.1016/j.ejmech.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
AML is an aggressive malignancy of immature myeloid progenitor cells. Discovering effective treatments for AML through cell differentiation and anti-proliferation remains a significant challenge. Building on previous studies on CDK2 PROTACs with differentiation-inducing properties, this research aims to enhance CDKs degradation through structural optimization to facilitate the differentiation and inhibit the proliferation of AML cells. Compound C3, featuring a 4-methylpiperidine ring linker, effectively degraded CDK2 with a DC50 value of 18.73 ± 10.78 nM, and stimulated 72.77 ± 3.51 % cell differentiation at 6.25 nM in HL-60 cells. Moreover, C3 exhibited potent anti-proliferative activity against various AML cell types. Degradation selectivity analysis indicated that C3 could be endowed with efficient degradation of CDK2/4/6/9 and FLT3, especially FLT3-ITD in MV4-11 cells. These findings propose that C3 combined targeting CDK2/4/6/9 and FLT3 with enhanced differentiation and proliferation inhibition, which holds promise as a potential treatment for AML.
Collapse
Affiliation(s)
- Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China
| | - Xinfei Mao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China
| | - Yiquan Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Tao Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yan Lu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
5
|
Song L, Niu Y, Chen R, Ju H, Liu Z, Zhang B, Xie W, Gao Y. A Comparative Analysis of the Anti-Tumor Activity of Sixteen Polysaccharide Fractions from Three Large Brown Seaweed, Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida. Mar Drugs 2024; 22:316. [PMID: 39057425 PMCID: PMC11278018 DOI: 10.3390/md22070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.
Collapse
Affiliation(s)
- Lin Song
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
- Wuqiong Food Co., Ltd., Raoping 515726, China
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Zijian Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.N.); (R.C.); (H.J.); (Z.L.)
| | - Bida Zhang
- Changdao Aihua Seaweed Food Co., Ltd., Yantai 265800, China
| | - Wancui Xie
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (L.S.); (W.X.)
| | - Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China
| |
Collapse
|
6
|
Roberts EL, Greenwood J, Kapadia N, Auchynnikava T, Basu S, Nurse P. CDK activity at the centrosome regulates the cell cycle. Cell Rep 2024; 43:114066. [PMID: 38578823 PMCID: PMC11554571 DOI: 10.1016/j.celrep.2024.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.
Collapse
Affiliation(s)
- Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| | - Jessica Greenwood
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nitin Kapadia
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Tania Auchynnikava
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, NW1 1AT London, UK
| | - Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
Almatary AM, El Husseiny WM, Selim KB, Eisa HMH. Nitroimidazole derivatives potentiated against tumor hypoxia: Design, synthesis, antitumor activity, molecular docking study, and QSAR study. Drug Dev Res 2024; 85:e22126. [PMID: 37915124 DOI: 10.1002/ddr.22126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
A hypoxic environment occurs predominantly in tumors. During the growth phase of a tumor, it grows until it exceeds its blood supply, leaving regions of the tumor in which the oxygen pressure is dramatically low. They are virtually absent in normal tissues, thus creating perfect conditions for selective bioreductive therapy of tumors. To this aim, a novel series of cytotoxic radiosensitizer agents were synthesized by linking the nitroimidazole scaffold with oxadiazole or triazole rings. The majority of the compounds exhibited moderate to excellent antiproliferative activities toward HCT116 cell line under normoxic and hypoxic conditions. The structure-activity relationship study revealed that compounds containing the free thiol group either in the oxadiazoles 11a,b or the triazoles 21a,b-23a,b demonstrated the strongest antiproliferative activity, which proves that the free thiol group plays a crucial role in the antiproliferative activity of our compounds under both normoxic (half-maximal inhibitory concentration [IC50 ] = 12.50-24.39 µM) and hypoxic conditions (IC50 = 4.69-11.56 µM). Radiosensitizing assay of the four most active cytotoxic compounds 11b and 21-23b assured the capability of the compounds to enhance the sensitivity of the tumor cells to the DNA damaging activity of γ-radiation (IC50 = 2.23-5.18 µM). To further investigate if the cytotoxicity of our most active compounds was due to a specific signaling pathway, the online software SwissTargetPrediction was exploited and a molecular docking study was done that proposed cyclin-dependent kinase 2 (CDK2) enzyme to be the most promising target. The CDK2 inhibitory assay assured this assumption as five out of six compounds demonstrated a comparable inhibitory activity with roscovitine, among which compound 21b showed threefold more potent inhibitory activity in comparison with the reference compound. A further biological evaluation proved compound 21b to have an apoptotic activity and cell cycle arrest activity at the G1 and S phases. During the AutoQSAR analysis, the model demonstrated excellent regression between the predicted and experimental activity with r2 = 0.86. Subsequently, we used the model to predict the activity of the test set compounds that came with r2 = 0.95.
