1
|
Schalamun M, Hinterdobler W, Schinnerl J, Brecker L, Schmoll M. The transcription factor STE12 influences growth on several carbon sources and production of dehydroacetic acid (DHAA) in Trichoderma reesei. Sci Rep 2024; 14:9625. [PMID: 38671155 PMCID: PMC11053031 DOI: 10.1038/s41598-024-59511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The filamentous ascomycete Trichoderma reesei, known for its prolific cellulolytic enzyme production, recently also gained attention for its secondary metabolite synthesis. Both processes are intricately influenced by environmental factors like carbon source availability and light exposure. Here, we explore the role of the transcription factor STE12 in regulating metabolic pathways in T. reesei in terms of gene regulation, carbon source utilization and biosynthesis of secondary metabolites. We show that STE12 is involved in regulating cellulase gene expression and growth on carbon sources associated with iron homeostasis. STE12 impacts gene regulation in a light dependent manner on cellulose with modulation of several CAZyme encoding genes as well as genes involved in secondary metabolism. STE12 selectively influences the biosynthesis of the sorbicillinoid trichodimerol, while not affecting the biosynthesis of bisorbibutenolide, which was recently shown to be regulated by the MAPkinase pathway upstream of STE12 in the signaling cascade. We further report on the biosynthesis of dehydroacetic acid (DHAA) in T. reesei, a compound known for its antimicrobial properties, which is subject to regulation by STE12. We conclude, that STE12 exerts functions beyond development and hence contributes to balance the energy distribution between substrate consumption, reproduction and defense.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Li S, Liu Q, Wang E, Wang J. Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone. iScience 2023; 26:107885. [PMID: 37766979 PMCID: PMC10520453 DOI: 10.1016/j.isci.2023.107885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-cycle arrest and polarized growth are commonly used to characterize the response of yeast to pheromone. However, the quantitative decision-making processes underlying time-dependent changes in cell fate remain unclear. In this study, we conducted single-cell level experiments to observe multidimensional responses, uncovering diverse fates of yeast cells. Multiple states are revealed, along with the kinetic switching rates and pathways among them, giving rise to a quantitative landscape of mating response. To quantify the experimentally observed cell fates, we developed a theoretical framework based on non-equilibrium landscape and flux theory. Additionally, we performed stochastic simulations of biochemical reactions to elucidate signal transduction and cell growth. Notably, our experimental findings have provided the first global quantitative evidence of the real-time synchronization between intracellular signaling, physiological growth, and morphological functions. These results validate the proposed underlying mechanism governing the emergence of multiple cell fate states. This study introduces an emerging mechanistic approach to understand non-equilibrium cell fate decision-making in response to pheromone.
Collapse
Affiliation(s)
- Sheng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Sanz AB, García R, Pavón-Vergés M, Rodríguez-Peña JM, Arroyo J. Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 2022; 23:ijms23031791. [PMID: 35163713 PMCID: PMC8836261 DOI: 10.3390/ijms23031791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.
Collapse
|
4
|
Two Verticillium dahliae MAPKKKs, VdSsk2 and VdSte11, Have Distinct Roles in Pathogenicity, Microsclerotial Formation, and Stress Adaptation. mSphere 2019; 4:4/4/e00426-19. [PMID: 31292234 PMCID: PMC6620378 DOI: 10.1128/msphere.00426-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
These data provide insights into the distinctive functions of VdSsk2 and VdSte11 in pathogenicity, stress adaptation, and microsclerotial formation in V. dahliae. Verticillium dahliae causes destructive vascular wilt diseases on more than 200 plant species, including economically important crops and ornamental trees worldwide. The melanized microsclerotia enable the fungus to survive for years in soil and are crucial for its disease cycle. Previously, we found that the VdPbs2-VdHog1 (V. dahliae Pbs2-V. dahliae Hog1) module plays key roles in microsclerotial formation, stress responses, and virulence in V. dahliae. In this study, two mitogen-activated protein kinase kinase kinases (MAPKKKs) homologous to Ssk2p and Ste11p, which activate the Pbs2p-Hog1p module by phosphorylation in budding yeast, were identified in the genome of V. dahliae. Both ΔVdSsk2 (V. dahliaeSsk2) and ΔVdSte11 strains showed severe defects in microsclerotial formation and melanin biosynthesis, but the relative importance of these two genes in microsclerotial development was different. Deletion of VdSsk2, but not VdSte11, affected responses to osmotic stress, fungicidal response, and cell wall stressors. The ΔVdSsk2 strain exhibited a significant reduction in virulence, while the ΔVdSte11 strain was nonpathogenic due to failure to penetrate and form hyphopodia. Phosphorylation assays demonstrated that VdSsk2, but not VdSte11, can phosphorylate VdHog1 in V. dahliae. Moreover, VdCrz1, encoding a calcineurin-responsive zinc finger transcription factor and a key regulator of calcium signaling in fungi, was misregulated in the ΔVdSsk2, ΔVdPbs2, and ΔVdHog1 mutants. IMPORTANCE These data provide insights into the distinctive functions of VdSsk2 and VdSte11 in pathogenicity, stress adaptation, and microsclerotial formation in V. dahliae.
