1
|
Cheng P, Wang B, Ji Q, Yuan P, Gui S, Liang S, Li L, Xu H, Qu S. Fe-doped TiO 2 nanosheet exposure accelerates the spread of antibiotic resistance genes by promoting plasmid-mediated conjugative transfer. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137715. [PMID: 40020293 DOI: 10.1016/j.jhazmat.2025.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
The widespread dissemination of antibiotic resistance genes (ARGs) via plasmid-mediated conjugation poses a serious threat to public health. Conjugation can be accelerated by selective pressures caused by antibiotics and other environmental pollutants. Fe-doped TiO2 nanosheets (FTNs) are widely used for the photocatalytic treatment of wastewater, raising concerns about their potential presence in the environment and their role in exerting selective pressure on conjugation. In this study, FTNs at subinhibitory concentrations (25, 50, and 100 mg/L) were applied in an in vitro conjugation model to investigate their impact on ARG conjugation. The results showed that FTN exposure increased conjugative transfer frequency by more than 2.5-fold. Molecular mechanism analysis revealed that FTNs increased membrane permeability by causing physical damage and inducing oxidative stress, promoted energy supply by modulating the proton motive force (PMF) and enhancing the tricarboxylic acid (TCA) cycle, and improved intercellular contact by enhancing cell adhesion. Additionally, transcriptomic analysis indicated that FTNs upregulated the expression of genes related to energy supply, cell adhesion, cell transport and oxidative stress. Overall, the findings of this study reveal the potential risk of nanosheets accelerating the spread of ARGs via plasmid-mediated conjugation, highlighting the necessity of establishing guidelines for their appropriate use and discharge.
Collapse
Affiliation(s)
- Ping Cheng
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Botao Wang
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Qianyu Ji
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Pingping Yuan
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Shixin Gui
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Shuying Liang
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Hongwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Li C, Zhu YX, Shen XX, Gao Y, Xu M, Chen MK, An MY. Exploring the distribution and transmission mechanism of ARGs in crab aquaculture ponds and ditches using metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126209. [PMID: 40210157 DOI: 10.1016/j.envpol.2025.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Aquaculture provides notable economic benefits; however, the excessive use of antibiotics has resulted in the production and spread of antibiotic resistance genes (ARGs). The intricate pollution dynamics in aquaculture areas complicate the comprehension of the distribution and transmission of ARGs in aquaculture systems. Using metagenomic sequencing technology, this study used eight ponds and four ditches in a large crab aquaculture area in Taizhou City, where Proteobacteria (61.58 %) and Acidobacteria (6.04 %) were identified as the dominant phyla and Thiobacillus (1.84 %) and Lysobacter (0.99 %) were the dominant genera. Network and linear discriminant analysis effect size (LEfse) analyses showed that Proteobacteria and Lysobacter were the main host phyla of ARGs, and Lysobacter, which are key host bacteria in ponds, played an important role in determining the abundance of ARGs in ponds. Co-occurrence network analysis (spearman r > 0.7, p < 0.01) revealed that prophages can dominate the spread of ARGs by carrying several ARG subtypes (rsmA, OXA-21, THIN-B and lnuF). Analysis of variance demonstrated that functions related to the horizontal gene transfer (HGT) of ARGs, such as EPS synthesis (lptF), oxidative stress (gor and ompR), ATP synthesis (lapB and vcaM), and cell membrane permeability (yajC and gspJ), were significantly expressed in the pond (p < 0.05), confirming that ARGs had stronger transmission potential in the pond. The Mantel test and partial least squares path modeling (PLS-PM) analysis showed that ARGs exist in bacteria and spread among them through mobile genetic elements and HGT. This study revealed the distribution and transmission mechanism of ARGs in the ponds and ditches of a crab aquaculture system and provided a theoretical basis for controlling the spread of ARGs in crab aquaculture in this area.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yun-Xiang Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Meng-Kai Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming-Yang An
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Xiao J, Wang Y, Xu X, Zhou H. An auto-excision system for rapid and efficient genetic manipulation in Glaesserella parasuis. Microbiol Res 2025; 298:128235. [PMID: 40413914 DOI: 10.1016/j.micres.2025.128235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Site-specific recombination systems are widely used in bacterial gene editing due to their precision and efficiency. However, traditional gene editing methods often require labor-intensive plasmid construction and multiple transformation steps, which can be time-consuming and inefficient. In this study, we developed an Auto-Excision (AE) system that overcomes these limitations by optimizing the entire process-from the preparation of targeting sequences to the screening of marker-free mutants. The AE system simplifies the knockout process by eliminating the need to construct targeting plasmids for each target gene, requiring only a single transformation, and allowing for the direct selection of markerless mutants in the presence of antibiotics. We validated the AE system's ability to enable rapid and efficient gene knockout in Glaesserella parasuis (G. parasuis), demonstrating its potential as a rapid and labor-efficient gene manipulation tool. This method reduces the overall timeline to as little as one day, with a hands-on time of less than one hour, while achieving a knockout efficiency greater than 90 %. Additionally, the system successfully performed multi-gene knockouts, targeting five genes in succession. This approach offers substantial time and labor savings, with the entire process achievable within a single bacterial colony growth cycle. This positions the AE system as a rapid bacterial genetic manipulation method currently known, with broad potential applications across diverse bacterial species.
Collapse
Affiliation(s)
- Jing Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuxin Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Hongbo Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
4
|
Brennan AA, Tata SC, Renshaw CP, Tal-Gan Y. Elucidating the Role of the Competence Regulon Quorum Sensing Circuitry in Streptococcus cristatus. ACS Chem Biol 2025; 20:1123-1136. [PMID: 40257361 DOI: 10.1021/acschembio.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Streptococcus cristatus belongs to the Mitis group of streptococci and is an early colonizer of the human oral cavity. This species has recently been reclassified from Streptococcus oligofermentans, and as such, much information regarding the competence regulon and its regulatory role in modulating downstream phenotypes remains unknown. In this work, we set out to investigate the role of the competence-stimulating peptide (CSP) in competence regulon activation and modulation, as well as define the resultant transcriptomic and phenotypic effects of CSP exposure. To this end, following confirmation of the CSP identity, structure activity relationship (SAR) analyses were conducted and revealed residues integral for CSP::ComD binding and activation, as well as provided insights about the CSP secondary structure. The ability of synthesized CSP analogs to modulate the competence regulon was quantified with the aid of a newly developed luciferase-based reporter strain, after which the biological activity was correlated with peptide secondary structure derived through CD analysis. Furthermore, RNA-seq was utilized to gain broader insights about subsequent transcriptomic changes following CSP incubation, while phenotypic assays helped with visualizing resultant expression profiles. Lastly, to further explore the potential of S. cristatus as a potential biotherapeutic against the oral pathogen, Streptococcus mutans, interspecies competition assays were used to evaluate interactions between these two species.