Collapse
Affiliation(s)
- Aya M Almatary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Walaa M El Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hassan M H Eisa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Chen Z, Liu X, Kawakami M, Liu X, Baker A, Bhatawadekar A, Tyutyunyk-Massey L, Narayan K, Dmitrovsky E. CDK2 inhibition disorders centrosome stoichiometry and alters cellular outcomes in aneuploid cancer cells. Cancer Biol Ther 2023; 24:2279241. [PMID: 38031910 PMCID: PMC10766391 DOI: 10.1080/15384047.2023.2279241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Cyclin-dependent Kinase 2 (CDK2) inhibition prevents supernumerary centrosome clustering. This causes multipolarity, anaphase catastrophe and apoptotic death of aneuploid cancers. This study elucidated how CDK2 antagonism affected centrosome stoichiometry. Focused ion beam scanning electron microscopy (FIB-SEM) and immunofluorescent imaging were used. Studies interrogated multipolar mitosis after pharmacologic or genetic repression of CDK2. CDK2/9 antagonism with CYC065 (Fadraciclib)-treatment disordered centrosome stoichiometry in aneuploid cancer cells, preventing centrosome clustering. This caused ring-like chromosomes or multipolar cancer cells to form before onset of cell death. Intriguingly, CDK2 inhibition caused a statistically significant increase in single centrioles rather than intact centrosomes with two centrioles in cancer cells having chromosome rings or multipolarity. Statistically significant alterations in centrosome stoichiometry were undetected in other mitotic cancer cells. To confirm this pharmacodynamic effect, CDK2 but not CDK9 siRNA-mediated knockdown augmented cancer cells with chromosome ring or multipolarity formation. Notably, engineered gain of CDK2, but not CDK9 expression, reversed emergence of cancer cells with chromosome rings or multipolarity, despite CYC065-treatment. In marked contrast, CDK2 inhibition of primary human alveolar epithelial cells did not confer statistically significant increases of cells with ring-like chromosomes or multipolarity. Hence, CDK2 antagonism caused differential effects in malignant versus normal alveolar epithelial cells. Translational relevance was confirmed by CYC065-treatment of syngeneic lung cancers in mice. Mitotic figures in tumors exhibited chromosome rings or multipolarity. Thus, CDK2 inhibition preferentially disorders centrosome stoichiometry in cancer cells. Engaging this disruption is a strategy to explore against aneuploid cancers in future clinical trials.
Collapse
Affiliation(s)
- Zibo Chen
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xi Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Masanori Kawakami
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xiuxia Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Allison Baker
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aayush Bhatawadekar
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Liliya Tyutyunyk-Massey
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ethan Dmitrovsky
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
9
|
Cai Z, Shi Q, Li Y, Jin L, Li S, Wong LL, Wang J, Jiang X, Zhu M, Lin J, Wang Q, Yang W, Liu Y, Zhang J, Gong C, Yao H, Yao Y, Liu Q. LncRNA EILA promotes CDK4/6 inhibitor resistance in breast cancer by stabilizing cyclin E1 protein. SCIENCE ADVANCES 2023; 9:eadi3821. [PMID: 37801505 PMCID: PMC10558131 DOI: 10.1126/sciadv.adi3821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
CDK4/6 inhibitors (CDK4/6i) plus endocrine therapy are now standard first-line therapy for advanced HR+/HER2- breast cancer, but developing resistance is just a matter of time in these patients. Here, we report that a cyclin E1-interacting lncRNA (EILA) is up-regulated in CDK4/6i-resistant breast cancer cells and contributes to CDK4/6i resistance by stabilizing cyclin E1 protein. EILA overexpression correlates with accelerated cell cycle progression and poor prognosis in breast cancer. Silencing EILA reduces cyclin E1 protein and restores CDK4/6i sensitivity both in vitro and in vivo. Mechanistically, hairpin A of EILA binds to the carboxyl terminus of cyclin E1 protein and hinders its binding to FBXW7, thereby blocking its ubiquitination and degradation. EILA is transcriptionally regulated by CTCF/CDK8/TFII-I complexes and can be inhibited by CDK8 inhibitors. This study unveils the role of EILA in regulating cyclin E1 stability and CDK4/6i resistance, which may serve as a biomarker to predict therapy response and a potential therapeutic target to overcome resistance.
Collapse
Affiliation(s)
- Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lok Lam Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingru Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoting Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mengdi Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinna Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen 518067, China
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
10
|
Zhu M, Liu Y, Lei P, Shi X, Tang W, Huang X, Pan X, Wang C, Ma W. ND-16: A Novel Compound for Inhibiting the Growth of Cutaneous T Cell
Lymphoma by Targeting JAK2. Curr Cancer Drug Targets 2022; 22:328-339. [DOI: 10.2174/1568009622666220225121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Objective:
Cutaneous T cell lymphoma (CTCL) is a kind of extranodal non-Hodgkin Tcell lymphoma without healable treatment in the clinic. JAK2 amplification in CTCL patients
makes it a potential target for CTCL treatment. In the present study, we aimed to evaluate the anticancer effect of ND-16, a novel nilotinib derivate, on CTCL cells and the underlying mechanism
targeting JAK2.
Methods and Results:
We found that ND-16 was capable of regulating JAK2 and had a selective
inhibitory effect on CTCL H9 cells. The surface plasmon resonance and molecular docking study
indicated ND-16 bound to JAK2 with a high binding affinity. Further investigation revealed that
ND-16 inhibited the downstream cascades of JAK2, including STATs, PI3K/AKT/mTOR, and
MAPK pathways, followed by regulation of Bcl-2 family members and cell cycle proteins CDK/-
Cyclins. Flow cytometry analysis confirmed these results that ND-16-treated H9 cells showed cell
apoptosis and cell cycle arrest at S-phase.
Conclusion:
ND-16 may be of value in a potential therapy for the management of CTCL
Collapse
Affiliation(s)
- Man Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Yanhong Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Panpan Lei
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xianpeng Shi
- Shaanxi Provincial People’s Hospital, Xi’an, 710068, P.R. China
| | - Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaoyue Huang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
11
|
Abstract
The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.