Collapse
|
5
|
Sarmiento‐Villamil JL, Prieto P, Klosterman SJ, García‐Pedrajas MD. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2018; 19:986-1004. [PMID: 28727279 PMCID: PMC6638091 DOI: 10.1111/mpp.12584] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 05/11/2023]
Abstract
Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putative homologue of the transcription factor Ste12. Vhb1 (VDAG_08786), identified in a forward genetics approach, is similar to the homeobox transcription factor Htf1, reported as a regulator of conidiogenesis in several fungi. Deletion of vph1 did not affect vegetative growth, whereas deletion of vhb1 greatly reduced sporulation rates in liquid medium. Both mutants failed to induce Verticillium wilt symptoms. However, unlike Δvph1, Δvhb1 could be re-isolated from the vascular system of some asymptomatic plants. Confocal microscopy further indicated that Δvph1 and Δvhb1 differed in their behaviour in planta; Δvph1 could not penetrate the root cortex, whereas Δvhb1 was impaired in its ability to colonize the xylem. In agreement with these observations, only Δvhb1 could penetrate cellophane paper. On cellophane, wild-type and Δvhb1 strains produced numerous short branches with swollen tips, resembling the hyphopodia formed on root surfaces, contrasting with Δvph1, which generated unbranched long filaments without swollen tips. A microarray analysis showed that these differences in growth were associated with differences in global transcription patterns, and allowed us to identify a large set of novel genes potentially involved in virulence in V. dahliae. Ste12 homologues are known regulators of invasive growth, but Vhb1 is the first putative Htf1 homologue identified with a critical role in virulence.
Collapse
Affiliation(s)
- Jorge L. Sarmiento‐Villamil
- Estación Experimental ‘La Mayora’Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Algarrobo‐CostaMálaga 29750Spain
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)Córdoba14004Spain
| | - Steven J. Klosterman
- Agricultural Research ServiceUnited States Department of AgricultureSalinasCA 93905USA
| | - María D. García‐Pedrajas
- Estación Experimental ‘La Mayora’Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Algarrobo‐CostaMálaga 29750Spain
| |
Collapse
|
6
|
Vilanova L, Teixidó N, Torres R, Usall J, Viñas I, Sánchez-Torres P. Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. Int J Food Microbiol 2016; 235:93-102. [DOI: 10.1016/j.ijfoodmicro.2016.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022]
|
7
|
García R, Sanz AB, Rodríguez-Peña JM, Nombela C, Arroyo J. Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression. J Cell Sci 2016; 129:1649-60. [PMID: 26933180 DOI: 10.1242/jcs.180190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Activation of the yeast cell wall integrity (CWI) pathway induces an adaptive transcriptional programme that is largely dependent on the transcription factor Rlm1 and the mitogen-activated protein kinase (MAPK) Slt2. Upon cell wall stress, the transcription factor Rlm1 is recruited to the promoters of RLM1 and SLT2, and exerts positive-feedback mechanisms on the expression of both genes. Activation of the MAPK Slt2 by cell wall stress is not impaired in strains with individual blockade of any of the two feedback pathways. Abrogation of the autoregulatory feedback mechanism on RLM1 severely affects the transcriptional response elicited by activation of the CWI pathway. In contrast, a positive trans-acting feedback mechanism exerted by Rlm1 on SLT2 also regulates CWI output responses but to a lesser extent. Therefore, a complete CWI transcriptional response requires not only phosphorylation of Rlm1 by Slt2 but also concurrent SLT2- and RLM1-mediated positive-feedback mechanisms; sustained patterns of gene expression are mainly achieved by positive autoregulatory circuits based on the transcriptional activation of Rlm1.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid 28040, Spain
| |
Collapse
|
8
|
Abstract
Proteomic studies of the composition of mammalian synapses have revealed a high degree of complexity. The postsynaptic and presynaptic terminals are molecular systems with highly organized protein networks producing emergent physiological and behavioral properties. The major classes of synapse proteins and their respective functions in intercellular communication and adaptive responses evolved in prokaryotes and eukaryotes prior to the origins of neurons in metazoa. In eukaryotes, the organization of individual proteins into multiprotein complexes comprising scaffold proteins, receptors, and signaling enzymes formed the precursor to the core adaptive machinery of the metazoan postsynaptic terminal. Multiplicative increases in the complexity of this protosynapse machinery secondary to genome duplications drove synaptic, neuronal, and behavioral novelty in vertebrates. Natural selection has constrained diversification in mammalian postsynaptic mechanisms and the repertoire of adaptive and innate behaviors. The evolution and organization of synapse proteomes underlie the origins and complexity of nervous systems and behavior.