Collapse
Affiliation(s)
- Alec A Brennan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Steven C Tata
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
5
|
Ferheen I, Cimarelli L, Marcheggiani S, Klümper U, Spurio R. Plastic-mediated transformation: A new route to navigate plasmid-borne antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179125. [PMID: 40199202 DOI: 10.1016/j.scitotenv.2025.179125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Among the anthropogenic sources of pollution, accumulation of plastic polymers in aquatic ecosystems is scaling at unprecedented rates and emerging as a new niche for bacterial colonization and horizontal gene transfer (HGT). The current study focuses on determining the ability of bacteria to acquire plasmid DNA from the extracellular environment under exposure to different treatments (soil, CaCl2 salt solution, soil plus CaCl2, Escherichia coli cell-free extract, and plastic debris) that simulate possible conditions experienced by microorganisms in natural environments. The transformation frequency of two plasmids (pACYC:Hyg and pBAV-1k) was tested following two experimental approaches: single species microcosm of E. coli cells (SSM) and bacterial consortium microcosm (BCM) of strains isolated from freshwater ecosystems. Plastic fragments (with consistent results obtained using polypropylene) proved to be remarkably efficient in increasing the bacterial competence towards plasmid DNA uptake as compared to the other conditions. Moreover, the effects of different plastic polymers and four incubation conditions on bacterial DNA transformation were analyzed to gain deeper insight into the exchange of genetic material. Our findings from both experimental approaches demonstrate that simultaneous incubation of microorganisms, plasmids, and plastic fragments enhances the bacterial ability to uptake plasmids and to express genes required for survival under stress conditions. The two microcosm models prove to be promising tools to mimic natural transformation events leading to the dissemination of antibiotic-resistant genes via HGT in the environment.
Collapse
Affiliation(s)
- Ifra Ferheen
- Laboratory of Genetics of Microorganisms and Microbial Biotechnology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy; Department of Environment and Primary Prevention, National Institute of Health, 00161 Rome, Italy
| | - Lucia Cimarelli
- Laboratory of Genetics of Microorganisms and Microbial Biotechnology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Stefania Marcheggiani
- Department of Environment and Primary Prevention, National Institute of Health, 00161 Rome, Italy
| | - Uli Klümper
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Roberto Spurio
- Laboratory of Genetics of Microorganisms and Microbial Biotechnology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
6
|
Wen ZT, Ellepola K, Wu H. MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria. Mol Microbiol 2025; 123:433-438. [PMID: 40070161 DOI: 10.1111/mmi.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
MecA is a broadly conserved adaptor protein in Gram-positive bacteria, mediating the recognition and degradation of specific target proteins by ClpCP protease complexes. MecA binds target proteins, often through recognition of degradation tags or motifs, and delivers them to the ClpC ATPase, which unfolds and translocates the substrates into the ClpP protease barrel for degradation. MecA activity is tightly regulated through interactions with ClpC ATPase and other factors, ensuring precise control over protein degradation and cellular homeostasis. Beyond proteolysis, emerging evidence highlights a ClpP-independent role of MecA in modulating the function of its targets, including key enzymes and transcriptional factors involved in biosynthetic and metabolic pathways. However, the full scope and mechanisms of ClpP-independent MecA regulation remain unclear, warranting further investigation.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Chen SY, Huang K, He ZH, Zhao FJ. Ampicillin Exposure and Glutathione Deficiency Synergistically Promote Conjugative Transfer of Plasmid-Borne Antibiotic Resistance Genes. Environ Microbiol 2025; 27:e70106. [PMID: 40346915 DOI: 10.1111/1462-2920.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/12/2025]
Abstract
Plasmid-mediated conjugation is an important pathway for the spread of antibiotic resistance genes (ARGs), posing a significant risk to global public health. It has been reported that the conjugative transfer of ARGs could be enhanced by oxidative stress. Whether endogenous glutathione (GSH), a major non-protein thiol compound involved in cellular redox homeostasis, influences conjugative transfer is unknown. In this study, we show that the deletion of the GSH biosynthesis gene gshA and ampicillin exposure synergistically promoted the conjugative transfer of plasmid RP4 bearing multiple ARGs from the soil bacterium Enterobacter sp. CZ-1 to Escherichia coli S17-1λπ in co-culture experiments and to diverse soil bacteria belonging to eight phyla, including some potential human pathogens, in a soil incubation experiment. The deletion of gshA increased ROS generation and cell membrane permeability, and upregulated the expression of the genes involved in intracellular oxidative stress regulation, membrane permeability, plasmid replication, and the SOS response process, especially under ampicillin exposure. These results suggest that endogenous GSH is an important factor affecting the spread of plasmid-borne ARGs. Exposure to antibiotics and environmental stresses that cause a depletion of endogenous GSH in vivo are likely to increase the risk of ARG dissemination in the environment.