Collapse
|
12
|
El-Sayed AA, Nossier ES, Almehizia AA, Amr AEGE. Design, synthesis, anticancer evaluation and molecular docking study of novel 2,4-dichlorophenoxymethyl-based derivatives linked to nitrogenous heterocyclic ring systems as potential CDK-2 inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front Cell Dev Biol 2021; 9:774845. [PMID: 34901021 PMCID: PMC8652076 DOI: 10.3389/fcell.2021.774845] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.
Collapse
Affiliation(s)
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
15
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
16
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
18
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
19
|
Zhou Y, Geng Y, Zhang Y, Zhou Y, Chu C, Sharma S, Fassl A, Butter D, Sicinski P. The requirement for cyclin E in c-Myc overexpressing breast cancers. Cell Cycle 2020; 19:2589-2599. [PMID: 32975478 DOI: 10.1080/15384101.2020.1804720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Basal-like triple-negative breast cancers frequently express high levels of c-Myc. This oncoprotein signals to the core cell cycle machinery by impinging on cyclin E. High levels of E-type cyclins (E1 and E2) are often seen in human triple-negative breast tumors. In the current study, we examined the requirement for E-type cyclins in the c-Myc-driven mouse model of breast cancer (MMTV-c-Myc mice). To do so, we crossed cyclin E1- (E1-/-) and E2- (E2-/-) deficient mice with MMTV-c-Myc animals, and observed the resulting cyclin E1-/-/MMTV-c-Myc and cyclin E2-/-/MMTV-c-Myc females for breast cancer incidence. We found that mice lacking cyclins E1 or E2 developed breast cancers like their cyclin Ewild-type counterparts. In contrast, further reduction of the dosage of E-cyclins in cyclin E1-/-E2+/-/MMTV-c-Myc and cyclin E1+/-E2-/-/MMTV-c-Myc animals significantly decreased the incidence of mammary carcinomas, revealing arole for E-cyclins in tumor initiation. We also observed that depletion of E-cyclins in human triple-negative breast cancer cell lines halted cell cycle progression, indicating that E-cyclins are essential for tumor cell proliferation. In contrast, we found that the catalytic partner of E-cyclins, the cyclin-dependent kinase 2 (CDK2), is dispensable for the proliferation of these cells. These results indicate that E-cyclins, but not CDK2, play essential and rate-limiting roles in driving the proliferation of c-Myc overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, China
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Yujiao Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Yubin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Deborah Butter
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
20
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
21
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
22
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
23
|
Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020; 37:514-529. [PMID: 32289274 DOI: 10.1016/j.ccell.2020.03.010] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Inhibiting the cell-cycle kinases CDK4 and CDK6 results in significant therapeutic effect in patients with advanced hormone-positive breast cancer. The efficacy of this strategy is, however, limited by innate or acquired resistance mechanisms and its application to other tumor types is still uncertain. Here, through an integrative analysis of sensitivity and resistance mechanisms, we discuss the use of CDK4/6 inhibitors in combination with available targeted therapies, immunotherapy, or classical chemotherapy with the aim of improving future therapeutic uses of CDK4/6 inhibition in a variety of cancers.
Collapse
Affiliation(s)
- Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
24
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Gonnot F, Langer D, Bourillot PY, Doerflinger N, Savatier P. Regulation of Cyclin E by transcription factors of the naïve pluripotency network in mouse embryonic stem cells. Cell Cycle 2019; 18:2697-2712. [PMID: 31462142 PMCID: PMC6773236 DOI: 10.1080/15384101.2019.1656475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Continuous, non-cell cycle-dependent expression of cyclin E is a characteristic feature of mouse embryonic stem cells (mESCs). We studied the 5′ regulatory region of Cyclin E, also known as Ccne1, and identified binding sites for transcription factors of the naïve pluripotency network, including Esrrb, Klf4, and Tfcp2l1 within 1 kilobase upstream of the transcription start site. Luciferase assay and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChiP–qPCR) study highlighted one binding site for Esrrb that is essential to transcriptional activity of the promoter region, and three binding sites for Klf4 and Tfcp2l1. Knockdown of Esrrb, Klf4, and Tfcp2l1 reduced Cyclin E expression whereas overexpression of Esrrb and Klf4 increased it, indicating a strong correlation between the expression level of these factors and that of cyclin E. We observed that cyclin E overexpression delays differentiation induced by Esrrb depletion, suggesting that cyclin E is an important target of Esrrb for differentiation blockade. We observed that mESCs express a low level of miR-15a and that transfection of a miR-15a mimic decreases Cyclin E mRNA level. These results lead to the conclusion that the high expression level of Cyclin E in mESCs can be attributed to transcriptional activation by Esrrb as well as to the absence of its negative regulator, miR-15a.
