1
|
Karakas E, Bulut M, Fernie A. Metabolome guided treasure hunt - learning from metabolic diversity. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154494. [PMID: 40288107 DOI: 10.1016/j.jplph.2025.154494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Metabolomics is a rapidly evolving field focused on the comprehensive identification and quantification of small molecules in biological systems. As the final layer of the biological hierarchy following of the genome, transcriptome and proteome, it presents a dynamic snapshot of phenotype, influenced by genetic, environmental and physiological factors. Whilst the metabolome sits downstream of genes and proteins, there are multiple higher levels-tissues, organs, the entire organism, and interactions with other organisms, which need to be considered in order to fully comprehend organismal biology. Advances in metabolomics continue to expand its applications in plant biology, biotechnology, and natural product discovery unlocking many of nature's most beneficial colors, tastes, nutrients and medicines. Flavonoids and other specialized metabolites are essential for plant defense against oxidative stress and function as key phytonutrients for human health. Recent advancements in gene-editing and metabolic engineering have significantly improved the nutritional value and flavor of crop plants. Here we highlight how advanced metabolic analysis is driving improvements in crops uncovering genes that influence nutrient and flavor profile and plant derived compounds with medicinal potential.
Collapse
Affiliation(s)
- Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, Golm, 14476, Potsdam, Germany.
| |
Collapse
|
2
|
Liu L, Li Y, Jian C, Guo R, Wang Q. Regulation of apocarotenoids for quality improvement and biofortification of horticultural crops. J Adv Res 2025:S2090-1232(25)00281-4. [PMID: 40320168 DOI: 10.1016/j.jare.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Agro-food production and consumption impact climate change and human health. Bioactive secondary metabolites in horticulture crops make them an indispensable part of environmentally sustainable and healthy diet. Among them, apocarotenoids from carotenoid degradation are promising in promoting a preference for plant-based foods over other metabolites. AIM OF REVIEW In horticulture crops, carotenoids are vital for photosynthesis and antioxidant defense, but their enzymatic or oxidative metabolites, apocarotenoids, offer greater structural diversity and biological functions. They serve as pigments, scents, signaling molecules, and growth regulators in crop growth and development and provide antioxidant, nutraceutical, and pharmaceutical benefits to human health. The carotenoids as bioactive compounds are well understood. By contrast, much less is explored and reviewed about apocarotenoids. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently identified metabolic pathways and components of apocarotenoids are reviewed. Their significance for quality formation in horticulture crops, including the regulation of pigmentation, aroma, flavor, architecture, nutrition value, and broader ecological interactions is discussed. Additionally, this review specifically highlights two representative apocarotenoids, retinal and abscisic acid (ABA), that exhibit conserved yet distinct regulatory functions across plant and animal kingdoms. Comprehensive dissection of apocarotenoid metabolism and their regulatory mechanisms will enhance apocarotenoid biofortification and subsequent biotechnological exploitation in horticultural commodities. We put forward the perspective that apocarotenoids could enhance horticultural crop quality and then promote sensory- and health-driven dietary choices which will in turn increase consumption and production of horticultural plants and promote both human and ecosystem health.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yuening Li
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chunxia Jian
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Guo J, Wu L, Sun Y, Zhang L, Ye X. Power ultrasound enhanced the flavor quality of tomato juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3722-3729. [PMID: 39887359 DOI: 10.1002/jsfa.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND The loss of flavor in modern tomato cultivars represents a great challenge for the food industry. This study investigated the potential of power ultrasound as an innovative approach to improve tomato juice flavor by releasing bound volatiles. RESULTS It was found that power ultrasound offered a more viable, environmentally friendly technique for enhancing the aroma of tomato juice compared with enzymatic or acid hydrolysis methods. There were significant differences in the released aromas among these three methods: Ultrasound primarily released alcohols and esters, with the characteristic volatiles being trans-2-hexenol and 6-methyl-5-hepten-2-one. Enzymatic hydrolysis primarily released glycosides such as alcohols and aldehydes, with the characteristic volatiles being hexanal, 6-methyl-5-hepten-2-one, β-damascenone, methyl salicylate and phenylethyl alcohol. Acid hydrolysis mainly released ketones and alkenes, with the characteristic volatiles being hexanal, 6-methyl-5-hepten-2-one, β-damascenone, methyl salicylate and trans-2-hexenol. Ultrasound parameters could be varied to improve the level of flavors of tomato juice with the optimal parameters being 40 °C, 10 min, 600 W L-1 ultrasound density and 50% duty cycle. CONCLUSION The present investigation will provide a reference for aroma-enhancing application of power ultrasound. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingtong Guo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Lihong Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yujing Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Le Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ding Y, Guo X, Yang J, Cheng X, Kang S, Brand E, Zhao Z, Liu Y, Wei F, Ma S. Study on authenticity identification and quality evaluation of Styrax by combining multiple detection methods with scientific characterization of description. Food Res Int 2025; 208:116217. [PMID: 40263849 DOI: 10.1016/j.foodres.2025.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Styrax is a rare and expensive natural spice for food, known for its unique and rich aroma and sticky texture, and has a long history of consumption worldwide. There are many counterfeits in the market, but it is challenging to distinguish them with existing standards. Therefore, identifying the authenticity of styrax and evaluating its quality are challenges. A total of 34 samples of styrax were collected in this study, including 4 samples collected from the origin of Guatemala and 30 samples collected from markets in various regions of China. Gas chromatography-mass spectrometry (GC-MS) and headspace gas chromatography-mass spectrometry (HS-GC-MS) were used to analyze the chemical components of styrax qualitatively, and ultra performance liquid chromatography (UPLC) was used to quantitatively analyze cinnamic acid, cinnamyl cinnamate, and 3-phenylpropyl cinnamate in styrax. The texture, odor, and color of styrax were characterized by three modern sensory evaluation technologies: flash gas chromatography electronic nose (flash GC E-nose), rotational rheometer, and spectrophotometer. Thus, a method for identifying the authenticity of styrax was established. The results showed that a total of 73 components were identified in styrax, and qualitative analysis using GC-MS, HS-GC-MS, and PCA model, OPLS-DA model can effectively identify styrax and its counterfeits. The main adulterated ingredients in counterfeit are benzoic acid, Benzyl benzoate, and Benzyl alcohol. These compounds are toxic and can cause food safety problems. The shear viscosity and odor of styrax and its counterfeits are significantly different(p < 0.001), but the color is not significantly different(p > 0.05). Various analytical methods can be used to identify styrax and its counterfeits effectively. This study provides a more comprehensive method for authenticity identification and quality evaluation of styrax, which is conducive to ensuring the edible safety of styrax.
Collapse
Affiliation(s)
- Yiming Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaohan Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Eric Brand
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongzhen Zhao
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Pharmacopoeia Commission, Beijing 100061, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| |
Collapse
|
5
|
ZHANG W, STELINSKI LL, MOHAMED A, WANG G, TETTAMANTI G, CHEN M, HONG M, DALY EZ, BRUIN J, RENAULT D, KEYHANI NO, ZHAO Q. Unlocking agro-ecosystem sustainability: exploring the bottom-up effects of microbes, plants, and insect herbivores. Integr Zool 2025; 20:465-484. [PMID: 39460505 PMCID: PMC12046491 DOI: 10.1111/1749-4877.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Agricultural ecosystem formation and evolution depend on interactions and communication between multiple organisms. Within this context, communication occurs between microbes, plants, and insects, often involving the release and perception of a wide range of chemical cues. Unraveling how this information is coded and interpreted is critical to expanding our understanding of how agricultural ecosystems function in terms of competition and cooperation. Investigations examining dual interactions (e.g. plant-microbe, insect-microbe, and insect-plant) have resolved some basic components of this communication. However, there is a need for systematically examining multitrophic interactions that occur simultaneously between microorganisms, insects, and plants. A more thorough understanding of these multitrophic interactions has been made possible by recent advancements in the study of such ecological interactions, which are based on a variety of contemporary technologies such as artificial intelligence sensors, multi-omics, metabarcoding, and others. Frequently, these developments have led to the discovery of startling examples of each member manipulating the other. Here, we review recent advances in the understanding of bottom-up chemical communication between microorganisms, plants, and insects, and their consequences. We discuss the components of these "chemo-languages" and how they modify outcomes of multi-species interactions across trophic levels. Further, we suggest prospects for translating the current basic understanding of multitrophic interactions into strategies that could be applied in agricultural ecosystems to increase food safety and security.
Collapse
Affiliation(s)
- Wei ZHANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Lukasz L. STELINSKI
- Entomology and Nematology Department, Citrus Research and Education CenterUniversity of FloridaLake AlfredFloridaUSA
| | - Amr MOHAMED
- Department of Entomology, Faculty of ScienceCairo UniversityGizaEgypt
| | - Guangmin WANG
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Gianluca TETTAMANTI
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Moxian CHEN
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
| | - Mingsheng HONG
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Ella Z. DALY
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Jan BRUIN
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Evolutionary Biology and Population BiologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - David RENAULT
- CNRS, ECOBIO (Ecosystems, biodiversity, evolution), UMR 6553University of RennesRennesFrance
| | - Nemat O. KEYHANI
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Qi ZHAO
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyangChina
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Martini X, Stelinski LL. Investigating the role of chemical ecology in plant-pathogen, vector, and secondary consumer interactions and their consequences for integrated pest management. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101307. [PMID: 39615878 DOI: 10.1016/j.cois.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Phytopathogens modify chemical communication between host plants and herbivorous vectors of those pathogens. These chemical cues often attract vectors to sources of inoculum and facilitate the further spread of the pathogens. Recent investigations have demonstrated that secondary consumers also respond to the same pathogen-induced cues that affect the behavior of vectors. Therefore, efforts to manipulate the behavior of natural enemies to improve biological control may yield unpredictable outcomes since coincident volatiles are induced by herbivory and pathogen attacks. We suggest that case-specific analyses of the costs and benefits of these multitrophic interactions are required to translate biological findings into integrated pest management practices.