Collapse
Affiliation(s)
- Shu-Yao Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ze-Hao He
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Jiang CY, Feng XC, Shi HT, Gao SH, Wang WQ, Xiao ZJ, Ren NQ. A feasible regulation strategy for conjugation of antibiotic resistance genes based on different bacterial quorum sensing inhibition methods. WATER RESEARCH 2025; 272:122958. [PMID: 39700835 DOI: 10.1016/j.watres.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
The dissemination of antibiotic resistance genes (ARGs) poses global environmental issues, and plasmid-mediated conjugation contributes substantially to the spread of ARGs. Quorum sensing (QS), an important cell-cell communication system that coordinates group behaviors, has potential as a feasible regulation pathway to inhibit the conjugation process. We examined the promoting effects of QS signal on conjugation, and this study is the first to report that QS inhibitors 2(3H)-benzofuranone and acylase I effectively repressed conjugation frequency of RP4 plasmid to 0.32- and 0.13-fold compared with the control respectively. The investigation of underlying mechanisms of QS inhibitors revealed a significant decrease in cellular contact and the formation of transfer channels. The downregulation of sdiA gene regulating the expression of QS signal receptor contribute to conjugation inhibition. Importantly, the expression of genes related to the formation of conjugative pili, which plays a role in plasmid mating bridge formation was downregulated, indicating QS inhibitors affect conjugation mainly through regulation of the mating pair formation system. Furthermore, 2(3H)-benzofuranone and acylase I achieved 84.07% and 66.05% inhibitory effect on plasmid spread in activated sludge reactors. Collectively, our findings demonstrate the feasibility of using different bacteria quorum quenching methods to control the spread of ARGs.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
9
|
Li YQ, Zhang CM, Liu Y. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124430. [PMID: 39919578 DOI: 10.1016/j.jenvman.2025.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca2+ concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H+ efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca2+ concentrations, and promoted the efflux of intracellular H+. This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Zhao C, Suyamud B, Yuan Y, Ghosh S, Xu X, Hu J. Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136701. [PMID: 39615392 DOI: 10.1016/j.jhazmat.2024.136701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
Aquaculture water with antibiotic resistance genes (ARGs) is escalating due to the horizontal gene transfer. Non-antibiotic stressors specifically found, including those from fishery feed and disinfectants, are potential co-selectors. However, the mechanisms underlying this process remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic-resistant plasmid RP4 were established to examine conjugative transfer frequency under exposure to five widely used non-antibiotic factors in aquaculture water: iodine, oxolinic acid, NO2-N, NO3-N and H2O2 and four different recipient bacteria: E. coli HB101, Citrobacter portucalensis SG1, Vibrio harveyi and Vibrio alginolyticus. The study found that low concentrations of non-antibiotic factors significantly promoted conjugative transfer, whereas high concentrations inhibited it. Moreover, the conjugation transfer efficiencies were significantly different with different bacterial species within (E. coli HB101 ∼ 10-3 %) or cross genera (C. portucalensis SG1 ∼10-5 %, V. harveyi ∼1 %). Besides, excessive exposure concentrations inhibited the expression of related genes and the generation of reactive oxygen species (ROS). Regulation of multiple related genes and ROS-induced SOS responses are common primary mechanisms. However, the mechanisms of non-antibiotic factors differ from those of standard antibiotics, with direct changes in cell membrane permeability potentially playing a dominant role. Additionally, variations among non-antibiotic factors and the specific characteristics of bacterial species contribute to differences in conjugation mechanisms. Notably, this study found that non-antibiotic factors could increase the frequency of intergeneric conjugation beyond that of intrageneric conjugation. Furthermore, non-antibiotic factors influenced by multiple transport systems may raise the risk of unintended cross-resistance, significantly amplifying the potential for resistance gene spread. This study underscores the significance of non-antibiotic factors in the propagation of ARGs, highlighting their role in advancing aquaculture development and protecting human health.
Collapse
Affiliation(s)
- Chendong Zhao
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Bongkotrat Suyamud
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yue Yuan
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shayok Ghosh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Xulin Xu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
11
|
Zhao W, Zhang B, Zheng S, Yan W, Yu X, Ye C. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136675. [PMID: 39603126 DOI: 10.1016/j.jhazmat.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of residual chlorine on the dissemination of antibiotic resistance during the distribution and storage of water has become a critical concern. However, the influence of rising temperatures attributed to global warming on this process remains ambiguous, warranting further investigation. This study investigated the effects of different temperatures (17, 27, 37, and 42°C) on the conjugative transfer of antibiotic resistance genes (ARGs) under residual chlorine (0, 0.1, 0.3, and 0.5 mg/L). The results indicated that high temperatures significantly increased the conjugative transfer frequency of ARGs in intra-species under residual chlorine. Compared to 17°C, the transfer frequencies at 27°C, 37°C, and 42°C increased by 1.07-2.43, 1.20-4.80, and 1.24-2.82 times, respectively. The promoting effect of high temperatures was mainly due to the generation of reactive oxygen species, the triggered SOS response, and the formation of pilus channels. Transcriptomic analysis demonstrated that higher temperature stimulates the electron transport chain, thereby enhancing ATP production and facilitating the processes of conjugative, as confirmed by inhibitor validation. Additionally, rising temperatures similarly promoted the frequency of conjugative transfer in inter-species and communities under residual chlorine. These further highlighted the risk of antibiotic resistance spread in extreme and prolonged high-temperature events. The increased risk of antibiotic resistance in the process of drinking water transmission under the background of climate warming is emphasized.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Binghuang Zhang
- College of the Energy, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
12
|
Zhang X, Wang J, Yang Z, Zhang Z, Wang M, Zhang T, Chen Y, Wu X, Liu P, Jia H. Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:834-845. [PMID: 39723446 DOI: 10.1021/acs.est.4c10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment.
Collapse
Affiliation(s)
- Xinrui Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jian Wang
- Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Zeyuan Yang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zixuan Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingjun Wang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Taishuo Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yiqi Chen
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaowei Wu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Wu H, Yu Y, Su Q, Zhang TC, Du D, Du Y. Combined impact of antibiotics and Cr(VI) on antibiotic resistance, ARGs, and growth of Bacillussp. SH-1: A functionl analysis from gene to protease. BIORESOURCE TECHNOLOGY 2024; 414:131579. [PMID: 39384050 DOI: 10.1016/j.biortech.2024.131579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The simultaneous selection of antibiotic resistance genes (ARGs) induced by heavy metals and antibiotics has emerged as a growing environmental problem. This study investigated the combined effects of chromium (Cr(VI)) and antibiotics on the ARGs of Bacillus cereus SH-1. As Cr(VI) concentration increased, it triggered reactive oxygen species oxidative stress in SH-1, increased antioxidant enzyme activity, enhanced plasmid conjugative transfer, and reduced the efficiency of Cr(VI) removal by SH-1. Antibiotic resistance varied with increasing tetracycline and amoxicillin minimum inhibitory concentrations (MICs), whereas azithromycin and chloramphenicol MICs decreased with Cr(VI) induction. The overexpression of eight genes of the HAE-1 family of efflux pumps was detected using metagenomics and proteomics. Co-contamination with Cr(VI) and antibiotics has led to the emergence and spread of antibiotic-resistant bacteria. Therefore, resistance gene contamination resulting from Cr(VI)-polluted environments cannot be overlooked.