Collapse
Affiliation(s)
- Fabrice Gonnot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Diana Langer
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre-Yves Bourillot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Nathalie Doerflinger
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre Savatier
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| |
Collapse
|
26
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
27
|
Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Int J Mol Sci 2018; 19:ijms19103245. [PMID: 30347727 PMCID: PMC6214090 DOI: 10.3390/ijms19103245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation in its creation of microtubules suggests that this protein forms a cellular meshwork. The present review summarizes the recognized functions of γ-tubulin and aims to unite the current views on this protein.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Greta Eklund
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Matthieu Corvaisier
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| |
Collapse
|
28
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
29
|
Caruso JA, Duong MT, Carey JPW, Hunt KK, Keyomarsi K. Low-Molecular-Weight Cyclin E in Human Cancer: Cellular Consequences and Opportunities for Targeted Therapies. Cancer Res 2018; 78:5481-5491. [PMID: 30194068 PMCID: PMC6168358 DOI: 10.1158/0008-5472.can-18-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (CDK2), is central to the initiation of DNA replication at the G1/S checkpoint. Tight temporal control of cyclin E is essential to the coordination of cell-cycle processes and the maintenance of genome integrity. Overexpression of cyclin E in human tumors was first observed in the 1990s and led to the identification of oncogenic roles for deregulated cyclin E in experimental models. A decade later, low-molecular-weight cyclin E (LMW-E) isoforms were observed in aggressive tumor subtypes. Compared with full-length cyclin E, LMW-E hyperactivates CDK2 through increased complex stability and resistance to the endogenous inhibitors p21CIP1 and p27KIP1 LMW-E is predominantly generated by neutrophil elastase-mediated proteolytic cleavage, which eliminates the N-terminal cyclin E nuclear localization signal and promotes cyclin E's accumulation in the cytoplasm. Compared with full-length cyclin E, the aberrant localization and unique stereochemistry of LMW-E dramatically alters the substrate specificity and selectivity of CDK2, increasing tumorigenicity in experimental models. Cytoplasmic LMW-E, which can be assessed by IHC, is prognostic of poor survival and predicts resistance to standard therapies in patients with cancer. These patients may benefit from therapeutic modalities targeting the altered biochemistry of LMW-E or its associated vulnerabilities. Cancer Res; 78(19); 5481-91. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, California.
| | | | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Alvarado-Kristensson M. γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential. Signal Transduct Target Ther 2018; 3:24. [PMID: 30221013 PMCID: PMC6137058 DOI: 10.1038/s41392-018-0021-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 01/05/2023] Open
Abstract
Knowledge of γ-tubulin is increasing with regard to the cellular functions of this protein beyond its participation in microtubule nucleation. γ-Tubulin expression is altered in various malignancies, and changes in the TUBG1 gene have been found in patients suffering from brain malformations. This review recapitulates the known functions of γ-tubulin in cellular homeostasis and discusses the possible influence of the protein on disease development and cancer.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, 20502 Sweden
| |
Collapse
|
31
|
Sim MY, Go ML, Yuen JSP. The mechanistic effects of the dioxonaphthoimidazolium analog YM155 in renal cell carcinoma cell cycling and apoptosis. Life Sci 2018; 203:282-290. [DOI: 10.1016/j.lfs.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
|
32
|
Wang Y, Chen Y, Cheng X, Zhang K, Wang H, Liu B, Wang J. Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells. Bioorg Med Chem 2018; 26:3491-3501. [PMID: 29853338 DOI: 10.1016/j.bmc.2018.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 01/28/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) plays a key role in eukaryotic cell cycle progression which could facilitate the transition from G1 to S phase. The dysregulation of CDK2 is closely related to many cancers. CDK2 is utilized as one of the most studied kinase targets in oncology. In this article, 24 benzamide derivatives were designed, synthesized and investigated for the inhibition activity against CDK2. Our results revealed that the compound 25 is a potent CDK2 inhibitor exhibiting a broad spectrum anti-proliferative activity against several human breast cancer cells. Additionally, compound 25 could block cell cycle at G0 or G1 and induce significant apoptosis in MDA-MB-468 cells. These findings highlight a rationale for further development of CDK2 inhibitors to treat human breast cancer.
Collapse
Affiliation(s)
- Yiting Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yanmei Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xiaoling Cheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Hangyu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China.
| | - Bo Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China.
| | - Jinhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
33
|
Turac G, Duruksu G, Karaoz E. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells. Neurospine 2018; 15:42-53. [PMID: 29656620 PMCID: PMC5944638 DOI: 10.14245/ns.1836010.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022] Open
Abstract
Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs.
Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH.
Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation.
Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines.
Collapse
Affiliation(s)
- Gizem Turac
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey.,Department of Histology & Embryology, İstinye University, Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
34
|
Abstract
E-type cyclins (cyclins E1 and E2) are components of the core cell cycle machinery and are overexpressed in many human tumor types. E cyclins are thought to drive tumor cell proliferation by activating the cyclin-dependent kinase 2 (CDK2). The cyclin E1 gene represents the site of recurrent integration of the hepatitis B virus in the pathogenesis of hepatocellular carcinoma, and this event is associated with strong up-regulation of cyclin E1 expression. Regardless of the underlying mechanism of tumorigenesis, the majority of liver cancers overexpress E-type cyclins. Here we used conditional cyclin E knockout mice and a liver cancer model to test the requirement for the function of E cyclins in liver tumorigenesis. We show that a ubiquitous, global shutdown of E cyclins did not visibly affect postnatal development or physiology of adult mice. However, an acute ablation of E cyclins halted liver cancer progression. We demonstrated that also human liver cancer cells critically depend on E cyclins for proliferation. In contrast, we found that the function of the cyclin E catalytic partner, CDK2, is dispensable in liver cancer cells. We observed that E cyclins drive proliferation of tumor cells in a CDK2- and kinase-independent mechanism. Our study suggests that compounds which degrade or inhibit cyclin E might represent a highly selective therapeutic strategy for patients with liver cancer, as these compounds would selectively cripple proliferation of tumor cells, while sparing normal tissues.