Collapse
Affiliation(s)
- Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom.
| | | |
Collapse
|
9
|
Sepulchre JA, Merajver SD, Ventura AC. Retroactive signaling in short signaling pathways. PLoS One 2012; 7:e40806. [PMID: 22848403 PMCID: PMC3406091 DOI: 10.1371/journal.pone.0040806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.
Collapse
|
10
|
Nakabayashi J. Optimal ratio of scaffold complex to free Fus3 to maximise the accumulation of phosphorylated Fus3 in yeast pheromone signalling pathway. IET Syst Biol 2012; 6:9-21. [PMID: 22360267 DOI: 10.1049/iet-syb.2011.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the author considers the design rule of the intracellular signalling pathway. In yeast pheromone signalling pathway, scaffold Ste5 tethers the components of signalling pathway, Ste11, Ste7 and Fus3. Even though scaffold complex is independently produced before stimuli, excessively expressed Fus3 as compared with scaffold exists in cytoplasm as free kinase. How the ratio of scaffold complex to the free Fus3 is determined is not clear yet. First, the contribution of free Fus3 to signal transduction is theoretically shown by using a simplified model of pheromone signalling pathway. Next, the optimum expression levels of Ste5, Ste11, Ste7 and Fus3 are systematically explored by using the detailed model and genetic algorithm under the constraint that the total expression level of these four genes is limited. Excessive expression of Fus3 is advantageous for the efficient signalling without stall of the signal transduction. The result suggests that the component of signalling pathway is optimally expressed to maximise the accumulation of phosphorylated Fus3 at a fixed time point under the constraint that the total gene expression is limited. The proposed model provides further insight into the signalling network from the point of view of not only its function but also its optimality.
Collapse
Affiliation(s)
- J Nakabayashi
- University of Tokyo, Department of Mathematical Informatics, Tokyo, Japan.
| |
Collapse
|
11
|
Wang X, Sheff MA, Simpson DM, Elion EA. Ste11p MEKK signals through HOG, mating, calcineurin and PKC pathways to regulate the FKS2 gene. BMC Mol Biol 2011; 12:51. [PMID: 22114773 PMCID: PMC3233502 DOI: 10.1186/1471-2199-12-51] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/24/2011] [Indexed: 11/12/2022] Open
Abstract
Background The S. cerevisiae MAPKKK Ste11p, a homologue of mammalian MEKK1, regulates three MAPK cascades for mating, invasive growth and osmotic stress and provides functions that are additive with the cell wall integrity pathway. Cell wall integrity requires the FKS2 gene that encodes a stress-induced alternative subunit of beta-1, 3 glucan synthase that is the target of echinocandin 1,3- beta glucan synthase inhibitors. The major signal transduction pathways that activate transcription of the FKS2 gene include the cell wall integrity and calcineurin pathways, and the Ste11p pathway. Results Here it is shown that catalytically active Ste11p regulates FKS2-lacZ reporter genes through Ste12, calcineurin/Crz1p- and PKC pathways and the high osmolarity pathway. Ste11p stimulated the cell wall integrity MAPK Mpk1p (Erk5 homologue) and FKS2 independently of the mating pathway. Ste11p regulated FKS2 through all known and putative substrates: Pbs2p MAPKK, Ste7 MAPKK, Cmk2p calmodulin dependent kinase and Ptk2p kinase. Ste11p increased the expression level of Cmk2p through transcription-dependent and -independent mechanisms. Conclusions The data suggest Ste11p regulates the FKS2 gene through all its known and putative downstream kinase substrates (Pbs2p, Ste7p, Cmk2p, and Ptk2p) and separately through Mpk1p MAPK. The patterns of control by Ste11p targets revealed novel functional linkages, cross-regulation, redundancy and compensation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
12
|
Tückmantel S, Greul JN, Janning P, Brockmeyer A, Grütter C, Simard JR, Gutbrod O, Beck ME, Tietjen K, Rauh D, Schreier PH. Identification of Ustilago maydis Aurora kinase as a novel antifungal target. ACS Chem Biol 2011; 6:926-33. [PMID: 21671622 DOI: 10.1021/cb200112y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infestation of crops by pathogenic fungi has continued to have a major impact by reducing yield and quality, emphasizing the need to identify new targets and develop new agents to improve methods of crop protection. Here we present Aurora kinase from the phytopathogenic fungus Ustilago maydis as a novel target for N-substituted diaminopyrimidines, a class of small-molecule kinase inhibitors. We show that Aurora kinase is essential in U. maydis and that diaminopyrimidines inhibit its activity in vitro. Furthermore, we observed an overall good correlation between in vitro inhibition of Aurora kinase and growth inhibition of diverse fungi in vivo. In vitro inhibition assays with Ustilago and human Aurora kinases indicate that some compounds of the N-substituted diaminopyrimidine class show specificity for the Ustilago enzyme, thus revealing their potential as selective fungicides.