Collapse
Affiliation(s)
- Hui Wu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yexing Yu
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Qingmuke Su
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China
| | - Yaguang Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Goh YX, Anupoju SMB, Nguyen A, Zhang H, Ponder M, Krometis LA, Pruden A, Liao J. Evidence of horizontal gene transfer and environmental selection impacting antibiotic resistance evolution in soil-dwelling Listeria. Nat Commun 2024; 15:10034. [PMID: 39562586 PMCID: PMC11577001 DOI: 10.1038/s41467-024-54459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Soil is an important reservoir of antibiotic resistance genes (ARGs) and understanding how corresponding environmental changes influence their emergence, evolution, and spread is crucial. The soil-dwelling bacterial genus Listeria, including L. monocytogenes, the causative agent of listeriosis, serves as a key model for establishing this understanding. Here, we characterize ARGs in 594 genomes representing 19 Listeria species that we previously isolated from soils in natural environments across the United States. Among the five putatively functional ARGs identified, lin, which confers resistance to lincomycin, is the most prevalent, followed by mprF, sul, fosX, and norB. ARGs are predominantly found in Listeria sensu stricto species, with those more closely related to L. monocytogenes tending to harbor more ARGs. Notably, phylogenetic and recombination analyses provide evidence of recent horizontal gene transfer (HGT) in all five ARGs within and/or across species, likely mediated by transformation rather than conjugation and transduction. In addition, the richness and genetic divergence of ARGs are associated with environmental conditions, particularly soil properties (e.g., aluminum and magnesium) and surrounding land use patterns (e.g., forest coverage). Collectively, our data suggest that recent HGT and environmental selection play a vital role in the acquisition and diversification of bacterial ARGs in natural environments.
Collapse
Affiliation(s)
- Ying-Xian Goh
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Anthony Nguyen
- Computational Modeling & Data Analytics Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hailong Zhang
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Monica Ponder
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leigh-Anne Krometis
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Li Y, Zheng Q, Lu Y, Qiao Y, Guo H, Ma Q, Zhou J, Li H, Wang T. Water temperature disturbance alters the conjugate transfer of antibiotic resistance genes via affecting ROS content and intercellular aggregation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135762. [PMID: 39255666 DOI: 10.1016/j.jhazmat.2024.135762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10-7 at a constant water temperature of 5 °C, and it reached 2.18 × 10-5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5-30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.
Collapse
Affiliation(s)
- Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiyi Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanhan Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yinuo Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
16
|
Reeve HK, Pfennig DW. Evolution of transmissible cancers: An adaptive, plastic strategy of selfish genetic elements? iScience 2024; 27:110740. [PMID: 39286496 PMCID: PMC11402641 DOI: 10.1016/j.isci.2024.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
A growing number of studies have applied evolutionary and ecological principles to understanding cancer. However, few such studies have examined whether phenotypic plasticity--the ability of a single individual or genome to respond differently to different environmental circumstances--can impact the origin and spread of cancer. Here, we propose the adaptive horizontal transmission hypothesis to explain how flexible decision-making by selfish genetic elements can cause them to spread from the genome of their original host into the genomes of other hosts through the evolution of transmissible cancers. Specifically, we hypothesize that such cancers appear when the likelihood of successful vertical transmission is sufficiently low relative to the likelihood of successful horizontal transmission. We develop an evolutionary optimization model of this hypothesis, highlight empirical findings that support it, and offer suggestions for future research. Generally, phenotypically plastic selfish genetic elements might play an important role in the evolution of transmissible cancers.
Collapse
Affiliation(s)
- Hudson Kern Reeve
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| | - David W Pfennig
- Department of Biology, CB#3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
17
|
Xu Y, Liu B, Jiao N, Liu J, Chen F. New evidence supports the prophage origin of RcGTA. Appl Environ Microbiol 2024; 90:e0043424. [PMID: 39189727 PMCID: PMC11409702 DOI: 10.1128/aem.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Gene transfer agents (GTAs) are phage-like entities that package and transfer random host genome fragments between prokaryotes. RcGTA, produced by Rhodobacter capsulatus, is hypothesized to originate from a prophage ancestor. Most of the evidence supporting this hypothesis came from the finding of RcGTA-like genes in phages. More than 75% of the RcGTA genes have a phage homolog. However, only a few RcGTA homologs have been identified in a (pro)phage genome, leaving the hypothesis that GTAs evolved from prophages through gene loss with only weak evidence. We herein report the discovery of an inducible prophage (vB_MseS-P1) from a Mesorhizobium sediminum strain that contains the largest number (12) of RcGTA homologs found in a phage genome to date. We also identified three putative prophages and two prophage remnants harboring 12-14 RcGTA homologs in a Methylobacterium nodulans strain. The protein remote homology detection also revealed more RcGTA homologs from other phages than we previously thought. Moreover, the head-tail gene architecture of these newly discovered prophage-related elements closely resembles that of RcGTA. Furthermore, vB_MseS-P1 virions have structural proteins similar to RcGTA particles. Close phylogenetic relationships between certain prophage genes and RcGTA-like genes in Alphaproteobacteria further support the shared ancestry between RcGTA and prophages. Our findings provide new relatively direct evidence of the origin of RcGTA from a prophage progenitor.IMPORTANCEGTAs are important genetic elements in certain groups of bacteria and contribute to the genetic diversification, evolution, and ecological adaptation of bacteria. RcGTA, a common type of GTA, is known to package and transfer random fragments of the bacterial genome to recipient cells. However, the origin of RcGTA is still elusive. It has been hypothesized that RcGTA evolved from a prophage ancestor through gene loss. However, the few RcGTA homologs identified in a (pro)phage genome leave the hypothesis lacking direct evidence. This study uncovers the presence of a large number of RcGTA homologs in an inducible prophage and several putative prophages. The similar head-tail gene architecture and structural protein compositions of these newly discovered prophage-related elements and RcGTA further demonstrate an unprecedentedly observed close evolutionary relationship between prophages and RcGTA. Together, our findings provide more direct evidence supporting the origin of RcGTA from prophage.