Collapse
|
35
|
Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the "Maximum Allowable mammalian Trade-Off-Weight" (MAmTOW). NPJ Syst Biol Appl 2017; 3:26. [PMID: 28944079 PMCID: PMC5605530 DOI: 10.1038/s41540-017-0028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Network complexity is required to lend cellular processes flexibility to respond timely to a variety of dynamic signals, while simultaneously warranting robustness to protect cellular integrity against perturbations. The cell cycle serves as a paradigm for such processes; it maintains its frequency and temporal structure (although these may differ among cell types) under the former, but accelerates under the latter. Cell cycle molecules act together in time and in different cellular compartments to execute cell type-specific programs. Strikingly, the timing at which molecular switches occur is controlled by abundance and stoichiometry of multiple proteins within complexes. However, traditional methods that investigate one effector at a time are insufficient to understand how modulation of protein complex dynamics at cell cycle transitions shapes responsiveness, yet preserving robustness. To overcome this shortcoming, we propose a multidisciplinary approach to gain a systems-level understanding of quantitative cell cycle dynamics in mammalian cells from a new perspective. By suggesting advanced experimental technologies and dedicated modeling approaches, we present innovative strategies (i) to measure absolute protein concentration in vivo, and (ii) to determine how protein dosage, e.g., altered protein abundance, and spatial (de)regulation may affect timing and robustness of phase transitions. We describe a method that we name “Maximum Allowable mammalian Trade–Off–Weight” (MAmTOW), which may be realized to determine the upper limit of gene copy numbers in mammalian cells. These aspects, not covered by current systems biology approaches, are essential requirements to generate precise computational models and identify (sub)network-centered nodes underlying a plethora of pathological conditions.
Collapse
|
36
|
Lee I, Kim GS, Bae JS, Kim J, Rhee K, Hwang DS. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem 2017; 292:16267-16276. [PMID: 28827311 DOI: 10.1074/jbc.m116.763680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The centrosome serves as a major microtubule-organizing center (MTOC). The Cdc6 protein is a component of the pre-replicative complex and a licensing factor for the initiation of chromosome replication and localizes to centrosomes during the S and G2 phases of the cfell cycle of human cells. This cell cycle-dependent localization of Cdc6 to the centrosome motivated us to investigate whether Cdc6 negatively regulates MTOC activity and to determine the integral proteins that comprise the pericentriolar material (PCM). Time-lapse live-cell imaging of microtubule regrowth revealed that Cdc6 depletion increased microtubule nucleation at the centrosomes and that expression of Cdc6 in Cdc6-depleted cells reversed this effect. This increase and decrease in microtubule nucleation correlated with the centrosomal intensities of PCM proteins such as γ-tubulin, pericentrin, CDK5 regulatory subunit-associated protein 2 (CDK5RAP2), and centrosomal protein 192 (Cep192). The regulation of microtubule nucleation and the recruitment of PCM proteins to the centrosome required Cdc6 ATPase activity, as well as a centrosomal localization of Cdc6. These results suggest a novel function for Cdc6 in coordinating centrosome assembly and function.
Collapse
Affiliation(s)
- Inyoung Lee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gwang Su Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Bae
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaeyoun Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Deog Su Hwang
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
The PP2A-B56 Phosphatase Opposes Cyclin E Autocatalytic Degradation via Site-Specific Dephosphorylation. Mol Cell Biol 2017; 37:MCB.00657-16. [PMID: 28137908 DOI: 10.1128/mcb.00657-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Cyclin E, in conjunction with its catalytic partner cyclin-dependent kinase 2 (CDK2), regulates cell cycle progression as cells exit quiescence and enter S-phase. Multiple mechanisms control cyclin E periodicity during the cell cycle, including phosphorylation-dependent cyclin E ubiquitylation by the SCFFbw7 ubiquitin ligase. Serine 384 (S384) is the critical cyclin E phosphorylation site that stimulates Fbw7 binding and cyclin E ubiquitylation and degradation. Because S384 is autophosphorylated by bound CDK2, this presents a paradox as to how cyclin E can evade autocatalytically induced degradation in order to phosphorylate its other substrates. We found that S384 phosphorylation is dynamically regulated in cells and that cyclin E is specifically dephosphorylated at S384 by the PP2A-B56 phosphatase, thereby uncoupling cyclin E degradation from cyclin E-CDK2 activity. Furthermore, the rate of S384 dephosphorylation is high in interphase but low in mitosis. This provides a mechanism whereby interphase cells can oppose autocatalytic cyclin E degradation and maintain cyclin E-CDK2 activity while also enabling cyclin E destruction in mitosis, when inappropriate cyclin E expression is genotoxic.
Collapse
|
38
|
Cyclin E Deregulation and Genomic Instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:527-547. [PMID: 29357072 DOI: 10.1007/978-981-10-6955-0_22] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.
Collapse
|
39
|
Costa S. Are division plane determination and cell-cycle progression coordinated? THE NEW PHYTOLOGIST 2017; 213:16-21. [PMID: 27735057 DOI: 10.1111/nph.14261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Silvia Costa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| |
Collapse
|
40
|
Vertii A, Hehnly H, Doxsey S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb Perspect Biol 2016; 8:8/12/a025049. [PMID: 27908937 DOI: 10.1101/cshperspect.a025049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
41
|
Malik S, Saito H, Takaoka M, Miki Y, Nakanishi A. BRCA2 mediates centrosome cohesion via an interaction with cytoplasmic dynein. Cell Cycle 2016; 15:2145-2156. [PMID: 27433848 PMCID: PMC4993541 DOI: 10.1080/15384101.2016.1195531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BRCA2 is responsible for familial breast and ovarian cancer and has been linked to DNA repair and centrosome duplication. Here we analyzed the mechanism by which the centrosomal localization signal (CLS) of BRCA2 interacts with cytoplasmic dynein 1 to localize BRCA2 to the centrosome. In vitro pull-down assays demonstrated that BRCA2 directly binds to the cytoplasmic dynein 1 light intermediate chain 2. A dominant-negative HA-CLS-DsRed fusion protein, the depletion of dynein by siRNA, and the inactivation of dynein by EHNA, inhibited the localization of BRCA2 at centrosomes and caused the separation of centrosome pairs during the S-phase. The double depletion of BRCA2 and C-Nap1 caused a larger dispersion of centrosome distances than the silencing of C-Nap1. These results suggest that cytoplasmic dynein 1 binds to BRCA2 through the latter's CLS and BRCA2 mediates the cohesion between centrosomes during the S phase, potentially serving as a cell-cycle checkpoint.