Collapse
Affiliation(s)
- Xavier Martini
- University of Florida, Entomology and Nematology Department, North Florida Research and Education Center, Quincy, FL, USA.
| | - Lukasz L Stelinski
- University of Florida, Entomology and Nematology Department, Citrus Research and Education Center, Lake Alfred, FL, USA
| |
Collapse
|
7
|
Hu X, Xu W, Zhang Y, Pan S, Xie Y, Liao R, Yang S, Wu Y, Deng D. Microstructure observation and flavor substances excavation of Yunyan 87 tobacco leaves with different oil contents. FRONTIERS IN PLANT SCIENCE 2025; 16:1537924. [PMID: 40110358 PMCID: PMC11920166 DOI: 10.3389/fpls.2025.1537924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Introduction The oil content of tobacco leaves is intimately associated with their aromatic characteristics. This study aims to explore the microstructure and distinctive flavor substances of Yunyan 87 high-oil-content tobacco leaves. Methods The microstructure and characteristic flavor substances of Yunyan 87 tobacco leaves with different oil contents were analyzed using scanning electron microscope (SEM) and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). Results The results indicate that the surface of high-oil tobacco leaves was characterized by a high density of glandular hairs, primarily composed of short-stalked glandular hairs featuring enlarged glandular heads. A total of 1551 flavor substances were detected in high-oil tobacco leaves, compared to 1500 metabolites were identified in low-oil tobacco leaves. Among these flavor substances, eight exhibited up-regulated, while three were down-regulated. Notably, the oil-related substances hexadecanoic acid methyl ester and the aroma-related substances nonanoic acid methyl ester and pseudoionone were found to be significantly more abundant in high-oil tobacco leaves compared to their low-oil counterparts. Consequently, hexadecanoic acid methyl ester may serve as a reliable indicator for evaluating the oil content in tobacco leaves, while nonanoic acid methyl ester and pseudoionone could play crucial roles as flavor substances influencing the aroma of tobacco leaves. Discussion These findings provide a theoretical foundation for future research on the regulatory mechanisms underlying the synthesis of aroma-producing flavor substances in tobacco leaves.
Collapse
Affiliation(s)
- Xianfeng Hu
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Wei Xu
- Raw Material Supply Center, China Tobacco Guizhou Industrial Co Ltd., Guiyang, Guizhou, China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Shouhui Pan
- Production Technology Center, Guizhou Province Tobacco Company Anshun Company, Anshun, Guizhou, China
| | - Yanlan Xie
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Rui Liao
- Raw Material Supply Center, China Tobacco Guizhou Industrial Co Ltd., Guiyang, Guizhou, China
| | - Shenggang Yang
- Raw Material Supply Center, China Tobacco Guizhou Industrial Co Ltd., Guiyang, Guizhou, China
| | - Youxiang Wu
- Raw Material Supply Center, China Tobacco Guizhou Industrial Co Ltd., Guiyang, Guizhou, China
| | - Daomao Deng
- Production Technology Center, Guizhou Province Tobacco Company Anshun Company, Anshun, Guizhou, China
| |
Collapse
|
8
|
Oliveira ACD, Cruz JMDA, Mar JM, Corrêa RF, Rodrigues JVDS, Mendes TADO, Aguiar JPL, Souza FDCDA, Neves KDOG, Santos ADC, Sanches EA, Campelo PH, Oliveira LM, Bezerra JDA. Abiu-do-Mato (Pouteria caimito, Sapotaceae): A promising Amazonian fruit with rich chemical composition, antioxidant potential, and cytotoxic safety. Food Res Int 2025; 205:115984. [PMID: 40032475 DOI: 10.1016/j.foodres.2025.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
The abiu-do-mato (Pouteria caimito) is a fruit highly valued by Amazonian populations; however, its chemical composition and properties remain largely unexplored. This study aimed to fill this gap by analyzing the fruit's chemical profile and evaluating its antioxidant and cytotoxic properties. The research assessed proximate composition through physicochemical analysis, mineral content via atomic absorption spectrophotometry, and antioxidant activity using DPPH, ABTS, and FRAP assays. Total phenolic content was determined with the Folin-Ciocalteu reagent, while fatty acid and volatile compound profiles were identified using GC-MS. Additionally, NMR and HRMS were employed to characterize the chemical composition of the pulp and peel, and cytotoxicity was evaluated in vitro. Results showed that the peel contained the highest levels of antioxidant activity and phenolic compounds, followed by the pulp and seeds. GC-MS analysis of hexane extracts identified 19 compounds, primarily volatiles and fatty acids, with palmitic, elaidic, and linoleic acids being the most abundant. Methanolic extracts revealed 17 compounds, including catechin and its derivatives. Cytotoxicity assays indicated no toxic effects on the tested cells. These findings enhance the understanding of Pouteria caimito, highlighting its nutritional potential and possible applications in food and health-related industries.
Collapse
Affiliation(s)
- Andreza Cavalcante de Oliveira
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69067-005 Brazil; Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil
| | - Josias Martins Dos Anjos Cruz
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69067-005 Brazil; Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil
| | - Josiana Moreira Mar
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil
| | - Renilto Frota Corrêa
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil
| | | | | | - Jaime Paiva Lopes Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa 36570-000 Brazil
| | | | | | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas, Manaus 69067-005 Brazil
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900 Brazil
| | - Lyege Magalhães Oliveira
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil
| | - Jaqueline de Araújo Bezerra
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69067-005 Brazil; Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120 Brazil.
| |
Collapse
|
9
|
Hu X, Li D, Ding Y, Zhang Y, Ren C. Characteristic of volatile flavor compounds in 'Fengtangli' plum ( Prunus salicina Lindl.) were explored based on GC×GC-TOF MS. Front Nutr 2025; 12:1536954. [PMID: 39949543 PMCID: PMC11821493 DOI: 10.3389/fnut.2025.1536954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction The 'Fengtangli' plum (Prunus salicina Lindl.) is favoured by consumers for its characteristic flavor. The purpose of this study was to explore the characteristics of volatile flavor compounds in 'Fengtangli' plum. Methods The flavor compounds of both 'Fengtangli' and 'Siyueli' plums were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS). Results The results revealed the presence of 495 volatile flavor compounds in 'Fengtangli' plum and 466 in 'Siyueli' plum. The relative concentrations of hydrocarbons, alcohols, ketones, and esters in 'Fengtangli' plum were significantly elevated compared to those detected in 'Siyueli' plum. Moreover, the sensorial attributes of sweetness, citrus, herbal, floral, and fruity notes were more prominent in 'Fengtangli' plum relative to those of 'Siyueli' plum. Through the integration of differential metabolite analysis and relative odor activity assessment, it is hypothesized that furan-2-pentyl; (E)-2-octenal; and 1-octen-3-one may represent the characteristic of volatile flavor compounds in 'Fengtangli' plum. Discussion The research results may provide a theoretical reference for the development and application of 'Fengtangli' plum and the study of the synthesis mechanism of characteristic flavor compounds.
Collapse
Affiliation(s)
- Xianfeng Hu
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Deyan Li
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Yi Ding
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Yubo Zhang
- College of Agriculture, Anshun University, Anshun, Guizhou, China
| | - Chunguang Ren
- Guizhou Mountain Resources Research Institute, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Reuter T, Dieminger L, Steidle S, Zoller K, Holocher M, Zhou L, Hanauska DM, Racz K, Barra L. Non-Canonical C 16 Homoterpene Biosynthesis Widespread in Actinobacteria. Angew Chem Int Ed Engl 2025; 64:e202418613. [PMID: 39575593 DOI: 10.1002/anie.202418613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
A novel biosynthetic pathway towards the rare and underexplored non-canonical family of homoterpenes was discovered in actinobacteria through targeted genome mining and enzymatic in vitro reconstitution. The pathway comprises initial methylation-induced double bond isomerization of farnesyl diphosphate (FPP) to (2E,7E)-6-methyl-farnesyl diphosphate, catalyzed by a novel family of methyltransferases with unique dual function. The resulting linear C16 double bond isomer of FPP constitutes the specific substrate for a distinct family of type I terpene cyclases, catalyzing diverse cyclization reactions. Functional characterization of nine enzyme pairs led to discovery of five unprecedented homoterpene natural products. The enzymological novelty enables the development of novel biocatalytic and genetically programmable synthetic strategies towards methylated terpenoids with potentially unique properties ("magic methyl effect").
Collapse
Affiliation(s)
- Tatjana Reuter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lars Dieminger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Sarah Steidle
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Katrin Zoller
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Maximilian Holocher
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lin Zhou
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | | | - Katharina Racz
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lena Barra
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
11
|
Zhai L, Tang Y, Dong M, Chen G, Wang Y, Teng F, Huang J. Characterization of volatile metabolites in temperate and tropical sweet corn cultivars under various post-harvest storage conditions. Food Chem X 2024; 24:102020. [PMID: 39670255 PMCID: PMC11635713 DOI: 10.1016/j.fochx.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Different post-harvest storage conditions and genetic variability influence the flavor and quality of sweet corn. In this study, the changes in the soluble sugar content and volatile substances were comprehensively analyzed in three temperate and three tropical commercial sweet corn cultivars under various storage conditions. The three tropical cultivars exhibited higher contents of soluble total sugar, moisture, and soluble reducing sugar. Temperate and tropical cultivar groups could be well distinguished under all storage conditions based on the volatile substance profiles. Alkanes were important substances that contributed to the flavor of sweet corn and distinguished different sweet corn accessions and the storage conditions. Moreover, the highest peak area of ethyl acetate and ethanol was 8188.2 and 4833.4, respectively, and these two volatile substances exhibited higher content than others and similar change trend. Collectively, the volatile substances identified in this study can help in the identification and assessment of germplasms and guide future breeding strategies for sweet corn.