Collapse
Affiliation(s)
- Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Wu Q, Wu GG, Pan KN, Wang XP, Li HY, Tian Z, Jin RC, Fan NS. Beta-blocker drives the conjugative transfer of multidrug resistance genes in pure and complex biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135403. [PMID: 39096644 DOI: 10.1016/j.jhazmat.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Drug resistance poses a high risk to human health. Extensive use of non-antibiotic drugs contributes to antibiotic resistance genes (ARGs) transfer. However, how they affect the spread of broad-host plasmids in complex biological systems remains unknown. This study investigated the effect of metoprolol on the transfer frequency and host range of ARGs in both intrageneric and intergeneric pure culture systems, as well as in anammox microbiome. The results showed that environmental concentrations of metoprolol significantly promoted the intrageneric and intergeneric conjugative transfer. Initially, metoprolol induced excessive oxidative stress, resulting in high cell membrane permeability and bacterial SOS response. Meanwhile, more pili formation increased the adhesion and contact between bacteria, and the abundance of conjugation-related genes also increased significantly. Activation of the electron transport chain provided more ATP for this energy-consuming process. The underlying mechanism was further verified in the complex anammox conjugative system. Metoprolol induced the enrichment of ARGs and mobile genetic elements. The enhanced bacterial interaction and energy generation facilitated the high conjugative transfer frequency of ARGs. In addition, plasmid-borne ARGs tended to transfer to opportunistic pathogens. This work raises public concerns about the health and ecological risks of non-antibiotic drugs.
Collapse
Affiliation(s)
- Qian Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ge-Ge Wu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai-Nan Pan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Xue-Ping Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Yan Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zhe Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
19
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Li Y, Zhang S, Chen Z, Huang W, Liu Q, Fang H, Chi B, Yang N, Zhang Q. Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. WATER RESEARCH 2024; 261:122005. [PMID: 38968733 DOI: 10.1016/j.watres.2024.122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.
Collapse
Affiliation(s)
- Yanzeng Li
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizhao Huang
- Xiamen Xinyuan Environmental Service Co., LTD., Xiamen 361000, China
| | - Qin Liu
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Bin Chi
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Ningbo Yang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Qian Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
21
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
22
|
Jin C, Yang S, Ma H, Zhang X, Zhang K, Zou W. Ubiquitous nanocolloids suppress the conjugative transfer of plasmid-mediated antibiotic resistance in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124231. [PMID: 38801878 DOI: 10.1016/j.envpol.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Shuo Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Haiwen Ma
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, 464000, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
23
|
Chen MM, Zhang YQ, Cheng LC, Zhao FJ, Wang P. Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134884. [PMID: 38878434 DOI: 10.1016/j.jhazmat.2024.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu-Chen Cheng
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Wang Q, Li X, Zhou K, Li Y, Wang Y, Zhang G, Guo H, Zhou J, Wang T. Mechanisms of conjugative transfer of antibiotic resistance genes induced by extracellular polymeric substances: Insights into molecular diversities and electron transfer properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135181. [PMID: 39003806 DOI: 10.1016/j.jhazmat.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) has become a critical threat to public health. Activated sludge, rich in extracellular polymeric substances (EPS), is an important pool of ARGs. In this study, mechanisms of conjugation transfer of ARGs induced by EPS, including tightly bound EPS (TBEPS), soluble EPS (SEPS), and loosely bound EPS (LBEPS), were explored in terms of molecular diversities and electron transfer properties of EPS. Conjugation transfer frequency was increased by 9.98-folds (SEPS), 4.21-folds (LBEPS), and 15.75-folds (TBEPS) versus the control, respectively. Conjugation-related core genes involving SOS responses (9 genes), membrane permeability (18 genes), intercellular contact (17 genes), and energy metabolism pathways (13 genes) were all upregulated, especially in the presence of TBEPS. Carbohydrates and aliphatic substances in SEPS and LBEPS were contributors to ARG transfer, via influencing reactive oxygen species (ROS) formation (SEPS) and ROS and adenosine triphosphate (ATP) production (LBEPS). TBEPS had the highest redox potential and greatest lability and facilitated electron transfer and alternated respiration between cells, thus promoting ARG transfer by producing ATP. Generally, the chemical molecular characteristics and redox properties of EPS facilitated ARG transfer mainly by influencing lipid peroxidation and ATP, respectively.
Collapse
Affiliation(s)
- Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Keying Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
Hu Q, Zhang L, Yang R, Tang J, Dong G. Quaternary ammonium biocides promote conjugative transfer of antibiotic resistance gene in structure- and species-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 189:108812. [PMID: 38878503 DOI: 10.1016/j.envint.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/19/2024]
Abstract
The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.
Collapse
Affiliation(s)
- Qin Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guoliang Dong
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
26
|
Cao J, Xue B, Yang S, Yang X, Zhang X, Qiu Z, Shen Z, Wang J. Chlorite and bromate alter the conjugative transfer of antibiotic resistance genes: Co-regulation of oxidative stress and energy supply. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134257. [PMID: 38636236 DOI: 10.1016/j.jhazmat.2024.134257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The widespread use of disinfectants during the global response to the 2019 coronavirus pandemic has increased the co-occurrence of disinfection byproducts (DBPs) and antibiotic resistance genes (ARGs). Although DBPs pose major threats to public health globally, there is limited knowledge regarding their biological effects on ARGs. This study aimed to investigate the effects of two inorganic DBPs (chlorite and bromate) on the conjugative transfer of RP4 plasmid among Escherichia coli strains at environmentally relevant concentrations. Interestingly, the frequency of conjugative transfer was initially inhibited when the exposure time to chlorite or bromate was less than 24 h. However, this inhibition transformed into promotion when the exposure time was extended to 36 h. Short exposures to chlorite or bromate were shown to impede the electron transport chain, resulting in an ATP shortage and subsequently inhibiting conjugative transfer. Consequently, this stimulates the overproduction of reactive oxygen species (ROS) and activation of the SOS response. Upon prolonged exposure, the resurgent energy supply promoted conjugative transfer. These findings offer novel and valuable insights into the effects of environmentally relevant concentrations of inorganic DBPs on the conjugative transfer of ARGs, thereby providing a theoretical basis for the management of DBPs.