Collapse
Affiliation(s)
- Sadiya Malik
- a Department of Molecular Genetics , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Hiroko Saito
- b Department of Genetic Diagnosis , The Cancer Institute, Japanese Foundation for Cancer Research , Tokyo , Japan
| | - Miho Takaoka
- a Department of Molecular Genetics , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Yoshio Miki
- a Department of Molecular Genetics , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan.,b Department of Genetic Diagnosis , The Cancer Institute, Japanese Foundation for Cancer Research , Tokyo , Japan
| | - Akira Nakanishi
- a Department of Molecular Genetics , Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
42
|
ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nat Commun 2015; 6:8763. [PMID: 26581405 DOI: 10.1038/ncomms9763] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
We generate a mouse model for the human microcephaly syndrome by mutating the ASPM locus, and demonstrate a premature exhaustion of the neuronal progenitor pool due to dysfunctional self-renewal processes. Earlier studies have linked ASPM mutant progenitor excessive cell cycle exit to a mitotic orientation defect. Here, we demonstrate a mitotic orientation-independent effect of ASPM on cell cycle duration. We pinpoint the cell fate-determining factor to the length of time spent in early G1 before traversing the restriction point. Characterization of the molecular mechanism reveals an interaction between ASPM and the Cdk2/Cyclin E complex, regulating the Cyclin activity by modulating its ubiquitination, phosphorylation and localization into the nucleus, before the cell is fated to transverse the restriction point. Thus, we reveal a novel function of ASPM in mediating the tightly coordinated Ubiquitin- Cyclin E- Retinoblastoma- E2F bistable-signalling pathway controlling restriction point progression and stem cell maintenance.
Collapse
|
43
|
Parker DJ, Iyer A, Shah S, Moran A, Hjelmeland AB, Basu MK, Liu R, Mitra K. A new mitochondrial pool of cyclin E, regulated by Drp1, is linked to cell-density-dependent cell proliferation. J Cell Sci 2015; 128:4171-82. [PMID: 26446260 DOI: 10.1242/jcs.172429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation and function of the crucial cell cycle regulator cyclin E (CycE) remains elusive. Unlike other cyclins, CycE can be uniquely controlled by mitochondrial energetics, the exact mechanism being unclear. Using mammalian cells (in vitro) and Drosophila (in vivo) model systems in parallel, we show that CycE can be directly regulated by mitochondria through its recruitment to the organelle. Active mitochondrial bioenergetics maintains a distinct mitochondrial pool of CycE (mtCycE) lacking a key phosphorylation required for its degradation. Loss of the mitochondrial fission protein dynamin-related protein 1 (Drp1, SwissProt O00429 in humans) augments mitochondrial respiration and elevates the mtCycE pool allowing CycE deregulation, cell cycle alterations and enrichment of stem cell markers. Such CycE deregulation after Drp1 loss attenuates cell proliferation in low-cell-density environments. However, in high-cell-density environments, elevated MEK-ERK signaling in the absence of Drp1 releases mtCycE to support escape of contact inhibition and maintain aberrant cell proliferation. Such Drp1-driven regulation of CycE recruitment to mitochondria might be a mechanism to modulate CycE degradation during normal developmental processes as well as in tumorigenic events.