Collapse
Affiliation(s)
- Lihong Zhai
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
| | - Yunqi Tang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Mingfei Dong
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
| | - Gengshen Chen
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yang Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Feng Teng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
12
|
Zeng X, Zhang S, Geng W, Jin J, Liao K, Tang Z, Wang S, Zhou W. Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry Combined with Sensory Evaluation for the Analysis of Volatile Aromatic Compounds in Apricot ( Prunus armeniaca L.) Germplasm Resources Cultivated in Xinjiang, China. Foods 2024; 13:3912. [PMID: 39682984 DOI: 10.3390/foods13233912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The volatile compounds in the fruits of 24 apricot cultivars were quantitatively and qualitatively determined via headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). A total of 429 volatile compounds were detected in these fruits, and the greatest number of detected terpenoids was 77. Significant differences were found among the cultivars in terms of the total volatile compound content of the fruits, with variation from 112.76 ('ZSHYX') to 317.36 µg/g ('JNL'). Using relative odor activity value (rOAV) analysis, 42 key aroma compounds were identified. The rOAVs of (2S,4R)-4-methyl-2-(2-methylprop-1-enyl)oxane, (E)-non-2-enal, (3-methyl-3-sulfanylbutyl) formate, and thiophen-2-ylmethanethiol were above 1000, and most had green, fruity, and woody odors; these results indicated that these substances were important contributors to the overall aroma of the apricot fruits. Our study provides a comprehensive analysis of the volatile compounds from 24 representative apricot cultivars and can aid in the further scientific understanding of the metabolites and aroma in apricots. These findings provide a reference for controlling fruit quality and for future apricot cultivar breeding.
Collapse
Affiliation(s)
- Xueling Zeng
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shikui Zhang
- Luntai Fruit Germplasm Resources Garden, Xinjiang Academy of Agricultural Sciences, Luntai 841600, China
| | - Wenjuan Geng
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jie Jin
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kang Liao
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhanghu Tang
- Luntai Fruit Germplasm Resources Garden, Xinjiang Academy of Agricultural Sciences, Luntai 841600, China
| | - Shaopeng Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Luntai Fruit Germplasm Resources Garden, Xinjiang Academy of Agricultural Sciences, Luntai 841600, China
| | - Weiquan Zhou
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Postdoctoral Mobile Station of Horticulture, College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
13
|
Li Y, Miao Y, Yuan H, Huang F, Sun M, He L, Liu X, Luo J. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. MOLECULAR PLANT 2024; 17:1866-1882. [PMID: 39533713 DOI: 10.1016/j.molp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Aromatic rice is globally favored for its distinctive scent, which not only increases its nutritional value but also enhances its economic importance. However, apart from 2-acetyl-1-pyrroline (2-AP), the metabolic basis of aroma remains to be clarified, and the genetic basis of the accumulation of fragrance metabolites is largely unknown. In this study, we revealed 2-AP and fatty acid-derived volatiles (FAVs) as key contributors to rice aroma by combining aroma rating with molecular docking. Using a volatilome-based genome-wide association study, we identified two regulatory genes that determine the natural variation of these fragrance metabolites. Genetic and molecular analyses showed that OsWRKY19 not only enhances fragrance by negatively regulating OsBADH2 but also improves agricultural traits in rice. Furthermore, we revealed that OsNAC021 negatively regulates FAV contents via the lipoxygenase pathway, and its knockout resulted in over-accumulation of grain FAVs without a yield penalty. Collectively, our study not only identifies two key regulators of rice aroma but also provides a compelling example about how to deciphering the genetic regulatory mechanisms that underlie rice fragrance, thereby paving the way for the creation of aromatic rice varieties.
Collapse
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuanyuan Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Honglun Yuan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Fengkun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Mingqi Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
14
|
Tan N, Zhao M, Luo Z, Li Z, Zhang X, Xu J, Gu X, Wang Q, Ding S, Ying M, Xu Y. Linalool as a key component in strawberry volatile organic compounds (VOCs) modulates gut microbiota, systemic inflammation, and glucolipid metabolism. Food Chem 2024; 460:140361. [PMID: 39098193 DOI: 10.1016/j.foodchem.2024.140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Strawberries are rich in volatile organic compounds (VOCs), which are increasingly recognized as potential health-promoting factors. This study explored the health effects of intaking strawberry VOC extract and its dominant terpene, linalool. The results indicated that linalool and strawberry VOC extract significantly increased the abundance of beneficial bacteria like Lactobacillus, Bacillus, and Alistipes in mice. Moreover, mice treated with linalool and strawberry VOC extract exhibited notable reductions in serum pro-inflammatory cytokines; interleukin IL-6 decreased by 14.5% and 21.8%, respectively, while IL-1β levels decreased by 9.6% and 13.4%, respectively. Triglyceride levels in the treated groups were reduced by 38.3% and 58.1%, respectively. Spearman's correlation analysis revealed that Bacillus negatively correlated with glucolipid indices, and Bifidobacterium and Dubosiella negatively correlated with inflammatory factors, indicating that alterations in glucolipid metabolism might be associated with the regulation of gut microbiota and systemic inflammation.
Collapse
Affiliation(s)
- Nanfeng Tan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuenan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinya Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Miaomiao Ying
- College of Landscape and Hydraulic Engineering, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| |
Collapse
|
15
|
Giménez-Sanchis A, Bermejo A, Besada C. Changes in the sugars and volatile compounds profiles associated with anthocyanin accumulation in oranges: Blood vs. blond varieties, and slightly pigmented vs. intensely pigmented blood fruit. Food Res Int 2024; 197:115199. [PMID: 39593284 DOI: 10.1016/j.foodres.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The blood oranges accumulate anthocyanins in their peel and pulp, which give them their characteristic red colour. To investigate whether there is a specific volatile compounds profile for blood oranges, we compared the volatile composition of the blood varieties 'Moro', 'Tarocco Rosso' and 'Sanguinelli' to that of the blond ones 'Cadenera', 'Salustina' and 'Hamlim' using a non-targeted approach based on HS-SPME-GC-MS. Moreover, fruits from each blood orange variety were divided into slightly and intensely pigmented fruits, and individual sugars and anthocyanins were determined by liquid chromatography to investigate whether their profiles depend on the degree of pulp pigmentation. A total of 101 volatile compounds were identified in this study. Hierarchical Cluster Analysis, including all compounds, revealed that blood oranges have no unique volatiles profile that makes them more similar to one another than to the blond varieties. For blood orange varieties, our results corroborated that greater anthocyanin accumulation in the most intensely pigmented fruit is associated with higher sugar content (an increase of 0.8-2.3 % depending on the variety). Moreover, we reported for the first time that anthocyanin accumulation is also associated with changes in the volatiles profile. A Multifactor Analysis including data on volatiles, sugars and anthocyanin showed that sucrose is the sugar more strongly linked to anthocyanin accumulation. A group of volatile compounds, mainly esters (ethyl acetate, ethyl-2-methyl butanoate and ethyl-2-butenoate) along with ethanol, are present at increased levels, sometimes even doubling in the most intensely pigmented samples compared to the slightly pigmented ones. These results open the door to further investigate the possible metabolic link between sugars and anthocyanins accumulation and changes in volatile compounds.
Collapse
Affiliation(s)
- Adrián Giménez-Sanchis
- Sensory and Consumer Science Research Group, Postharvest Department, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| | - Almudena Bermejo
- Center of Citriculture and Plant Production, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| | - Cristina Besada
- Sensory and Consumer Science Research Group, Postharvest Department, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| |
Collapse
|
16
|
Casals J, Romero Del Castillo R. Blending as a sample preparation protocol for mitigating intra- and inter-fruit heterogeneity in sensory analysis of sweetness and acidity in tomatoes. FOOD SCI TECHNOL INT 2024:10820132241300737. [PMID: 39584663 DOI: 10.1177/10820132241300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Tomato sensory analysis typically involves assessing different fruits, and the inherent intra- and inter-fruit variability poses experimental challenges. To address this, blending emerges as a sampling protocol to minimize panelist experimental error. This study delves into intra-(locule/pericarp) and inter-fruit heterogeneity, examining the efficacy of blended samples in assessing sweetness and acidity. Results reveal a higher acidity (22.2%) and sweetness perception (10.3%) in locular tissue, influenced by elevated titratable acids (TA) and soluble solids (TSS). The observed locular-to-fruit weight ratios (6-31%) might impact overall taste intensity. Fruit-to-fruit variation was high among the 16 varieties studied for TA, TSS, and dry matter. The use of blending to construct an "average" sample, increased sweetness (23%) and acidity perception (17%) without affecting sample ordering. Our results underscore the need to integrate locular relative weight into tomato phenotyping protocols and highlight the potential of blended samples in sensory analysis of traits related to the non-volatile fraction.