Collapse
Affiliation(s)
- Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin 300050, China.
| |
Collapse
|
27
|
Jia Y, Zheng Z, Yang B, Zhang H, Wang Z, Liu Y. A Broad-Spectrum Horizontal Transfer Inhibitor Prevents Transmission of Plasmids Carrying Multiple Antibiotic Resistance Genes. Transbound Emerg Dis 2024; 2024:7063673. [PMID: 40303018 PMCID: PMC12017466 DOI: 10.1155/2024/7063673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/02/2025]
Abstract
The dissemination of antimicrobial resistance (AMR) severely degrades the performance of antibiotics and constantly paralyzes the global health system. In particular, plasmid-mediated transfer of antibiotic resistance genes (ARGs) across bacteria is recognized as the primary driver. Therefore, antiplasmid transfer approaches are urgently warranted to resolve this intractable problem. Herein, we demonstrated the potential of azidothymidine (AZT), an FDA-approved anti-HIV drug, as a broad-spectrum horizontal transfer inhibitor to effectively prevent the transmission of multiple ARGs, including mcr-1, bla NDM-5, and tet(X4), both in vitro and in vivo. It was also noteworthy that the inhibitory effect of AZT was proved to be valid within and across bacterial genera under different mating conditions. Mechanistic studies revealed that AZT dissipated bacterial proton motive force, which was indispensable for ATP synthesis and flagellar motility. In addition, AZT downregulated bacterial secretion systems involving general and type IV secretion systems (T4SS). Furthermore, the thymidine kinase, which is associated with DNA synthesis, turned out to be the potential target of AZT. Collectively, our work demonstrates the broad inhibitory effect of AZT in preventing ARGs transmission, opening new horizons for controlling AMR.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Zhiwan Zheng
- Department of Pathogenic BiologyWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Haijie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri-Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Institute of Comparative MedicineYangzhou UniversityYangzhouChina
| |
Collapse
|
28
|
Yang S, Cao J, Zhao C, Zhang X, Li C, Wang S, Yang X, Qiu Z, Li C, Wang J, Xue B, Shen Z. Cylindrospermopsin enhances the conjugative transfer of plasmid-mediated multi-antibiotic resistance genes through glutathione biosynthesis inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116288. [PMID: 38581909 DOI: 10.1016/j.ecoenv.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 μg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 μg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.
Collapse
Affiliation(s)
- Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jinrui Cao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China
| | - Bin Xue
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
29
|
Zheng Y, Cai Y, Sun T, Li G, An T. Response mechanisms of resistance in L-form bacteria to different target antibiotics: Implications from oxidative stress to metabolism. ENVIRONMENT INTERNATIONAL 2024; 187:108729. [PMID: 38735077 DOI: 10.1016/j.envint.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Due to the specific action on bacterial cell wall, β-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.
Collapse
Affiliation(s)
- Yuye Zheng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Xu Z, Hu S, Zhao D, Xiong J, Li C, Ma Y, Li S, Huang B, Pan X. Molybdenum disulfide nanosheets promote the plasmid-mediated conjugative transfer of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120827. [PMID: 38608575 DOI: 10.1016/j.jenvman.2024.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dimeng Zhao
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
31
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Liu S, Zhang Z, Gu P, Yang K, Huang X, Li M, Miao H. Elucidating applied voltage on the fate of antibiotic resistance genes in microbial electrolysis cell: Focusing on its transmission between anolyte and biofilm microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166901. [PMID: 37683855 DOI: 10.1016/j.scitotenv.2023.166901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microbial electrolysis cell (MEC) system to treat wastewater containing antibiotics has been researched actively in past years. However, the fate of antibiotic resistant genes (ARGs) in MEC is not fully revealed. The effect of applied voltage on the migration of ARGs between anolyte and biofilm microbes via examining the microbial physiology and abundances of macrolide resistance genes (MRGs) and mobile genetic elements (MGEs) was elucidated in this research. Results showed that the abundance of MRGs and MGEs was decreased in the anolyte, but their abundances were increased on the electrode biofilm, indicating their transmission from anolyte to biofilm microbes. Increased applied voltage enhanced adenosine triphosphate (ATP), reactive oxygen species (ROS), and cell membrane permeability of electrode microorganisms. The structure of the electrode microbial community was shifted through applied voltage, and the abundance of electroactive microorganisms (Geobacter, Azospirillum and Dechlorobacter) was significantly improved. Network analysis revealed that Geobacter and Geothrix were potential hosts for MRGs. Therefore, the horizontal and vertical gene transfer of ARGs could be increased by the applied voltage, leading to the enriched ARGs at the electrode biofilm. This study provides evidence and insights into the transmission of ARGs between anolyte and biofilm microbes in MEC system. SYNOPSIS: This study revealed the effect of applied voltage on ARGs in MEC and the potential migration mechanism of ARGs.
Collapse
Affiliation(s)
- Shiguang Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Zengshuai Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Kunlun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Manman Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
33
|
Kilb A, Burghard-Schrod M, Holtrup S, Graumann PL. Uptake of environmental DNA in Bacillus subtilis occurs all over the cell surface through a dynamic pilus structure. PLoS Genet 2023; 19:e1010696. [PMID: 37816065 PMCID: PMC10564135 DOI: 10.1371/journal.pgen.1010696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023] Open
Abstract
At the transition to stationary phase, a subpopulation of Bacillus subtilis cells can enter the developmental state of competence, where DNA is taken up through the cell envelope, and is processed to single stranded DNA, which is incorporated into the genome if sufficient homology between sequences exists. We show here that the initial step of transport across the cell wall occurs via a true pilus structure, with an average length of about 500 nm, which assembles at various places on the cell surface. Once assembled, the pilus remains at one position and can be retracted in a time frame of seconds. The major pilin, ComGC, was studied at a single molecule level in live cells. ComGC was found in two distinct populations, one that would correspond to ComGC freely diffusing throughout the cell membrane, and one that is relatively stationary, likely reflecting pilus-incorporated molecules. The ratio of 65% diffusing and 35% stationary ComGC molecules changed towards more stationary molecules upon addition of external DNA, while the number of pili in the population did not strongly increase. These findings suggest that the pilus assembles stochastically, but engages more pilin monomers from the membrane fraction in the presence of transport substrate. Our data support a model in which transport of environmental DNA occurs through the entire cell surface by a dynamic pilus, mediating efficient uptake through the cell wall into the periplasm, where DNA diffuses to a cell pole containing the localized transport machinery mediating passage into the cytosol.