Collapse
Affiliation(s)
- Sandra Tückmantel
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jörg N. Greul
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Petra Janning
- Department IV - Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Andreas Brockmeyer
- Department IV - Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Christian Grütter
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Jeffrey R. Simard
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | - Oliver Gutbrod
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Michael E. Beck
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Klaus Tietjen
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
| | - Daniel Rauh
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
- Fakultät Chemie - Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Peter H. Schreier
- Bayer CropScience AG, Alfred-Nobel-Strasse 50, D-40789 Monheim, Germany
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| |
Collapse
|
13
|
Rispail N, Di Pietro A. The homeodomain transcription factor Ste12: Connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 2011; 3:327-32. [PMID: 20798817 DOI: 10.4161/cib.3.4.11908] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/19/2022] Open
Abstract
A conserved mitogen-activated protein kinase (MAPK) cascade orthologous to the mating/filamentation MAPK pathway in yeast is required for fungal pathogenicity on plants. One of the key targets of this signaling pathway is the homeodomain transcription factor Ste12. Mutational analysis of ste12 orthologues in a variety of plant pathogenic fungi suggests that Ste12 functions as a master regulator of invasive growth. In this mini-review we highlight recent progress in understanding the role of Ste12 in filamentous fungi and discuss future challenges of unravelling the mechanisms by which Ste12 controls fungal virulence downstream of the Pathogenicity MAPK cascade.
Collapse
Affiliation(s)
- Nicolas Rispail
- Departamento de Gen'etica; Universidad de C'ordoba; Campus de Rabanales Edif. C5; C'ordoba, Spain
| | | |
Collapse
|
14
|
Kashef K, Radhakrishnan R, Lee CM, Reddy EP, Dhanasekaran DN. Neoplastic transformation induced by the gep oncogenes involves the scaffold protein JNK-interacting leucine zipper protein. Neoplasia 2011; 13:358-64. [PMID: 21472140 PMCID: PMC3071084 DOI: 10.1593/neo.101622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 11/27/2011] [Accepted: 01/27/2011] [Indexed: 01/05/2023]
Abstract
The activated mutants of the α-subunits of G proteins G(12) and G(13) have been designated as the gep oncogenes owing to their ability to stimulate diverse oncogenic signaling pathways that lead to neoplastic transformation of fibroblast cell lines and tumorigenesis in nude mice models. Studies from our laboratory as well as others have shown that the growth-promoting activities of Gα(12) and Gα(13) involve potent activation of c-Jun N-terminal kinases (JNKs). Our previous studies have indicated that the JNK-interacting leucine zipper protein (JLP), a scaffold protein involved in the structural and functional organization of the JNK/p38 mitogen-activated protein kinase module, tethers Gα(12) and Gα(13) to the JNK signaling module. In the present study, in addition to demonstrating the physical association between JLP and Gα(12), we show that this interaction is enhanced by the receptor- or mutation-mediated activation of Gα(12). We also establish that JLP interacts with Gα(12) through the C-terminal domain that has been previously identified to be involved in binding to Gα(13). Furthermore, using this C-terminal domain as a competitively inhibitor of JLP that can disrupt Gα(12)-JLP interaction, we demonstrate that JLP is required for the stimulation of JNK by Gα(12). Our results also indicate that such JLP interaction is required for Gα(12) as well as Gα(13)-mediated neoplastic transformation of JLP. These studies demonstrate for the first time a functional role for JLP in the gep oncogene-regulated neoplastic signaling pathway.
Collapse
Affiliation(s)
- Kimia Kashef
- OU Cancer Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well.
Collapse
Affiliation(s)
- Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
16
|
Shi C, Kendall SC, Grote E, Kaminskyj S, Loewen MC. N-terminal residues of the yeast pheromone receptor, Ste2p, mediate mating events independently of G1-arrest signaling. J Cell Biochem 2009; 107:630-8. [DOI: 10.1002/jcb.22129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Kuppusamy KT, Walcher CL, Nemhauser JL. Cross-regulatory mechanisms in hormone signaling. PLANT MOLECULAR BIOLOGY 2009; 69:375-81. [PMID: 18726558 DOI: 10.1007/s11103-008-9389-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/11/2008] [Indexed: 05/07/2023]
Abstract
Recent studies suggest that hormones act through a web of interacting responses rather than through isolated linear pathways. This signal integration architecture may be one mechanism for increasing the specificity of outcomes in different cellular contexts. Several common themes for cross-regulation between pathways can be observed. Here, we propose a classification scheme for different levels of signaling pathway cross-regulation. This scheme is based on which parts of the individual pathways are acting as information conduits between pathways. Examples from the recent plant hormone biology literature are used to illustrate the different modes of interaction.