Collapse
Affiliation(s)
- Joan Casals
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, Castelldefels, Spain
- Fundació Miquel Agustí, Castelldefels, Spain
| | | |
Collapse
|
17
|
Li Y, Zheng L, Mustafa G, Shao Z, Liu H, Li Y, Wang Y, Liu L, Xu C, Wang T, Zheng J, Meng F, Wang Q. Enhancing post-harvest quality of tomato fruits with chitosan oligosaccharide-zinc oxide nanocomposites: A study on biocompatibility, quality improvement, and carotenoid enhancement. Food Chem 2024; 454:139685. [PMID: 38795629 DOI: 10.1016/j.foodchem.2024.139685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
In this study, a new composite with combination of chitosan oligosaccharide (COS) and zinc oxide nanoparticles (ZnO NPs), termed Chitosan Oligosaccharide-Zinc Oxide Nanocomposites (COS-ZnO NC), was designed to enhance the quality of tomato fruits during postharvest storage. SEM analysis showed a uniform distribution of COS-ZnO NC films on tomato surfaces, indicating high biocompatibility, while the FTIR spectrum confirmed the interaction of COS and ZnO NPs via hydrogen bonds. The COS-ZnO NC exerts positive effects on post-harvest quality of tomato fruits, including significantly reduced water loss, fewer skin wrinkles, increased sugar-acid ratio, and enhanced vitamin C and carotenoids accumulation. Furthermore, COS-ZnO NC induces transcription of carotenoid biosynthesis genes and promotes carotenoids storage in the chromoplast. These results suggest that the COS-ZnO NC film can significantly improve the quality traits of tomato fruits, and therefore is potential in post-harvest storage of tomato fruits.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lingjie Zheng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Ghazala Mustafa
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China; Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zhiyong Shao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Haoran Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yuening Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yibo Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chenyu Xu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
18
|
Sun Y, Li X, Wang H, Zhang Q, Wang X, Jiao Y, Zhang J, Yang Y, Xue W, Qian Y, Zhang X, Wang R, Chen S. The CsDof1.8-CsLIPOXYGENASE09 module regulates C9 aroma production in cucumber. PLANT PHYSIOLOGY 2024; 196:338-351. [PMID: 38875160 DOI: 10.1093/plphys/kiae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Nine-carbon aldehydes and their relative alcohols (C9 aromas) are the main aroma compounds of cucumber (Cucumis sativus L.) fruits and provide a unique cucumber-like note. However, the key regulators of C9 aroma accumulation in cucumber fruit are poorly characterized. Based on C9 aroma dynamic analysis and transcriptome analysis during fruit development of two different cucumber inbred lines, Q16 and Q24, Lipoxygenase09 (CsLOX09) was identified as a candidate gene for C9 aroma accumulation. Additionally, Q24 with higher CsLOX09 expression accumulated more C9 aromas than Q16. To verify the function of CsLOX09, Cslox09 homozygote knockout lines were created. C9 aroma content decreased by 80.79% to 99.16% in these mutants compared to the wild type. To further explore the reasons for the difference in CsLOX09 expression between Q16 and Q24 fruits, a co-expression network was constructed by integrating the C9 aroma-associated metabolism and transcriptomic data. Eighteen candidate transcription factors were highly correlated with the expression of CsLOX09. DNA binding with One Finger 1.8 (CsDof1.8) was confirmed to bind directly to the A/TAAAG motif of the CsLOX09 promoter through dual-luciferase, yeast one-hybrid, chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. Furthermore, C9 aroma content and CsLOX09 expression were significantly increased in the CsDof1.8 overexpression lines. Overall, these data elucidate the metabolic regulation of C9 aromas in cucumber and provide a foundation for facilitating the regulation of flavor in cucumber breeding.
Collapse
Affiliation(s)
- Yinhui Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Xuzhen Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Hua Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Qiongzhi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Xin Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Yanan Jiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Yuying Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Yulei Qian
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Xiaojiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Ruochen Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
19
|
Fu L, Chen Q, Li Y, Li Y, Pang X, Zhang Z, Fang F. Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit. PHYSIOLOGIA PLANTARUM 2024; 176:e14559. [PMID: 39377160 DOI: 10.1111/ppl.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.
Collapse
Affiliation(s)
- Liyu Fu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Qiuzi Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yawen Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yanlan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Holland CK, Jez JM. Fidelity in plant hormone modifications catalyzed by Arabidopsis GH3 acyl acid amido synthetases. J Biol Chem 2024; 300:107421. [PMID: 38815865 PMCID: PMC11253546 DOI: 10.1016/j.jbc.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts; Department of Biology, Washington University in St Louis, St Louis, Missouri
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri.
| |
Collapse
|
21
|
Leonti M, Cabras S, Castellanos Nueda ME, Casu L. Food drugs as drivers of therapeutic knowledge and the role of chemosensory qualities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118012. [PMID: 38447614 DOI: 10.1016/j.jep.2024.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemosensory qualities of botanical drugs are important cues for anticipating physiologic consequences. Whether a botanical drug is used for both, food and medicine, or only as medicine depends on taste preferences, nutritional content, cultural background, and the individual and overall epidemiological context. MATERIAL AND METHODS We subjected 540 botanical drugs described in De Materia Medica having at least one oral medical application to a tasting panel. The 540 drugs were grouped into those only used for medicine (388) and those also used for food (152). The associations with chemosensory qualities and therapeutic indications were compared across the two groups. We considered 22 experimentally assessed chemosensory qualities and 39 categories of therapeutic use groups. We wanted to know, 1): which chemosensory qualities increase the probability of an orally applied botanical drug to be also used for food ? 2): which chemosensory qualities augment the probability of an orally applied botanical drug to be only used for medicine? and 3): whether there are differences in therapeutic indications between orally applied botanical drugs also used for food (food drugs) and botanical drugs applied exclusively for medicinal purposes (non-food drugs) and, if yes, how the differences can be explained. RESULTS Chemosensory qualities augmenting the probability of an orally applied botanical drug to be also used for food were sweet, starchy, salty, burning/hot, fruity, nutty, and cooling. Therapeutics used for diarrhoea, as libido modulators, purgatives, laxatives, for expelling parasites, breast and lactation and increasing diuresis, were preferentially sourced from food drugs while drugs used for liver and jaundice, vaginal discharge and humoral management showed significant negative associations with food dugs in ancient Greek-Roman materia medica. CONCLUSION Therapeutics used for ailments of body organs involved in the digestion of food and the excretion of waste products showed a tendency to be sourced from food drugs. Arguably, the daily consumption of food offered the possibility for observing post-prandial physiologic and pharmacologic effects which led to a high therapeutic versatility of food drugs and the possibility to understand benefits of taste and flavour qualities. The difference in chemosensory qualities between food drugs and non-food drugs is demarcating the organoleptic requirements of food rather than that of medicine.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy.
| | - Stefano Cabras
- Department of Statistics, Carlos III University of Madrid, C/Madrid, 126, 28903, Getafe, (MA), Spain
| | | | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, (CA), Italy
| |
Collapse
|
22
|
Chang Y, Zhang X, Wang C, Ma N, Xie J, Zhang J. Fruit Quality Analysis and Flavor Comprehensive Evaluation of Cherry Tomatoes of Different Colors. Foods 2024; 13:1898. [PMID: 38928838 PMCID: PMC11202461 DOI: 10.3390/foods13121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Cherry tomatoes are popular vegetables worldwide owing to their variety of colors and nutrients. However, an integrated evaluation of color and flavor has rarely been reported. This study examined the differences among red, brown, yellow, and green cherry tomatoes grown in the Jiuquan area. A comprehensive analysis of the flavor quality of these tomatoes, including sensory evaluation, electronic nose analysis, nutritional and flavor quality measurements, targeted metabolomics, and chemometrics, was conducted. Red tomatoes had the highest lycopene content, and green tomatoes had the highest soluble protein and vitamin C content. In cherry tomatoes, K is the most abundant macro element and Fe and Zn are the most abundant trace elements. Brown cherry tomatoes had significantly higher K, P, Mg, Cu and Fe contents than other colored tomatoes, and red tomatoes had significantly higher Zn content than other cherry tomatoes (218.8-724.3%). Yellow cherry tomatoes had the highest soluble sugar content, followed by red, brown and green tomatoes. A total of 20 amino acids of tomatoes were simultaneously determined by LC-MS. Yellow cherry tomatoes have the highest content of essential amino acids, aromatic amino acids and sweetness amino acids. Red tomatoes have the highest levels of non-essential and sourness amino acid contents. An analysis of 30 flavor indicators revealed that yellow tomatoes had the best flavor, followed by red, brown, and green tomatoes. Our work lays the foundation for future research on color and flavor formation in cherry tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (X.Z.); (C.W.); (N.M.); (J.X.)
| |
Collapse
|
23
|
Healy L, Zhu X, Dong G, Selli S, Kelebek H, Sullivan C, Tiwari U, Tiwari BK. Investigation into the use of novel pretreatments in the fermentation of Alaria esculenta by Lactiplantibacillus plantarum and kombucha SCOBY. Food Chem 2024; 442:138335. [PMID: 38237300 DOI: 10.1016/j.foodchem.2023.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024]
Abstract
High pressure processing (HPP), ultrasound probe (USP) and ultrasound bath (USB) were applied to Alaria esculenta as a fermentation pre-treatment. Seaweed was then fermented by Lactiplantibacillus plantarum (LAB) or symbiotic culture of bacteria and yeast (SCOBY). Physiochemical properties of fermented seaweed were measured. pH was significantly different (p < 0.05) across SCOBY-fermented samples with different pre-treatments but not LAB-fermented samples (p > 0.05). There was a significant difference (p < 0.05) in total viable count (TVC) with the highest count in HPP-treated samples, and lowest in control samples. Organic acids differed significantly (p < 0.05) across pre-treatments for both fermentation groups. 27 volatile compounds were detected in the samples, with alcohols and ketones the most prominent groups. The quantity of volatile compounds was not significantly lower (p > 0.05) from seaweed powder. The control sample had the highest levels of tropomyosin (15.92 mg/kg) followed by HPP samples.