Collapse
Affiliation(s)
- Alexandra Kilb
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Marie Burghard-Schrod
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sven Holtrup
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
34
|
Wang XY, Song HW, Yi T, Shen YB, Dai CS, Sun CT, Liu DJ, Shen JZ, Wu CM, Wang Y. Dihydroartemisinin inhibits plasmid transfer in drug-resistant Escherichia coli via limiting energy supply. Zool Res 2023; 44:894-904. [PMID: 37551137 PMCID: PMC10559095 DOI: 10.24272/j.issn.2095-8137.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Conjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene ( mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla NDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.
Collapse
Affiliation(s)
- Xue-Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Huang-Wei Song
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Tian Yi
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Chong-Shan Dai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Cheng-Tao Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - De-Jun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Jian-Zhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Cong-Ming Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China. E-mail:
| |
Collapse
|
35
|
Glagoleva AA, Yaroslavov AA, Vasilevskaya VV. Computer Simulation Insight into the Adsorption and Diffusion of Polyelectrolytes on Oppositely Charged Surface. Polymers (Basel) 2023; 15:2845. [PMID: 37447491 DOI: 10.3390/polym15132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In the present work, by means of computer simulation, we studied the adsorption and diffusion of polyelectrolyte macromolecules on oppositely charged surfaces. We considered the surface coverage and the charge of the adsorbed layer depending on the ionization degree of the macromolecules and the charge of the surface and carried out a computer experiment on the polymer diffusion within the adsorbed layers, taking into account its strong dependency on the surface coverage and the macromolecular ionization degree. The different regimes were distinguished that provided maximal mobility of the polymer chains along with a high number of charged groups in the layer, which could be beneficial for the development of the functional coatings. The results were compared with those of previous experiments on the adsorption of polyelectrolyte layers that may be applied as biocidal renewable coatings that can reversibly desorb from the surface.
Collapse
Affiliation(s)
- Anna A Glagoleva
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Valentina V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
36
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
37
|
Harrison L, Zhao S, Li C, McDermott PF, Tyson GH, Strain E. Lociq provides a loci-seeking approach for enhanced plasmid subtyping and structural characterization. Commun Biol 2023; 6:595. [PMID: 37268717 DOI: 10.1038/s42003-023-04981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Antimicrobial resistance (AMR) monitoring for public health is relying more on whole genome sequencing to characterize and compare resistant strains. This requires new approaches to describe and track AMR that take full advantage of the detailed data provided by genomic technologies. The plasmid-mediated transfer of AMR genes is a primary concern for AMR monitoring because plasmid rearrangement events can integrate new AMR genes into the plasmid backbone or promote hybridization of multiple plasmids. To better monitor plasmid evolution and dissemination, we developed the Lociq subtyping method to classify plasmids by variations in the sequence and arrangement of core plasmid genetic elements. Subtyping with Lociq provides an alpha-numeric nomenclature that can be used to denominate plasmid population diversity and characterize the relevant features of individual plasmids. Here we demonstrate how Lociq generates typing schema to track and characterize the origin, evolution and epidemiology of multidrug resistant plasmids.
Collapse
Affiliation(s)
- Lucas Harrison
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA.
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Patrick F McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Gregory H Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
38
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
39
|
Shi H, Hu X, Zhang J, Li W, Xu J, Hu B, Ma L, Lou L. Soil minerals and organic matters affect ARGs transformation by changing the morphology of plasmid and bacterial responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131727. [PMID: 37257383 DOI: 10.1016/j.jhazmat.2023.131727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Soil environment is a vital place for the occurrence and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Extracellular DNA-mediated transformation is an important pathway for ARGs horizontal transfer and widely exists in soil environment. However, little information is available on how common soil components affect ARGs transformation. Here, three minerals (quartz, kaolinite, and montmorillonite) and three organic matters (humic acid, biochar, and soot) were selected as typical soil components. A small amount in suspension (0.2 g/L) of most soil components (except for quartz and montmorillonite) promoted transformant production by 1.1-1.6 folds. For a high amount (8 g/L), biochar significantly promoted transformant production to 1.5 times, kaolinite exerted a 30 % inhibitory effect. From the perspective of plasmid, biochar induced a higher proportion of supercoiled plasmid than kaolinite; more dissolved organic matter and metal ions facilitated plasmid aggregation under the near-neutral pH, thus promoted transformation. As for the influence of materials on recipient, although biochar and kaolinite both increased reactive oxygen species (ROS) level and membrane permeability, biochar up-regulated more ROS related genes, resulting in intracellular ROS production and up-regulating the expression of carbohydrate metabolism and transformation related genes. While kaolinite inhibited transformation mainly by causing nutrient deficiency.
Collapse
Affiliation(s)
- Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Wenxuan Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China.
| |
Collapse
|
40
|
Liu C, Zhu X, You L, Gin KYH, Chen H, Chen B. Per/polyfluoroalkyl substances modulate plasmid transfer of antibiotic resistance genes: A balance between oxidative stress and energy support. WATER RESEARCH 2023; 240:120086. [PMID: 37257295 DOI: 10.1016/j.watres.2023.120086] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Emerging contaminants can accelerate the transmission of antibiotic resistance genes (ARGs) from environmental bacteria to human pathogens via plasmid conjugation, posing a great challenge to the public health. Although the toxic effects of per/polyfluoroalkyl substances (PFAS) as persistent organic pollutants have been understood, it is still unclear whether and how PFAS modulate the transmission of ARGs. In this study, we for the first time reported that perfluorooctanoic acid (PFOA), perfluorododecanoic acid (PFDoA) and ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX) at relatively low concentrations (0.01, 0.1 mg/L) promoted the conjugative transfer of plasmid RP4 within Escherichia coli, while the plasmid conjugation was inhibited by PFOA, PFDoA and GenX at relatively high concentrations (1, 10 mg/L). The non-unidirectional conjugation result was ascribed to the co-regulation of ROS overproduction, enhanced cell membrane permeability, shortage of energy support as well as l-arginine pool depletion. Taking the well-known PFOA as an example, it significantly enhanced the conjugation frequency by 1.4 and 3.4 times at relatively low concentrations (0.01, 0.1 mg/L), respectively. Exposure to PFOA resulted in enhanced cell membrane permeability and ROS overproduction in donor cells. At high concentrations of PFOA (1, 10 mg/L), although enhanced oxidative stress and cell membrane permeability still occurred, the ATP contents in E. coli decreased, which contributed to the inhibited conjugation. Transcriptome analysis further showed that the expression levels of genes related to arginine biosynthesis (argA, argC, argF, argG, argI) and transport (artJ, artM, artQ) pathways were significantly increased. Intracellular l-arginine concentration deficiency were observed at high concentrations of PFOA. With the supplementary exogenous arginine, it was demonstrated that arginine upregulated conjugation transfer- related genes (trfAp, trbBp) and restores the cell number of transconjugants in PFOA-treated group. Therefore, the inhibited conjugation at high concentrations PFOA were attributed to the shortage of ATP and the depletion of L-arginine pool. These findings provide important insights into the effect environmental concentrations of PFAS on the conjugative transfer of ARGs, and update the regulation mechanism of plasmid conjugation, which is critical for the management of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Luhua You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