Collapse
Affiliation(s)
- Kavitha T Kuppusamy
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|
18
|
Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in scaffold proteins: getting more from less. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:85-106. [PMID: 18619997 PMCID: PMC2671330 DOI: 10.1016/j.pbiomolbio.2008.05.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3beta, p53, Ste5, titin, Fus3, BRCA1, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure.
Collapse
Affiliation(s)
- Marc S. Cortese
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Emes RD, Pocklington AJ, Anderson CNG, Bayes A, Collins MO, Vickers CA, Croning MDR, Malik BR, Choudhary JS, Armstrong JD, Grant SGN. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nat Neurosci 2008; 11:799-806. [PMID: 18536710 PMCID: PMC3624047 DOI: 10.1038/nn.2135] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 05/07/2008] [Indexed: 11/09/2022]
Abstract
Understanding the origins and evolution of synapses may provide insight into species diversity and the organization of the brain. Using comparative proteomics and genomics, we examined the evolution of the postsynaptic density (PSD) and membrane-associated guanylate kinase (MAGUK)-associated signaling complexes (MASCs) that underlie learning and memory. PSD and MASC orthologs found in yeast carry out basic cellular functions to regulate protein synthesis and structural plasticity. We observed marked changes in signaling complexity at the yeast-metazoan and invertebrate-vertebrate boundaries, with an expansion of key synaptic components, notably receptors, adhesion/cytoskeletal proteins and scaffold proteins. A proteomic comparison of Drosophila and mouse MASCs revealed species-specific adaptation with greater signaling complexity in mouse. Although synaptic components were conserved amongst diverse vertebrate species, mapping mRNA and protein expression in the mouse brain showed that vertebrate-specific components preferentially contributed to differences between brain regions. We propose that the evolution of synapse complexity around a core proto-synapse has contributed to invertebrate-vertebrate differences and to brain specialization.
Collapse
Affiliation(s)
- Richard D Emes
- Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Microarray data mining using landmark gene-guided clustering. BMC Bioinformatics 2008; 9:92. [PMID: 18267003 PMCID: PMC2262871 DOI: 10.1186/1471-2105-9-92] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/11/2008] [Indexed: 11/23/2022] Open
Abstract
Background Clustering is a popular data exploration technique widely used in microarray data analysis. Most conventional clustering algorithms, however, generate only one set of clusters independent of the biological context of the analysis. This is often inadequate to explore data from different biological perspectives and gain new insights. We propose a new clustering model that can generate multiple versions of different clusters from a single dataset, each of which highlights a different aspect of the given dataset. Results By applying our SigCalc algorithm to three yeast Saccharomyces cerevisiae datasets we show two results. First, we show that different sets of clusters can be generated from the same dataset using different sets of landmark genes. Each set of clusters groups genes differently and reveals new biological associations between genes that were not apparent from clustering the original microarray expression data. Second, we show that many of these new found biological associations are common across datasets. These results also provide strong evidence of a link between the choice of landmark genes and the new biological associations found in gene clusters. Conclusion We have used the SigCalc algorithm to project the microarray data onto a completely new subspace whose co-ordinates are genes (called landmark genes), known to belong to a Biological Process. The projected space is not a true vector space in mathematical terms. However, we use the term subspace to refer to one of virtually infinite numbers of projected spaces that our proposed method can produce. By changing the biological process and thus the landmark genes, we can change this subspace. We have shown how clustering on this subspace reveals new, biologically meaningful clusters which were not evident in the clusters generated by conventional methods. The R scripts (source code) are freely available under the GPL license. The source code is available [see Additional File 1] as additional material, and the latest version can be obtained at . The code is under active development to incorporate new clustering methods and analysis.
Collapse
|
21
|
Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci U S A 2007; 104:20320-5. [PMID: 18077328 DOI: 10.1073/pnas.0710336105] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), and photon counting histograms (PCH) are fluctuation methods that emerged recently as potentially useful tools for obtaining parameters of molecular dynamics, interactions, and oligomerization in vivo. Here, we report the successful implementation of FCS, FCCS, and PCH in live yeast cells using fluorescent protein-tagged proteins expressed from their native chromosomal loci, examining cytosolic dynamics and interactions among components of the mitogen activated protein kinase (MAPK) cascade, a widely occurring signaling motif, in response to mating pheromone. FCS analysis detailed the diffusion characteristics and mobile concentrations of MAPK proteins. FCCS analysis using EGFP and mCherry-tagged protein pairs observed the interactions of Ste7 (MAPK kinase) with the MAPKs, Fus3 or Kss1, and of the scaffold protein, Ste5, with Ste7 and Ste11 (MAPK kinase kinase) in the cytosol, providing in vivo constants of their binding equilibrium. The interaction of Ste5 with Fus3 in the cytosol was below the limit of detection, suggesting a weak interaction, if it exists, with K(d) >400-500 nM. Using PCH, we show that cytosolic Ste5 were mostly monomers. Artificial dimerization of Ste5, as confirmed by PCH, using a dimerizing tag, stimulated the interaction between Ste5 and Fus3. Native Ste5 was found to bind Fus3 preferentially at the cortex in pheromone-treated cells, as detected by fluorescence resonance energy transfer (FRET). These results provide a quantitative spatial map of MAPK complexes in vivo and directly support the model that membrane association and regulation of the Ste5 scaffold are critical steps in MAPK activation.