Collapse
Affiliation(s)
- Laura Healy
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gaoya Dong
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01330 Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, Dublin, Ireland
| | - Uma Tiwari
- Department of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.
| | | |
Collapse
|
24
|
Jiao H, Wu S, Li J, Sun Y. Effects of Pelletized and Coated Organic Fertilizers on Flavor Compounds of Tomato Fruits and Leaves. Foods 2024; 13:1653. [PMID: 38890880 PMCID: PMC11171810 DOI: 10.3390/foods13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The application of organic fertilizers is one of the most important agricultural measures aimed at improving the flavor and productivity of Lycopersicon esculentum, with the granulation and coating of organic fertilizers, which can reduce seepage losses of great significance to the ecosystem. In this study, Jingcai 8 tomato was selected as the test material. Headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) methods were used to investigate the effects of different pelletized organic fertilizers and various coating materials on the flavor profile of the tomatoes. The results indicated that 67 volatile organic compounds (VOCs) were identified in the tomato fruits and 62 volatile compounds were identified in the leaves under different fertilizer treatments. The volatile compound content of the fruits in the BP treatment group was 35.38 μg/g, which was higher than that in other treatment groups, and the volatile compound content of the leaves was lower. A differential compound analysis with log2|fold change| ≥ 1 and variable important in projection (VIP) > 1 highlighted styrene, 3-methyl-1-butanol, and (E, E)-2,4-hexadienal as the major up-regulated compounds and methyl salicylate as the major down-regulated compound in the tomato fruit BCK (control) vs. BP. Moreover, the α-phellandrene content decreased in the tomato leaves. In addition, an analysis of the tomato fruit differential compounds and compounds with odor activity values (OAV) of ≥ 1, considering the OAV values of characteristic aroma compounds, identified key compounds affecting the flavor of the tomato fruits under the BP treatment. These included 2-nonenal, (E)-2-pentylfuran, trans-β-ionone, 1-penten-3-one, (E, E)-2,4-hexadienal, and 3-hexenol (fruity, floral, and herbaceous odors), (E, E)-2,4-heptadienal (fatty odor), and hexanal (green odor). The combined results analysis of the volatile compound content, differential compounds, and OAV values of characteristic aroma compounds aimed to clarify that the BP treatment group, which applied pelletized, large-grain organic fertilizer with polyurethane (pozzolanic + small-grain oil-coated + 2% paraffinic + 4% polyurethane) as a coating material, proved to be most effective in influencing the flavor of the tomato fruits. This finding lays the foundation for its potential commercial application in artificial orchards.
Collapse
Affiliation(s)
- Huiying Jiao
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China;
| | - Sijia Wu
- Faculty of Food Science and Engineering, China Agricultural University, Beijing 100091, China;
| | - Jingming Li
- Faculty of Food Science and Engineering, China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China;
- Faculty of Food Science and Engineering, China Agricultural University, Beijing 100091, China;
| | - Yanxin Sun
- Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
25
|
Cordero P, Herrera-Alcaíno S, Philp V, Muñoz G, Luna D, Guzmán-Pino SA. Taste Preferences in Broilers: Effect of Age, Delivery Matrix, and Number of Chickens per Pen on Selection and Consumption Behaviour. Animals (Basel) 2024; 14:1507. [PMID: 38791724 PMCID: PMC11117319 DOI: 10.3390/ani14101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Due to substantial differences between studies, the understanding of avian taste perception remains incomplete. Also, studies on chicken taste preferences have mainly focused on measuring consumption differences, neglecting consumption behaviour patterns. This study investigated how age, the compound delivery matrix, and the number of birds per pen affect broiler chicken preferences and consumption behaviour, and established their preference values for four taste compounds. Ninety-six one-day-old male broiler chickens (Ross 308) were divided into two age groups (initial: days 7-23; final: days 26-42), with two compound delivery matrices (water or ground wheat) and two numbers of birds (one or two chickens per pen), following a 2 × 2 × 2 factorial design. Four taste compounds (sucrose, monosodium glutamate (MSG), L-lysine, and calcium carbonate) were tested at different concentrations. Preferences were assessed at 2, 4, and 8 h post-test, along with recording various behavioural parameters. Initial-stage birds showed higher (p < 0.001) preference values, time of approach (TA), number of bouts (NB), duration of bouts (DB), and number of pecks (NP) than final-stage birds. Birds exposed to a water matrix also exhibited higher (p < 0.001) preference and NB, while those exposed to a ground wheat matrix showed a higher (p < 0.001) NP. Pens with a pair of birds had a higher (p < 0.003) 2 h preference, TA, NB, DB, and NP, than pens with a single chicken. Chickens showed significant preference values for 100 mM sucrose at 2 h (p = 0.025), 150 mM MSG at 4 h (p = 0.026) and 8 h (p = 0.013), and 300 mM MSG at 2 h (p = 0.013). We concluded that all the variables evaluated influence broilers' taste preferences and consumption behaviour during selection tests. Future studies should prioritize including chickens in the initial stage of the production cycle, testing them in pairs or groups, and delivering compounds via a liquid matrix.
Collapse
Affiliation(s)
- Paloma Cordero
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santiago 8820808, Chile; (P.C.); (S.H.-A.)
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| | - Sofía Herrera-Alcaíno
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santiago 8820808, Chile; (P.C.); (S.H.-A.)
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| | - Victoria Philp
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| | - Geraldine Muñoz
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| | - Daniela Luna
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| | - Sergio A. Guzmán-Pino
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (V.P.); (G.M.); (D.L.)
| |
Collapse
|
26
|
Barroso AS, Massing LT, Suemitsu C, Mourão RHV, Figueiredo PLB, Maia JGS. Volatile Constituents of Some Myrtaceous Edible and Medicinal Fruits from the Brazilian Amazon. Foods 2024; 13:1490. [PMID: 38790790 PMCID: PMC11119775 DOI: 10.3390/foods13101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Native and exotic fruits from the Amazon have varied characteristics, with aroma being a decisive factor in their acceptance for medicinal use as a nutraceutical supplement. This work aimed to analyze the chemical constituents of the volatile concentrates of some Myrtaceous fruit species sampled in the Brazilian Amazon. The fruit's pulps were subjected to simultaneous distillation-extraction, and gas chromatography-mass spectrometry was used to analyze their volatile chemical composition. In the volatile concentrate of Eugenia stipitata (Araçá-boi) α-pinene (17.5%), citronellyl butanoate (15.6%), and pogostol (13.5%) were identified as primary constituents; Eugenia uniflora (Ginja) concentrate comprised curzerene (30.5%), germacrone (15.4%), atractylone (13.1%), and (E)-β-ocimene (11.1%); in Myrciaria dubia (Camu-Camu), α-pinene (55.8%), (E)-β-ocimene (13.1%), and α-terpineol (10.0%) were present; in Psidium guajava (Goiaba) were (2E)-hexenal (21.7%), hexanal (15.4%), caryophylla-4(12),8(13)-dien-5-β-ol (10.5%), caryophyllene oxide (9.2%), and pogostol (8.3%); and in Psidium guineense (Araçá), limonene (25.2%), ethyl butanoate (12.1%), epi-β-bisabolol (9.8%), and α-pinene (9.2%) were the main constituents. The analyzed volatile concentrates of these fruit species presented a significant diversity of constituents with a predominance of functional groups, such as monoterpenes, sesquiterpenes, and fatty acid derivatives, originating from the plant's secondary metabolism and playing an important role in their nutritional and medicinal uses.
Collapse
Affiliation(s)
- Adenilson S. Barroso
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil; (A.S.B.); (L.T.M.); (C.S.); (R.H.V.M.)
| | - Lais T. Massing
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil; (A.S.B.); (L.T.M.); (C.S.); (R.H.V.M.)
| | - Chieno Suemitsu
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil; (A.S.B.); (L.T.M.); (C.S.); (R.H.V.M.)
| | - Rosa Helena V. Mourão
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil; (A.S.B.); (L.T.M.); (C.S.); (R.H.V.M.)
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
27
|
Cao SH, Guo ZH, Liu H, Wang GM, Qi KJ, Wang ZW, Tian RP, Sha SF, Zhang SL, Gu C. Interaction among homeodomain transcription factors mediates ethylene biosynthesis during pear fruit ripening. HORTICULTURE RESEARCH 2024; 11:uhae086. [PMID: 38799127 PMCID: PMC11116900 DOI: 10.1093/hr/uhae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/17/2024] [Indexed: 05/29/2024]
Abstract
Fruit ripening is manipulated by the plant phytohormone ethylene in climacteric fruits. While the transcription factors (TFs) involved in ethylene biosynthesis and fruit ripening have been extensively studied in tomato, their identification in pear remains limited. In this study, we identified and characterized a HOMEODOMAIN TF, PbHB.G7.2, through transcriptome analysis. PbHB.G7.2 could directly bind to the promoter of the ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid synthase (PbACS1b), thereby enhancing its activity and resulting in increased ethylene production during pear fruit ripening. Yeast-two-hybrid screening revealed that PbHB.G7.2 interacted with PbHB.G1 and PbHB.G2.1. Notably, these interactions disrupted the transcriptional activation of PbHB.G7.2. Interestingly, PbHB.G1 and PbHB.G2.1 also bind to the PbACS1b promoter, albeit different regions from those bound by PbHB.G7.2. Moreover, the regions of PbHB.G1 and PbHB.G2.1 involved in their interaction with PbHB.G7.2 differ from the regions responsible for binding to the PbACS1b promoter. Nonetheless, these interactions also disrupt the transcriptional activation of PbHB.G1 and PbHB.G2.1. These findings offer a new mechanism of ethylene biosynthesis during climacteric fruit ripening.