41
|
Jin C, Cao J, Zhang K, Zhang X, Cao Z, Zou W. Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114913. [PMID: 37062264 DOI: 10.1016/j.ecoenv.2023.114913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS2) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS2 toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS2 nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS2 due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS2 promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS2, and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS2) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Jingxin Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
42
|
Morawska LP, Kuipers OP. Cell-to-cell non-conjugative plasmid transfer between Bacillus subtilis and lactic acid bacteria. Microb Biotechnol 2023; 16:784-798. [PMID: 36547214 PMCID: PMC10034627 DOI: 10.1111/1751-7915.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacillus subtilis is a soil-dwelling bacterium that can interact with a plethora of other microorganisms in its natural habitat. Due to the versatile interactions and its ability to form nanotubes, i.e., recently described membrane structures that trade cytoplasmic content between neighbouring cells, we investigated the potential of HGT from B. subtilis to industrially-relevant members of lactic acid bacteria (LAB). To explore the interspecies HGT events, we developed a co-culturing protocol and provided proof of transfer of a small high copy non-conjugative plasmid from B. subtilis to LABs. Interestingly, the plasmid transfer did not involve conjugation nor activation of the competent state by B. subtilis. Moreover, our study shows for the first time non-conjugative cell-to-cell intraspecies plasmid transfer for non-competent Lactococcus lactis sp. cremoris strains. Our study indicates that cell-to-cell transformation is a ubiquitous form of HGT and can be potentially utilized as an alternative tool for natural (non-GMO) strain improvement.
Collapse
Affiliation(s)
- Luiza P Morawska
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
44
|
Jia Y, Wang Z, Zhu S, Wang Z, Liu Y. Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114678. [PMID: 36857920 DOI: 10.1016/j.ecoenv.2023.114678] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.
Collapse
Affiliation(s)
- Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zeyu Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuyao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
45
|
Yuan M, Huang Z, Malakar PK, Pan Y, Zhao Y, Zhang Z. Antimicrobial resistomes in food chain microbiomes. Crit Rev Food Sci Nutr 2023; 64:6953-6974. [PMID: 36785889 DOI: 10.1080/10408398.2023.2177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The safety and integrity of the global food system is in a constant state of flux with persistent chemical and microbial risks. While chemical risks are being managed systematically, microbial risks pose extra challenges. Antimicrobial resistant microorganism and persistence of related antibiotic resistance genes (ARGs) in the food chain adds an extra dimension to the management of microbial risks. Because the food chain microbiome is a key interface in the global health system, these microbes can affect health in many ways. In this review, we systematically summarize the distribution of ARGs in foods, describe the potential transmission pathway and transfer mechanism of ARGs from farm to fork, and discuss potential food safety problems and challenges. Modulating antimicrobial resistomes in the food chain facilitates a sustainable global food production system.
Collapse
Affiliation(s)
- Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
46
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
47
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
48
|
Characterization of DNA Processing Protein A (DprA) of the Radiation-Resistant Bacterium Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0347022. [PMID: 36453941 PMCID: PMC9769556 DOI: 10.1128/spectrum.03470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.
Collapse
|
49
|
Li H, Jiang E, Wang Y, Zhong R, Zhou J, Wang T, Jia H, Zhu L. Natural organic matters promoted conjugative transfer of antibiotic resistance genes: Underlying mechanisms and model prediction. ENVIRONMENT INTERNATIONAL 2022; 170:107653. [PMID: 36436463 DOI: 10.1016/j.envint.2022.107653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Dissemination of antibiotic resistance gene (ARG) is a huge challenge around the world. Natural organic matter (NOM) is one of the most commonly components in aquatic systems. Information regarding ARG transfer induced by NOM is still lacking. In this study, experimental exploration and model prediction on RP4 plasmid conjugative transfer between bacteria under NOM exposure was conducted. Compared with no exposure, the conjugative transfer frequency of RP4 plasmid increased 7.1-fold and 3.2-fold under exposure to 10 kDa and 100 kDa NOM exposure, respectively. NOM exposure with a lower molecular weight and higher concentration promoted gene expressions related to reactive oxygen species generation, cell membrane permeability, intercellular contact, quorum sensing, and energy driving force. Concurrently, the expressions of conjugation genes in RP4 plasmid were also upregulated. Moreover, model prediction demonstrated that the maintenance of the acquired plasmid was shortened to 133 h under 10 kDa NOM exposure compared with the control (200 h). Long-term NOM exposure enhanced transfer frequency and transfer rate of ARG. This study firstly theoretically and experimentally revealed the underlying mechanisms for promoting ARG transfer by NOM.
Collapse
Affiliation(s)
- Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Enli Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rongwei Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Liu D, Siguenza NE, Zarrinpar A, Ding Y. Methods of DNA introduction for the engineering of commensal microbes. ENGINEERING MICROBIOLOGY 2022; 2:100048. [PMID: 39628703 PMCID: PMC11610962 DOI: 10.1016/j.engmic.2022.100048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/06/2024]
Abstract
The microbiome is an essential component of ecological systems and is comprised of a diverse array of microbes. Over the past decades, the accumulated observational evidence reveals a close correlation between the microbiome and human health and disease. Many groups are now manipulating individual microbial strains, species and the community as a whole to gain a mechanistic understanding of the functions of the microbiome. Here, we discuss three major approaches for introducing DNA to engineer model bacteria and isolated undomesticated bacteria, including transformation, transduction, and conjugation. We provide an overview of these approaches and describe the advantages and limitations of each method. In addition, we highlight examples of human microbiome engineering using these approaches. Finally, we provide perspectives for the future of microbiome engineering.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| | - Nicole E. Siguenza
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
| | - Amir Zarrinpar
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
- VA San Diego Health System, La Jolla 92161, California, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| |
Collapse
|