Collapse
|
22
|
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, López Marín S, Hoppert M, Streckfuss-Bömeke K, Fischer C, Braus GH. The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Mol Cell Proteomics 2007; 6:1968-79. [PMID: 17704055 DOI: 10.1074/mcp.m700184-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient starvation results in the interaction of Saccharomyces cerevisiae cells with each other and with surfaces. Adhesive growth requires the expression of the FLO11 gene regulated by the Ras/cAMP/cAMP-dependent protein kinase, the Kss1p/MAPK, and the Gcn4p/general amino acid control pathway, respectively. Proteomics two-dimensional DIGE experiments revealed post-transcriptionally regulated proteins in response to amino acid starvation including the ribosomal protein Cpc2p/Asc1p. This putative translational regulator is highly conserved throughout the eukaryotic kingdom and orthologous to mammalian RACK1. Deletion of CPC2/ASC1 abolished amino acid starvation-induced adhesive growth and impaired basal expression of FLO11 and its activation upon starvation in haploid cells. In addition, the diploid Flo11p-dependent pseudohyphal growth during nitrogen limitation was CPC2/ASC1-dependent. A more detailed analysis revealed that a CPC2/ASC1 deletion caused increased sensitivity to cell wall drugs suggesting that the gene is required for general cell wall integrity. Phosphoproteome and Western hybridization data indicate that Cpc2p/Asc1p affected the phosphorylation of the translational initiation factors eIF2 alpha and eIF4A and the ribosome-associated complex RAC. A crucial role of Cpc2p/Asc1p at the ribosomal interface coordinating signal transduction, translation initiation, and transcription factor formation was corroborated.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pincet F. Membrane recruitment of scaffold proteins drives specific signaling. PLoS One 2007; 2:e977. [PMID: 17912354 PMCID: PMC1991591 DOI: 10.1371/journal.pone.0000977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022] Open
Abstract
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.
Collapse
Affiliation(s)
- Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
24
|
Specificity of MAPK signaling towards FLO11 expression is established by crosstalk from cAMP pathway. SYSTEMS AND SYNTHETIC BIOLOGY 2007; 1:99-108. [PMID: 19003439 DOI: 10.1007/s11693-007-9007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
In budding yeast, elements of a single MAP Kinase cascade are shared to regulate a wide range of functions such as mating, differentiation and osmotic stress. However, cells have programmed to execute correct event in response to a given input signal without cross activating other responses. Studies have observed that magnitude and duration of MAPK activation encodes specificity. Similarly, the differential regulation of Tec1p, a transcriptional activator of invasive growth gene, FLO11 by MAP kinases has been observed to bring specificity in mating and invasive growth signaling. However, the understanding of interactions between the shared components and other signaling pathways related to the phenotypic response in contributing towards specificity remains unclear. We specifically address the crosstalk of cAMP pathway with MAPK pathway in haploid invasive growth and show the contribution and importance of cAMP pathway towards invasive growth irrespective of the activation status of MAPK pathway. Our analysis shows that crosstalk from cAMP pathway in haploids might offer an advantage in terms of amplifying the observed weak signaling through MAPK pathway. Further, we show that such a crosstalk in haploids leads to higher FLO11 expression than diploids. We also demonstrate the positive and negative role of Tpk1 and Tpk3 in haploid invasive growth. Finally, we observe that a cross-inhibition at gene level brought about by cAMP pathway controlled inhibitor, Sfl1, perhaps help in deamplifying the MAPK signal and also in preventing FLO11 expression in the absence of cAMP pathway activation.
Collapse
|
25
|
Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1285-98. [PMID: 17196680 DOI: 10.1016/j.bbamcr.2006.11.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are key mediators of eukaryotic transcriptional responses to extracellular signals. These pathways control gene expression in a number of ways including the phosphorylation and regulation of transcription factors, co-regulatory proteins and chromatin proteins. MAPK pathways therefore target multiple components of transcriptional complexes at gene promoters and can regulate DNA binding, protein stability, cellular localization, transactivation or repression, and nucleosome structure. Recent work has uncovered further complexities in the mechanisms by which MAPKs control gene expression including their roles as integral components of transcription factor complexes and their interplay with other post-translational modification pathways. In this review I discuss these advances with particular focus on how MAPK signals are integrated by transcription factor complexes to provide specific transcriptional responses and how this relates to cellular function.