Collapse
Affiliation(s)
- Su-Hao Cao
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Hua Guo
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Ming Wang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Jie Qi
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze-Wen Wang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui-Ping Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou-Feng Sha
- Insitute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou 115009, China
| | - Shao-Ling Zhang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Yan H, Lin Z, Li W, Gao J, Li P, Chen Q, Lv H, Zhang Y, Dai W, Lin Z, Zhu Y. Unraveling the Enantiomeric Distribution of Glycosidically Bound Linalool in Teas ( Camellia sinensis) and Their Acidolysis Characteristics and Pyrolysis Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38607252 DOI: 10.1021/acs.jafc.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-β-primeveroside and linalyl-β-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-β-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-β-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-β-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weixuan Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianjian Gao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pengliang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qincao Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yue Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weidong Dai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
29
|
Badgujar KC, Badgujar JK, Bhanage BM. Improved biocatalytic activity of steapsin lipase in supercritical carbon dioxide medium for the synthesis of benzyl butyrate: A commercially important flavour compound. J Biotechnol 2024; 384:55-62. [PMID: 38401645 DOI: 10.1016/j.jbiotec.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Enzymatic synthesis of flavours, fragrances and food additives compounds have great demand and market value. Benzyl butyrate is commercially important flavour and food additive compound having global use around 100 metric tons/year and widely used in various industrial sectors. However, industrial synthesis of food additive benzyl butyrate is carried out by conventional chemical process which demands for the green biobased sustainable synthetic process. The present work reports steapsin catalyzed synthesis of benzyl butyrate for the first time in supercritical carbon dioxide (Sc-CO2) reaction medium. All reaction variables are optimized in details to obtain competent conversion of 99% in Sc-CO2 reaction medium. The developed steapsin catalyzed synthesis in Sc-CO2 medium offered almost four-fold higher conversion to benzyl butyrate than organic (conventional) solvent. The steapsin biocatalyst was effectually recycled up to five reaction cycles in Sc-CO2 medium. Moreover, the developed steapsin catalyzed protocol in Sc-CO2 medium was extended to synthesize different ten industrially significant flavour fragrance compounds that offers 99% conversion and three to five-folds higher conversion than organic medium. Thus, the present steapsin catalyzed protocol offered improved synthesis of various commercially significant flavour compounds in Sc-CO2. medium.
Collapse
Affiliation(s)
- Kirtikumar C Badgujar
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Jagruti K Badgujar
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Bhalchandra M Bhanage
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
30
|
Li R, Wang J, Yuan H, Niu Y, Sun J, Tian Q, Wu Y, Yu J, Tang Z, Xiao X, Xie J, Hu L, Liu Z, Liao W. Exogenous application of ALA enhanced sugar, acid and aroma qualities in tomato fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1323048. [PMID: 38186602 PMCID: PMC10771311 DOI: 10.3389/fpls.2023.1323048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.
Collapse
Affiliation(s)
- Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Qiang Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
31
|
Lee Y, Kim SJ, Kim YJ, Kim YH, Yoon JY, Shin J, Ok SM, Kim EJ, Choi EJ, Oh JW. Sensor development for multiple simultaneous classifications using genetically engineered M13 bacteriophages. Biosens Bioelectron 2023; 241:115642. [PMID: 37703643 DOI: 10.1016/j.bios.2023.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Sensors for detecting infinitesimal amounts of chemicals in air have been widely developed because they can identify the origin of chemicals. These sensing technologies are also used to determine the variety and freshness of fresh food and detect explosives, hazardous chemicals, environmental hormones, and diseases using exhaled gases. However, there is still a need to rapidly develop portable and highly sensitive sensors that respond to complex environments. Here, we show an efficient method for optimising an M13 bacteriophage-based multi-array colourimetric sensor for multiple simultaneous classifications. Apples, which are difficult to classify due to many varieties in distribution, were selected for classifying targets. M13 was adopted to fabricate a multi-array colourimetric sensor using the self-templating process since a chemical property of major coat protein p8 consisting of the M13 body can be manipulated by genetic engineering to respond to various target substances. The twenty sensor units, which consisted of different types of manipulated M13, exhibited colour changes because of the change of photonic crystal-like nanostructure when they were exposed to target substances associated with apples. The classification success rate of the optimal sensor combinations was achieved with high accuracy for the apple variety (100%), four standard fragrances (100%), and aging (84.5%) simultaneously. We expect that this optimisation technique can be used for rapid sensor development capable of multiple simultaneous classifications in various fields, such as medical diagnosis, hazardous environment monitoring, and the food industry, where sensors need to be developed in response to complex environments consisting of various targets.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea.
| | - Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea
| | - Ji-Young Yoon
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Jonghyun Shin
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Pediatric Dentistry, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Soo-Min Ok
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Oral Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Eun-Jung Kim
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea; Korea Nanobiotechnology Center, Pusan National University, 46241, Busan, Republic of Korea
| | - Jin-Woo Oh
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea; Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea; Korea Nanobiotechnology Center, Pusan National University, 46241, Busan, Republic of Korea; Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, 46241, Busan, Republic of Korea
| |
Collapse
|
32
|
Duan YT, Koutsaviti A, Harizani M, Ignea C, Roussis V, Zhao Y, Ioannou E, Kampranis SC. Widespread biosynthesis of 16-carbon terpenoids in bacteria. Nat Chem Biol 2023; 19:1532-1539. [PMID: 37828399 DOI: 10.1038/s41589-023-01445-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Terpenoids are the most diverse group of specialized metabolites with numerous applications. Their biosynthesis is based on the five-carbon isoprene building block and, as a result, almost all terpenoids isolated to date are based on backbones that contain multiples of five carbon atoms. Intrigued by the discovery of an unusual bacterial terpenoid with a 16-carbon skeleton, here we investigate whether the biosynthesis of 16-carbon terpenoids is more widespread than this single example. We mine bacterial genomic information and identify potential C16 biosynthetic clusters in more than 700 sequenced genomes. We study selected clusters using a yeast synthetic biology platform and reveal that the encoded synthases produce at least 47 different noncanonical terpenoids. By thorough chemical analysis, we explain the structures of 13 C16 metabolites, most of which possess intricate highly strained bi- and tricyclic backbones. Our results unveil the existence of an extensive class of terpenoids in bacteria.
Collapse
Affiliation(s)
- Yao-Tao Duan
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Maria Harizani
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Codruta Ignea
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece.
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
33
|
Li LX, Fang Y, Li D, Zhu ZH, Zhang Y, Tang ZY, Li T, Chen XS, Feng SQ. Transcription factors MdMYC2 and MdMYB85 interact with ester aroma synthesis gene MdAAT1 in apple. PLANT PHYSIOLOGY 2023; 193:2442-2458. [PMID: 37590971 DOI: 10.1093/plphys/kiad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Volatile esters in apple (Malus domestica) fruit are the critical aroma components determining apple flavor quality. While the exact molecular regulatory mechanism remains unknown, jasmonic acid (JA) plays a crucial role in stimulating the synthesis of ester aromas in apples. In our study, we investigated the effects of methyl jasmonate (MeJA) on the production of ester aroma in apples. MeJA treatment significantly increased ester aroma synthesis, accompanied by the upregulation of several genes involved in the jasmonate pathway transduction. Specifically, expression of the gene MdMYC2, which encodes a transcription factor associated with the jasmonate pathway, and the R2R3-MYB transcription factor gene MdMYB85 increased upon MeJA treatment. Furthermore, the essential gene ALCOHOL ACYLTRANSFERASE 1 (MdAAT1), encoding an enzyme responsible for ester aroma synthesis, showed increased expression levels as well. Our investigation revealed that MdMYC2 and MdMYB85 directly interacted with the promoter region of MdAAT1, thereby enhancing its transcriptional activity. In addition, MdMYC2 and MdMYB85 directly bind their promoters and activate transcription. Notably, the interaction between MdMYC2 and MdMYB85 proteins further amplified the regulatory effect of MdMYB85 on MdMYC2 and MdAAT1, as well as that of MdMYC2 on MdMYB85 and MdAAT1. Collectively, our findings elucidate the role of the gene module consisting of MdMYC2, MdMYB85, and MdAAT1 in mediating the effects of JA and promoting ester aroma synthesis in apples.
Collapse
Affiliation(s)
- Li-Xian Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yue Fang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zi-Hao Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ya Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zi-Yu Tang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ting Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xue-Sen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shou-Qian Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
34
|
Xu L, Zang E, Sun S, Li M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit Rev Food Sci Nutr 2023; 63:11859-11879. [PMID: 35816297 DOI: 10.1080/10408398.2022.2097195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables (F&V) are an indispensable part of a healthy diet. The volatile and nonvolatile compounds present in F&V constitute unique flavor substances. This paper reviews the main flavor substances present in F&V, as well as the biosynthetic pathways and molecular regulation mechanisms of these compounds. A series of compounds introduced include aromatic substances, soluble sugars and organic acids, which constitute the key flavor substances of F&V. Esters, phenols, alcohols, amino acids and terpenes are the main volatile aromatic substances, and nonvolatile substances are represented by amino acids, fatty acids and carbohydrates; The combination of these ingredients is the cause of the sour, sweet, bitter, astringent and spicy taste of these foods. This provides a theoretical basis for the study of the interaction between volatile and nonvolatile substances in F&V, and also provides a research direction for the healthy development of food in the future.