Collapse
Affiliation(s)
- Danitra J Parker
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shikha Shah
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aida Moran
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, Van de Velde H. Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells. Mol Hum Reprod 2015; 21:942-56. [PMID: 26416983 DOI: 10.1093/molehr/gav053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY HYPOTHESIS We aimed to investigate if Cyclin E1 (CCNE1) plays a role in human embryogenesis, in particular during the early developmental stages characterized by a short cell cycle. STUDY FINDING CCNE1 is expressed in plenipotent human embryonic cells and plays a critical role during hESC derivation via the naïve state and, potentially, normal embryo development. WHAT IS KNOWN ALREADY A short cell cycle due to a truncated G1 phase has been associated with the high developmental capacity of embryonic cells. CCNE1 is a critical G1/S transition regulator. CCNE1 overexpression can cause shortening of the cell cycle and it is constitutively expressed in mouse embryonic stem cells and cancer cells. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated expression of CCNE1 in human preimplantation embryo development and embryonic stem cells (hESC). Functional studies included CCNE1 overexpression in hESC and CCNE1 downregulation in the outgrowths formed by plated human blastocysts. Analysis was performed by immunocytochemistry and quantitative real-time PCR. Mann-Whitney statistical test was applied. MAIN RESULTS AND THE ROLE OF CHANCE The CCNE1 protein was ubiquitously and constitutively expressed in the plenipotent cells of the embryo from the 4-cell stage up to and including the full blastocyst. During blastocyst expansion, CCNE1 was downregulated in the trophectoderm (TE) cells. CCNE1 shortly co-localized with NANOG in the inner cell mass (ICM) of expanding blastocysts, mimicking the situation in naïve hESC. In the ICM of expanded blastocysts, which corresponds with primed hESC, CCNE1 defined a subpopulation of cells different from NANOG/POU5F1-expressing pluripotent epiblast (EPI) cells and GATA4/SOX17-expressing primitive endoderm (PrE) cells. This CCNE1-positive cell population was associated with visceral endoderm based on transthyretin expression and marked the third cell lineage within the ICM, besides EPI and PrE, which had never been described before. We also investigated the role of CCNE1 by plating expanded blastocysts for hESC derivation. As a result, all the cells including TE cells re-gained CCNE1 and, consequently, NANOG expression, resembling the phenotype of naïve hESC. The inhibition of CCNE1 expression with siRNA blocked proliferation and caused degeneration of those plated cells. LIMITATIONS, REASONS FOR CAUTION The study is based on a limited number of good-quality human embryos donated to research. WIDER IMPLICATIONS OF THE FINDINGS Our study sheds light on the processes underlying the high developmental potential of early human embryonic cells. The CCNE1-positive plenipotent cell type corresponds with a phenotype that enables early human embryos to recover after fragmentation, cryodamage or (single cell) biopsy on day 3 for preimplantation genetic diagnosis. Knowledge on the expression and function of genes responsible for this flexibility will help us to better understand the undifferentiated state in stem cell biology and might enable us to improve technologies in assisted reproduction. LARGE SCALE DATA NA STUDY FUNDING AND COMPETING INTERESTS: This research is supported by grants from the Fund for Scientific Research - Flanders (FWO-Vlaanderen), the Methusalem (METH) of the VUB and Scientific Research Fond Willy Gepts of UZ Brussel. There are no competing interests.
Collapse
Affiliation(s)
- M V Krivega
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - B Heindryckx
- Ghent Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Tournaye
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
45
|
Tanaka Y, Hysolli E, Su J, Xiang Y, Kim KY, Zhong M, Li Y, Heydari K, Euskirchen G, Snyder MP, Pan X, Weissman SM, Park IH. Transcriptome Signature and Regulation in Human Somatic Cell Reprogramming. Stem Cell Reports 2015; 4:1125-39. [PMID: 26004630 PMCID: PMC4471828 DOI: 10.1016/j.stemcr.2015.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of somatic cells produces induced pluripotent stem cells (iPSCs) that are invaluable resources for biomedical research. Here, we extended the previous transcriptome studies by performing RNA-seq on cells defined by a combination of multiple cellular surface markers. We found that transcriptome changes during early reprogramming occur independently from the opening of closed chromatin by OCT4, SOX2, KLF4, and MYC (OSKM). Furthermore, our data identify multiple spliced forms of genes uniquely expressed at each progressive stage of reprogramming. In particular, we found a pluripotency-specific spliced form of CCNE1 that is specific to human and significantly enhances reprogramming. In addition, single nucleotide polymorphism (SNP) expression analysis reveals that monoallelic gene expression is induced in the intermediate stages of reprogramming, while biallelic expression is recovered upon completion of reprogramming. Our transcriptome data provide unique opportunities in understanding human iPSC reprogramming. Initial transcriptional change relies on histone modifications in fibroblast Allele-specific gene expression is manifested during reprogramming A large number of spliced forms of genes are identified during reprogramming Pluripotent-specific splicing of CCNE1 (pCCNE1) enhances reprogramming
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eriona Hysolli
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Juan Su
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yumei Li
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Dermatology, Jiangsu University Affiliated Hospital, Zhenjiang 212000, PRC
| | - Kartoosh Heydari
- Cancer Research Laboratory, LKS Flow Cytometry Facility, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ghia Euskirchen
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinghua Pan
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sherman Morton Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
Rogers S, Gloss BS, Lee CS, Sergio CM, Dinger ME, Musgrove EA, Burgess A, Caldon CE. Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells. Cell Div 2015; 10:1. [PMID: 25741376 PMCID: PMC4349318 DOI: 10.1186/s13008-015-0007-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The cyclin E oncogene activates CDK2 to drive cells from G1 to S phase of the cell cycle to commence DNA replication. It coordinates essential cellular functions with the cell cycle including histone biogenesis, splicing, centrosome duplication and origin firing for DNA replication. The two E-cyclins, E1 and E2, are assumed to act interchangeably in these functions. However recent reports have identified unique functions for cyclins E1 and E2 in different tissues, and particularly in breast cancer. FINDINGS Cyclins E1 and E2 localise to distinct foci in breast cancer cells as well as co-localising within the cell. Both E-cyclins are found in complex with CDK2, at centrosomes and with the splicing machinery in nuclear speckles. However cyclin E2 uniquely co-localises with NPAT, the main activator of cell-cycle regulated histone transcription. Increased cyclin E2, but not cyclin E1, expression is associated with high expression of replication-dependent histones in breast cancers. CONCLUSIONS The preferential localisation of cyclin E1 or cyclin E2 to distinct foci indicates that each E-cyclin has unique roles. Cyclin E2 uniquely interacts with NPAT in breast cancer cells, and is associated with higher levels of histones in breast cancer. This could explain the unique correlations of high cyclin E2 expression with poor outcome and genomic instability in breast cancer.