Collapse
Affiliation(s)
- Alan J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
27
|
Abstract
G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
Collapse
Affiliation(s)
- Z G Goldsmith
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate critical signaling pathways involved in cell proliferation, differentiation and apoptosis. Recent studies have shown that a novel class of scaffold proteins mediates the structural and functional organization of the three-tier MAPK module. By linking the MAP3K, MAP2K and MAPK into a multienzyme complex, these MAPK-specific scaffold proteins provide an insulated physical conduit through which signals from the respective MAPK can be transmitted to the appropriate spatiotemporal cellular loci. Scaffold proteins play a determinant role in modulating the signaling strength of their cognate MAPK module by regulating the signal amplitude and duration. The scaffold proteins themselves are finely regulated resulting in dynamic intra- and inter-molecular interactions that can modulate the signaling outputs of MAPK modules. This review focuses on defining the diverse mechanisms by which these scaffold proteins interact with their respective MAPK modules and the role of such interactions in the spatiotemporal organization as well as context-specific signaling of the different MAPK modules.
Collapse
Affiliation(s)
- D N Dhanasekaran
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
29
|
Bardwell L, Zou X, Nie Q, Komarova NL. Mathematical models of specificity in cell signaling. Biophys J 2007; 92:3425-41. [PMID: 17325015 PMCID: PMC1853162 DOI: 10.1529/biophysj.106.090084] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 01/17/2007] [Indexed: 01/12/2023] Open
Abstract
Cellular signaling pathways transduce extracellular signals into appropriate responses. These pathways are typically interconnected to form networks, often with different pathways sharing similar or identical components. A consequence of this connectedness is the potential for cross talk, some of which may be undesirable. Indeed, experimental evidence indicates that cells have evolved insulating mechanisms to partially suppress "leaking" between pathways. Here we characterize mathematical models of simple signaling networks and obtain exact analytical expressions for two measures of cross talk called specificity and fidelity. The performance of several insulating mechanisms--combinatorial signaling, compartmentalization, the inhibition of one pathway by another, and the selective activation of scaffold proteins--is evaluated with respect to the trade-off between the specificity they provide and the constraints they place on the network. The effects of noise are also examined. The insights gained from this analysis are applied to understanding specificity in the yeast mating and invasive growth MAP kinase signaling network.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, California 92697-2300, USA.
| | | | | | | |
Collapse
|
30
|
Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC. The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2007; 5:e0106. [PMID: 22303230 PMCID: PMC3243368 DOI: 10.1199/tab.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
| | | | | | | | - John C. Walker
- Corresponding author: Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA,
| |
Collapse
|
31
|
Round JL, Humphries LA, Tomassian T, Mittelstadt P, Zhang M, Miceli MC. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-kappaB transcription factors. Nat Immunol 2006; 8:154-61. [PMID: 17187070 DOI: 10.1038/ni1422] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 11/08/2006] [Indexed: 11/09/2022]
Abstract
Tyrosine kinases couple the T cell receptor (TCR) to discrete signaling cascades, each of which is capable of inducing a distinct functional outcome. Precisely how TCR signals are channeled toward specific targets remains unclear. TCR stimulation triggers 'alternative' activation of the mitogen-activated protein kinase p38, whereby the Lck and Zap70 tyrosine kinases directly activate p38. Here we report that alternatively activated p38 associated with the Dlgh1 MAGUK scaffold protein. 'Knockdown' of Dlgh1 expression blocked TCR-induced activation of p38 and the transcription factor NFAT but not of the mitogen-activated protein kinase Jnk or transcription factor NF-kappaB. A Dlgh1 mutant incapable of binding p38 failed to activate NFAT. Along with reports that the CARMA1 MAGUK scaffold protein coordinates activation of Jnk and NF-kappaB but not of p38 or NFAT, our findings identify MAGUK scaffold proteins as 'orchestrators' of TCR signal specificity.