Collapse
Affiliation(s)
- Ling Xu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Erhuan Zang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Shuying Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Minhui Li
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| |
Collapse
|
35
|
Wu W, Sun NJ, Xu Y, Chen YT, Liu XF, Shi LY, Chen W, Zhu QG, Gong BC, Yin XR, Yang ZF. Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors. PLANT PHYSIOLOGY 2023; 193:840-854. [PMID: 37325946 DOI: 10.1093/plphys/kiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
As the harvest season of most fruit is concentrated, fruit maturation manipulation is essential for the fresh fruit industry to prolong sales time. Gibberellin (GA), an important phytohormone necessary for plant growth and development, has also shown a substantial regulatory effect on fruit maturation; however, its regulatory mechanisms remain inconclusive. In this research, preharvest GA3 treatment effectively delayed fruit maturation in several persimmon (Diospyros kaki) cultivars. Among the proteins encoded by differentially expressed genes, 2 transcriptional activators (NAC TRANSCRIPTION FACTOR DkNAC24 and ETHYLENE RESPONSIVE FACTOR DkERF38) and a repressor (MYB-LIKE TRANSCRIPTION FACTOR DkMYB22) were direct regulators of GERANYLGERANYL DIPHOSPHATE SYNTHASE DkGGPS1, LYSINE HISTIDINE TRANSPORTER DkLHT1, and FRUCTOSE-BISPHOSPHATE ALDOLASE DkFBA1, respectively, resulting in the inhibition of carotenoid synthesis, outward transport of an ethylene precursor, and consumption of fructose and glucose. Thus, the present study not only provides a practical method to prolong the persimmon fruit maturation period in various cultivars but also provides insights into the regulatory mechanisms of GA on multiple aspects of fruit quality formation at the transcriptional regulation level.
Collapse
Affiliation(s)
- Wei Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ning-Jing Sun
- College of Resources and Environment Sciences, Baoshan University, Baoshan, Yunnan 678000, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yu-Tong Chen
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Fen Liu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li-Yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Qing-Gang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bang-Chu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xue-Ren Yin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Feng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
36
|
Khaksar G, Tohge T, Sirikantaramas S. Editorial: Towards plant-based foods: from plant biodiversity to discovery of sensorially active compounds. FRONTIERS IN PLANT SCIENCE 2023; 14:1240745. [PMID: 37600175 PMCID: PMC10436197 DOI: 10.3389/fpls.2023.1240745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Gholamreza Khaksar
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Kaur G, Abugu M, Tieman D. The dissection of tomato flavor: biochemistry, genetics, and omics. FRONTIERS IN PLANT SCIENCE 2023; 14:1144113. [PMID: 37346138 PMCID: PMC10281629 DOI: 10.3389/fpls.2023.1144113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Flavor and quality are the major drivers of fruit consumption in the US. However, the poor flavor of modern commercial tomato varieties is a major cause of consumer dissatisfaction. Studies in flavor research have informed the role of volatile organic compounds in improving overall liking and sweetness of tomatoes. These studies have utilized and applied the tools of molecular biology, genetics, biochemistry, omics, machine learning, and gene editing to elucidate the compounds and biochemical pathways essential for good tasting fruit. Here, we discuss the progress in identifying the biosynthetic pathways and chemical modifications of important tomato volatile compounds. We also summarize the advances in developing highly flavorful tomato varieties and future steps toward developing a "perfect tomato".
Collapse
Affiliation(s)
- Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Modesta Abugu
- Department of Horticulture Science, North Carolina State University, Raleigh, NC, United States
| | - Denise Tieman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Yoo HJ, Chung MY, Lee HA, Lee SB, Grandillo S, Giovannoni JJ, Lee JM. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux. PLANT PHYSIOLOGY 2023; 192:1289-1306. [PMID: 36715630 PMCID: PMC10231392 DOI: 10.1093/plphys/kiad049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, β-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and β-ionone in ShCCD4b-overexpressing ripe fruit coupled with a β-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and β-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and β-ionone, respectively. Exogenous β-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.
Collapse
Affiliation(s)
- Hee Ju Yoo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon 57922, Korea
| | - Hyun-Ah Lee
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan 31005, Korea
| | - Soo-Bin Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy
| | - James J Giovannoni
- Boyce Thompson Institute and USDA-ARS Robert W. Holley Center, Tower Rd., Cornell University Campus, Ithaca, NY 14853, USA
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
39
|
Huang C, Sun P, Yu S, Fu G, Deng Q, Wang Z, Cheng S. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Int J Mol Sci 2023; 24:ijms24097901. [PMID: 37175606 PMCID: PMC10178352 DOI: 10.3390/ijms24097901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Aroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.
Collapse
Affiliation(s)
- Chuang Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Genying Fu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, Wang HC. Aroma Components in Horticultural Crops: Chemical Diversity and Usage of Metabolic Engineering for Industrial Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091748. [PMID: 37176806 PMCID: PMC10180852 DOI: 10.3390/plants12091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanguo Ke
- College of Economics and Management, College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
41
|
Yu Y, Ding P, Qiao Y, Liu Y, Wang X, Zhang T, Ding J, Chang Y, Zhao C. The feces of sea urchins as food improves survival, growth, and resistance of small sea cucumbers Apostichopus japonicus in summer. Sci Rep 2023; 13:5361. [PMID: 37005442 PMCID: PMC10067838 DOI: 10.1038/s41598-023-32226-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Mass mortality and low growth highly decrease the production efficiency and sustainable aquaculture development of the sea cucumber Apostichopus japonicus in summer. Sea urchin feces was proposed to address the summer problems. A laboratory study was conducted for ~ 5 weeks to investigate survival, food consumption, growth and resistance ability of A. japonicus cultured with the feces of sea urchins fed kelp (KF feces, group KF), the feces of sea urchins fed prepared feed (FF feces, group FF), and the prepared sea cucumber feed (group S) at high temperature (25 °C). The sea cucumbers of group KF had better survival (100%) than those of the group FF (~ 84%), higher CTmax (35.9 °C) than those of the group S (34.5 °C), and the lowest skin ulceration proportion (0%) when they were exposed to an infectious solution among the three groups. These results suggest that the feces of sea urchins fed kelp is a promising diet for improving the survival and enhancing the resistance in A. japonicus aquaculture in summer. Sea cucumbers fed significantly less FF feces after 24 h of ageing than the fresh FF feces, suggesting this kind of feces became unsuitable for A. japonicus in a short time (within 48 h). However, the 24 h of ageing at 25 °C for the high fiber feces of sea urchins fed kelp had no significant effects on the fecal consumption of sea cucumbers. In the present study, both fecal diets provide better individual growth to sea cucumbers than the prepared feed. Yet, the feces of sea urchins fed kelp provided the highest weight gain rate (WGR) to sea cucumbers. Therefore, the feces of sea urchins fed kelp is a promising food to reduce the mortality, to address the problems of summer, and to achieve higher efficiency in A. japonicus aquaculture in summer.
Collapse
Affiliation(s)
- Yushi Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Peng Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yihai Qiao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yansong Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiajing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Tongdan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chong Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
42
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Yu D, Wang W, Huo J, Zhuang Y, Chen Y, Du X. Study on molecular mechanism of volatiles variation during Bupleurum scorzonerifolium root development based on metabolome and transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1159511. [PMID: 37035038 PMCID: PMC10079991 DOI: 10.3389/fpls.2023.1159511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Bupleurum scorzonerifolium Willd. is a medicinal herb. Its root has a high content of volatile oil (BSVO), which shows a variety of biological activities. Currently, BSVO in the injectable form is used for treating fever in humans and livestock. The yield and quality of volatile oils depends on the developmental stages of plants. However, the changes in BSVO yield and quality during root development in Bupleurum scorzonerifolium and the underlying molecular regulatory mechanisms remain unclear. This knowledge gap is limiting the improvement in the quality of BSVO. In the present study, B. scorzonerifolium root was collected at germinative, vegetative, florescence, fruiting and defoliating stages. The yield of BSVO, metabolic profile of volatile components and transcriptome of root samples at various developmental stages were comprehensively determined and compared. BSVO continuously accumulated from the germinative to fruiting stages, and its level slightly decreased from the fruiting to defoliating stages. A total of 82 volatile components were detected from B. scorzonerifolium root, of which 22 volatiles were identified as differentially accumulated metabolites (DAMs) during the root development. Of these volatiles, fatty acids and their derivatives accounted for the largest proportion. The contents of most major volatiles were highest at the fruiting stage. A large number of differentially expressed genes (DEGs) were detected during B. scorzonerifolium root development, of which 65 DEGs encoded various enzymes and transcription factors regulating the biosynthesis of fatty acids and their derivatives. In further analysis, 42 DEGs were identified to be significantly correlated with DAMs, and these DEGs may be the key genes for the biosynthesis of volatiles. To the best of our knowledge, this is the first study to comprehensively report the changes in the composition and content of volatiles and underlying mechanism during B. scorzonerifolium root development. This study provided important reference for future studies to determine the harvest time of B. scorzonerifolium roots and improve the quality of BSVO.