Collapse
Affiliation(s)
- Samuel Rogers
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Brian S Gloss
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
- />St Vincent’s Clinical School, Faculty of Medicine UNSW, Sydney, Australia
| | - Christine S Lee
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Claudio Marcelo Sergio
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Marcel E Dinger
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
- />St Vincent’s Clinical School, Faculty of Medicine UNSW, Sydney, Australia
| | - Elizabeth A Musgrove
- />Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| | - Andrew Burgess
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
- />St Vincent’s Clinical School, Faculty of Medicine UNSW, Sydney, Australia
| | - Catherine Elizabeth Caldon
- />The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW Australia
- />St Vincent’s Clinical School, Faculty of Medicine UNSW, Sydney, Australia
| |
Collapse
|
47
|
Fu YP, Kohaar I, Moore LE, Lenz P, Figueroa JD, Tang W, Porter-Gill P, Chatterjee N, Scott-Johnson A, Garcia-Closas M, Muchmore B, Baris D, Paquin A, Ylaya K, Schwenn M, Apolo AB, Karagas MR, Tarway M, Johnson A, Mumy A, Schned A, Guedez L, Jones MA, Kida M, Hosain GMM, Malats N, Kogevinas M, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Wu X, Purdue M, Andriole GL, Grubb RL, Black A, Landi MT, Caporaso NE, Vineis P, Siddiq A, Bueno-de-Mesquita HB, Trichopoulos D, Ljungberg B, Severi G, Weiderpass E, Krogh V, Dorronsoro M, Travis RC, Tjønneland A, Brennan P, Chang-Claude J, Riboli E, Prescott J, Chen C, De Vivo I, Govannucci E, Hunter D, Kraft P, Lindstrom S, Gapstur SM, Jacobs EJ, Diver WR, Albanes D, Weinstein SJ, Virtamo J, Kooperberg C, Hohensee C, Rodabough RJ, Cortessis VK, Conti DV, Gago-Dominguez M, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Haiman CA, Cussenot O, Cancel-Tassin G, Roupret M, Comperat E, Porru S, Carta A, Pavanello S, Arici C, Mastrangelo G, Grossman HB, Wang Z, Deng X, Chung CC, Hutchinson A, Burdette L, Wheeler W, Fraumeni J, Chanock SJ, Hewitt SM, Silverman DT, Rothman N, Prokunina-Olsson L. The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease. Cancer Res 2014; 74:5808-18. [PMID: 25320178 PMCID: PMC4203382 DOI: 10.1158/0008-5472.can-14-1531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
Collapse
Affiliation(s)
- Yi-Ping Fu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Indu Kohaar
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Petra Lenz
- Clinical Research Directorate/Clinical Monitoring Research Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wei Tang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Porter-Gill
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexandra Scott-Johnson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Brian Muchmore
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ashley Paquin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Andrea B Apolo
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - McAnthony Tarway
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Adam Mumy
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan Schned
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Liliana Guedez
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael A Jones
- Department of Pathology and Laboratory Medicine, Maine Medical Center, Portland, Maine
| | - Masatoshi Kida
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | | | - Nuria Malats
- Spanish National Cancer Research Centre, Madrid, Spain
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. National School of Public Health, Athens, Greece. CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Adonina Tardon
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain. Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Consol Serra
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Reina Garcia-Closas
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
| | - Josep Lloreta
- Hospital del Mar-IMIM, Univesitat Pompeu Fabra, Barcelona, Spain
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert L Grubb
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, United Kingdom. Human Genetics Foundation (HuGeF), Torino, Italy
| | - Afshan Siddiq
- School of Public Health, Imperial College London, London, United Kingdom
| | - H Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Hellenic Health Foundation, Athens, Greece
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Gianluca Severi
- Human Genetics Foundation (HuGeF), Torino, Italy. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, University of Melbourne, Australia
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Samfundet Folkhälsan, Helsinki, Finland
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Miren Dorronsoro
- Public Health Division of Gipuzkoa, Basque Regional Health Department and Ciberesp-Biodonostia, San Sebastian, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Edward Govannucci
- Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jarmo Virtamo
- National Institute for Health and Welfare, Helsinki, Finland
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Chancellor Hohensee
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Rebecca J Rodabough
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Victoria K Cortessis
- Department of Obstetrics and Gynecology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Mariana C Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Olivier Cussenot
- AP-HP, Hopital Tenon, GHU-Est, Department of Urology, Paris, France. Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France
| | - Morgan Roupret
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France. AP-HP, Hopital Pitie-Salpetriere, GHU-Est, Departments of Urology and Pathology, Paris, France
| | - Eva Comperat
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France. AP-HP, Hopital Pitie-Salpetriere, GHU-Est, Departments of Urology and Pathology, Paris, France
| | - Stefano Porru
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Angela Carta
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Cecilia Arici
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - H Barton Grossman
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Zhaoming Wang
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Xiang Deng
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Charles C Chung
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Laurie Burdette
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Joseph Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
48
|
|
49
|
RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1017-27. [DOI: 10.1016/j.bbadis.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022]
|
50
|
Zhao X, Jiang M, Yue W. [The function and molecular mechnism of cyclin Y protein]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:605-8. [PMID: 24229628 PMCID: PMC6000620 DOI: 10.3779/j.issn.1009-3419.2013.11.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
近年来,陆续有一些新的周期素蛋白被发现,细胞周期素Y(cyclin Y, CCNY)即为其中之一。现有的研究表明cyclinY高度保守,在调节细胞周期及转录过程中发挥重要作用,而且cyclin Y在多种肿瘤组织中高表达,在肿瘤增殖调控中可能发挥重要的功能。现就cyclin Y的研究进展及其与肿瘤的关系做一综述。
Collapse
Affiliation(s)
- Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | | | | |
Collapse
|