Collapse
Affiliation(s)
- June L Round
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90066, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lahav R, Gammie A, Tavazoie S, Rose MD. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Mol Cell Biol 2006; 27:818-29. [PMID: 17101777 PMCID: PMC1800688 DOI: 10.1128/mcb.00439-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast Kar4 is a putative transcription factor required for karyogamy (the fusion of haploid nuclei during mating) and possibly other functions. Previously known to be required only for the transcriptional induction of KAR3 and CIK1, microarray experiments identified many genes regulated by Kar4 in both mating and mitosis. Several gene clusters are positively or negatively regulated by mating pheromone in a Kar4-dependent manner. Chromatin immunoprecipitation and gel shift assays confirmed that Kar4 binds to regulatory DNA sequences upstream of KAR3. Together with one-hybrid experiments, these data support a model in which both Kar4 and Ste12 bind jointly to the KAR3 promoter. Analysis of the upstream regions of Kar4-induced genes identified a DNA sequence motif that may be a binding site for Kar4. Mutation within the motif upstream of KAR3 eliminated pheromone induction. Genes regulated by Kar4, on average, are delayed in their temporal expression and exhibit a more stringent dose response to pheromone. Furthermore, the induction of Kar4 by pheromone is necessary for the delayed temporal induction of KAR3 and PRM2, genes required for efficient nuclear fusion during mating. Accordingly, we propose that Kar4 plays a critical role in the choreography of the mating response.
Collapse
Affiliation(s)
- Ron Lahav
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
33
|
Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 2006; 7:482. [PMID: 17081284 PMCID: PMC1686943 DOI: 10.1186/1471-2105-7-482] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 11/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. METHODS We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. RESULTS We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. CONCLUSION The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.
Collapse
|
34
|
Dortay H, Mehnert N, Bürkle L, Schmülling T, Heyl A. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 2006; 273:4631-44. [PMID: 16965536 DOI: 10.1111/j.1742-4658.2006.05467.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.
Collapse
Affiliation(s)
- Hakan Dortay
- Institute of Biology/Applied Genetics, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
35
|
Zotenko E, Guimarães KS, Jothi R, Przytycka TM. Decomposition of overlapping protein complexes: a graph theoretical method for analyzing static and dynamic protein associations. Algorithms Mol Biol 2006; 1:7. [PMID: 16722537 PMCID: PMC1481596 DOI: 10.1186/1748-7188-1-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/26/2006] [Indexed: 11/10/2022] Open
Abstract
Background Most cellular processes are carried out by multi-protein complexes, groups of proteins that bind together to perform a specific task. Some proteins form stable complexes, while other proteins form transient associations and are part of several complexes at different stages of a cellular process. A better understanding of this higher-order organization of proteins into overlapping complexes is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Results We propose a new method for identifying and representing overlapping protein complexes (or larger units called functional groups) within a protein interaction network. We develop a graph-theoretical framework that enables automatic construction of such representation. We illustrate the effectiveness of our method by applying it to TNFα/NF-κB and pheromone signaling pathways. Conclusion The proposed representation helps in understanding the transitions between functional groups and allows for tracking a protein's path through a cascade of functional groups. Therefore, depending on the nature of the network, our representation is capable of elucidating temporal relations between functional groups. Our results show that the proposed method opens a new avenue for the analysis of protein interaction networks.
Collapse
Affiliation(s)
- Elena Zotenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
- Department of Computer Science, University of Maryland, College Park, USA
| | - Katia S Guimarães
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
- Center of Informatics, Federal University of Pernambuco, Recife, Brazil
| | - Raja Jothi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| |
Collapse
|
36
|
Affiliation(s)
- Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Wang Y, Dohlman HG. Pheromone-regulated Sumoylation of Transcription Factors That Mediate the Invasive to Mating Developmental Switch in Yeast. J Biol Chem 2006; 281:1964-9. [PMID: 16306045 DOI: 10.1074/jbc.m508985200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fundamental question in biology is how different signaling pathways use common signaling proteins to attain different developmental outcomes. The yeast transcription factor Ste12 is required in at least two distinct signaling processes, each regulated by many of the same protein kinases. Whereas Ste12-Ste12 homodimers promote transcription of genes required for mating, Ste12-Tec1 heterodimers activate genes required for invasive growth. We report that Ste12 and Tec1 undergo covalent modification by the ubiquitin-related modifier SUMO. Stimulation by mating pheromone promotes sumoylation of Ste12 and diminishes the sumoylation of Tec1. In the absence of sumoylation Tec1 is more rapidly degraded. We propose that pheromone-regulated sumoylation of Ste12 and Tec1 promotes a developmental switch from the invasive to the mating differentiation program.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
38
|
Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 2005; 3:e334. [PMID: 16176121 PMCID: PMC1233412 DOI: 10.1371/journal.pbio.0030334] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/22/2005] [Indexed: 01/18/2023] Open
Abstract
Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein–protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK–CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this system-wide selectivity insulates two-component pathways from one another, preventing unwanted cross-talk. Histidine kinases and their (sensory) response regulators are screened for in C. crescentus. Follow-up experiments determine several essential components, including one pair critical for cell envelope biogenesis and structure.
Collapse
Affiliation(s)
- Jeffrey M Skerker
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Melanie S Prasol
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Barrett S Perchuk
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Emanuele G Biondi
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael T Laub
- 1Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
39
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|