Collapse
Affiliation(s)
- Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenxue Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Zhuang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
44
|
Benítez G, Leonti M, Böck B, Vulfsons S, Dafni A. The rise and fall of mandrake in medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115874. [PMID: 36395976 DOI: 10.1016/j.jep.2022.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mandrake (Mandragora sp.) is one of the most famous medicinal plants. It has been in continuous medical use throughout written history and is still in use today in popular medicine. AIM OF THE STUDY Mandrake derived drugs once played an important role in medicine and in magical practices. Today, the role of mandrake in popular medicine is marginal. However, natural products present in mandrake such as atropine and scopolamine, as well as their semi synthetic derivatives continue to hold and important role in medicine. Here we aim to trace the development of historical rationales and scientific events that led to the abandonment of mandrake as a medicine. MATERIALS AND METHODS We review the medicinal uses of mandrake drugs since antiquity in an attempt to pinpoint use patterns that were popular in certain periods of time and others that are more general. We compare the uses from the native territories to those from regions where the plant got introduced and use literature reporting mandrake's chemistry and pharmacology in order to explain the diachronic changes of use patterns. RESULTS AND CONCLUSION We found information about 88 different medicinal uses for mandrake, grouped into 39 conditions. According to the number of different medicinal uses, the most versatile period was the medieval (37), followed by the Renaissance (31), the classical (27), and the modern period (21). Considering the higher number of textual sources and use-records collected for the Renaissance period, the decrease of versatility in comparison to the medieval period appears robust. This seems to indicate a more consolidated use pattern, that might be conditioned by the reproduction of classic textual sources as well as by a less experimental approach and reduced popularity of mandrake in medicine. The introduction of the volatile anaesthetics with more reliable narcotic effects set the seal on using mandrake in surgery but opened the way for atropine being used as a prophylactic and antidote during surgical interventions.
Collapse
Affiliation(s)
- Guillermo Benítez
- Department of Botany, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy.
| | - Barbara Böck
- Instituto de Lenguas y Culturas del Mediterráneo y Oriente Próximo, CSIC, Madrid, Spain.
| | - Simon Vulfsons
- Institute for Pain Medicine, Rambam Health Care Campus, Technion Institute of Technology, Haifa, Israel.
| | - Amots Dafni
- Department of Environmental and Evolutionary Biology, Institute of Evolution, Haifa University, Haifa, Israel.
| |
Collapse
|
45
|
Baeshen NA, Almulaiky YQ, Afifi M, Al-Farga A, Ali HA, Baeshen NN, Abomughaid MM, Abdelazim AM, Baeshen MN. GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents. PLANTS (BASEL, SWITZERLAND) 2023; 12:960. [PMID: 36840308 PMCID: PMC9967519 DOI: 10.3390/plants12040960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Worldwide, human beings have traditionally employed many folkloric herbal resources as complementary and alternative remedies, and these remedies have played a pivotal role in modern medicines for many decades, as scientists have used them to develop drugs. We studied the effects of employing solvents with varying polarity on the yields of phytochemical components extracted from the plant Rhazya stricta. We used chloroform-methanol (1:1), methanol, ethanol, diethyl ether, and ethyl acetate as extraction solvents. The results showed that the efficiencies of the solvents at extracting phytochemical compounds were in this order: chloroform-methanol < ethanol < methanol < diethyl ether < ethyl acetate extract. The chloroform-methanol extract produced the highest concentration of phenolic and flavonoid contents among the five solvents tested (13.3 mg GAE/g DM and 5.43 CE/g DM). The yields of the extracted phytochemical compounds ranged from 47.55 to 6.05%. The results revealed that the properties of the extraction solvents considerably impacted the extraction yield and the phytochemical components of the R. stricta extract. Furthermore, compared with the other solvents, the chloroform-methanol extraction led to the highest yield (47.55%) and to more phytochemical substances being extracted. The aim of this study is to investigate the phytochemical compounds extracted from R. stricta with different solvents that have different polarities.
Collapse
Affiliation(s)
- Nabih A. Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz 3191, Yemen
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Haytham A. Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Naseebh N. Baeshen
- Department of Biology, College of Sciences and Arts at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Mosleh M. Abomughaid
- Laboratory Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Aaser M. Abdelazim
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed N. Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
46
|
Zhang J, Zhang M, Bhandari B, Wang M. Basic sensory properties of essential oils from aromatic plants and their applications: a critical review. Crit Rev Food Sci Nutr 2023; 64:6990-7003. [PMID: 36803316 DOI: 10.1080/10408398.2023.2177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With higher standards in terms of diet and leisure enjoyment, spices and essential oils of aromatic plants (APEOs) are no longer confined to the food industry. The essential oils (EOs) produced from them are the active ingredients that contribute to different flavors. The multiple odor sensory properties and their taste characteristics of APEOs are responsible for their widespread use. The research on the flavor of APEOs is an evolving process attracting the attention among scientists in the past decades. For APEOs, which are used for a long time in the catering and leisure industries, it is necessary to analyze the components associated with the aromas and the tastes. It is important to identify the volatile components and assure quality of APEOs in order to expand their application. It is worth celebrating the different means by which the loss of flavor of APEOs can be retarded in practice. Unfortunately, relatively little research has been done on the structure and flavor mechanisms of APEOs. This also points the way to future research on APEOs.Therefore, this paper reviews the principles of flavor, identification of components and sensory pathways in humans for APEOs. Moreover, the article outlines the means of increasing the efficiency of using of APEOs. Finally, with respect to the sensory applications of APEOs, the review focuses on the practical application of APEOs in food sector and in aromatherapy.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mingqi Wang
- R & D Center, Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, China
| |
Collapse
|
47
|
Fang R, Zweig M, Li J, Mirzababaei J, Simmonds MS. Diversity of volatile organic compounds in 14 rose cultivars. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2167878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Fang
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Michal Zweig
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jianjun Li
- The Procter & Gamble Company, Mason Business Center, Mason, Ohio, USA
| | | | | |
Collapse
|
48
|
Effect of different drying methods on the phenolic and volatile compounds of persimmon (Diospyros kaki L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Datir S, Regan S. Advances in Physiological, Transcriptomic, Proteomic, Metabolomic, and Molecular Genetic Approaches for Enhancing Mango Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20-34. [PMID: 36573879 DOI: 10.1021/acs.jafc.2c05958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mango (Mangifera indica L.) is a nutritionally important fruit of high nutritive value, delicious in taste with an attractive aroma. Due to their antioxidant and therapeutic potential, mango fruits are receiving special attention in biochemical and pharmacognosy-based studies. Fruit quality determines consumer's acceptance, and hence, understanding the physiological, biochemical, and molecular basis of fruit development, maturity, ripening, and storage is essential. Transcriptomic, metabolomic, proteomic, and molecular genetic approaches have led to the identification of key genes, metabolites, protein candidates, and quantitative trait loci that are associated with enhanced mango fruit quality. The major pathways that determine the fruit quality include amino acid metabolism, plant hormone signaling, carbohydrate metabolism and transport, cell wall biosynthesis and degradation, flavonoid and anthocyanin biosynthesis, and carotenoid metabolism. Expression of the polygalacturonase, cutin synthase, pectin methyl esterase, pectate lyase, β-galactosidase, and ethylene biosynthesis enzymes are related to mango fruit ripening, flavor, firmness, softening, and other quality processes, while genes involved in the MAPK signaling pathway, heat shock proteins, hormone signaling, and phenylpropanoid biosynthesis are associated with diseases. Metabolomics identified volatiles, organic acids, amino acids, and various other compounds that determine the characteristic flavor and aroma of the mango fruit. Molecular markers differentiate the mango cultivars based on their geographical origins. Genetic linkage maps and quantitative trait loci studies identified regions in the genome that are associated with economically important traits. The review summarizes the applications of omics techniques and their potential applications toward understanding mango fruit physiology and their usefulness in future mango breeding.
Collapse
Affiliation(s)
- Sagar Datir
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
- The Naoroji Godrej Centre for Plant Research, Shindewadi, Shirwal, Maharashtra - 412801 India
| | - Sharon Regan
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
| |
Collapse
|
50
|
Pan T, Kong L, Zhang X, Wang Y, Zhou J, Fu Z, Pan H, She W, Yu Y. Fruit quality and volatile constituents of a new very early-ripening pummelo ( Citrus maxima) cultivar 'Liuyuezao'. FRONTIERS IN PLANT SCIENCE 2023; 13:1089009. [PMID: 36699855 PMCID: PMC9868557 DOI: 10.3389/fpls.2022.1089009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
'Liuyuezao' (LYZ) pummelo (Citrus maxima) originated from a spontaneous bud sport on a 'Guanxi' (GXB) pummelo tree and was released as a new very early-season cultivar. The objective of this study was to present the sensory and nutritional profiles of LYZ fruits, and compare it with other major commercialized pummelo cultivars including GXB, 'Sanhong' (SH) and 'Hongrou' (HR). LYZ had higher contents of organic acids (12.01 mg/g), phenols (669.01 mg/L), vitamin C (75.73 mg/100 mL) and stronger antioxidant capacity (77.65 mg/100 mL) but lower levels of soluble sugars (62.85 mg/g), carotenoids (0.25 mg/L) and flavonoids (46.3 mg/L) when compared to the other pummelos. Moreover, a smaller number (49) and much less content (7.63) of fruit volatiles were detected in LYZ than them in GXB, SH and HR. The relatively high levels of fructose (20.6 mg/g) and organic acids and low levels of volatile compounds in LYZ mainly contributed to its sweet and mildly sour taste and moderate aroma of pummelo note. LYZ is presented as an alternative pummelo cultivar with the potential for commercialization.
Collapse
Affiliation(s)
- Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lingchao Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxin Zhang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinyu Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhijun Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuan Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|